The present invention relates to filler neck closures, and more particularly to a protective cover for a closure in a fuel tank.
Vehicle emissions standards have become increasingly stringent due to knowledge of the negative environmental effects of hydrocarbon emissions, which are generated by fuel vapors released into the atmosphere. For vehicles and other fuel-operated devices, controlling and containing fuel vapors is important to reduce emissions. Vehicles contain an on-board diagnostic system that monitors whether the fuel system is completely vapor-tight.
The refueling process requires a user to remove a closure, such as a gas cap, which seals a filler neck in the fuel system when the gas cap is screwed over or onto the filler neck. Screwing and unscrewing the gas cap requires the user to undergo several different steps and motions during the refueling process that must either be conducted with two hands or as separate steps (i.e., it is difficult to unscrew a gas cap and hold a refueling nozzle using the same hand at the same time). Although gas caps having doors or other openings have been proposed in the past, these structures do not form the seals required to meet current stringent emissions requirements. Moreover, these structures tend to leave the opening of the filler neck and any associated flapper door exposed to potentially corrosive environmental contaminants, such as mud, rain, dust, etc.
There is a desire for a structure that can protect an opening in a filler neck from environmental contaminants while allowing the structure to be easily manipulated by the fuel nozzle alone.
The present invention is directed to a protective cover for a filler neck. The cover includes a body portion and a movable door that covers and exposes an opening in the filler neck. The door includes a ledge that protrudes from the plane of the door so that the door can be easily moved to an open position by pressing a tip of a fuel nozzle against the door and a ledge. In one embodiment, the door slides along a shallow channel formed in the cover. A protrusion structure engages with a slot formed in the channel to guide the door along a fixed path. In another embodiment, the door is movable into and out of a pocket. The door itself may be biased to move into a closed position automatically when the fuel nozzle is removed from the ledge.
The inventive cover may be used in conjunction with a capless filler neck having a flapper that is pulled shut by a latch structure to form a vapor-tight seal.
Referring to
Referring to
To open the door 104 in the embodiment of
By incorporating a protective door that is movable to cover and reveal a filler neck, the inventive filler neck cover protects the filler neck opening and any associated closures (e.g. a flapper door) from being contaminated or damaged by environmental factors. The inventive cover may be part of a capless filler neck system that closes and seals itself automatically, such as the one described in U.S. application Ser. No. 11/047,201, filed Jan. 31, 2005. If the inventive structure is used in an automatically sealing capless filler neck system, the cover may be coupled to, for example, a latch structure that biases the door in the cover toward the closed position so that the door and the latch structure both move toward a closed position when the nozzle is removed from the filler neck.
In this arrangement, pushing the nozzle against the ledge 114 will slide the door 104 to expose a flapper that seals the filler neck opening. This sliding motion also causes the latch structure to unlatch, freeing the flapper in the filler neck to move when the nozzle is inserted through the opening 108 in the cover 100. The latch structure may include one or more resilient members that bias the latch structure toward a latched position; in this case, it is possible to couple the door 104 with the latch structure to bias the door 104 toward a closed position as well, thereby causing the door 104 to close at the same time the latch structure latches the flapper. This would eliminate the need for a separate resilient member in the cover 100 itself. Integrating the protective door with the latch structure therefore allows the flapper to be closed and sealed and the sliding door to cover the flapper at substantially the same time without requiring the user to carry out a separate motion to move the door to a closed position.
The foregoing description is exemplary rather than defined by the limitations within. Many modifications and variations of the present invention are possible in light of the above teachings. The preferred embodiments of this invention have been disclosed, however, one of ordinary skill in the art would recognize that certain modifications would come within the scope of this invention. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described. For that reason the following claims should be studied to determine the true scope and content of this invention.
Number | Name | Date | Kind |
---|---|---|---|
2294190 | Lee | Aug 1942 | A |
2338192 | Martin | Jan 1944 | A |
5547099 | Chang | Aug 1996 | A |
5732842 | Krause et al. | Mar 1998 | A |
6009920 | Palvoelgyi | Jan 2000 | A |
6092685 | Gruber | Jul 2000 | A |
6155316 | Benjey | Dec 2000 | A |
6539990 | Levey et al. | Apr 2003 | B1 |
6789586 | Levey | Sep 2004 | B1 |
Number | Date | Country |
---|---|---|
1 312 497 | May 2003 | EP |
Number | Date | Country | |
---|---|---|---|
20060169354 A1 | Aug 2006 | US |