The present invention relates generally to a fillet used with a turbine rotor blade, and more specifically, to a conical fillet used between a rotor blade and a tip shroud.
At least some known turbine rotor blades include an airfoil, a platform, a shank, a dovetail extending along a radial inner end portion of the shank, and a tip shroud formed at a tip of the airfoil. On at least some known airfoils, integral tip shrouds are included on a radially outer end of the airfoil to define a portion of a passage through which hot combustion gasses must flow. Known tip shrouds and airfoils typically include a fillet having a predetermined size and shape at the intersection of the tip shroud and airfoil.
During operation, tip shrouds are stressed because of centrifugal and mechanical forces induced to them during rotor rotation. The fillets are shaped to reduce the stress concentration between the airfoil and tip shroud, but known fillets may also reduce engine efficiency due to drag forces and obstruction produced by the fillets. While the stresses may be reduced by use of constant radius fillets, such a fillet design may be inefficient and adversely impact engine performance. Consequently, there has developed a need for a fillet having customized shape that has a more aerodynamic profile and that increases engine efficiency.
In one aspect, a turbine rotor blade is provided. The turbine rotor blade comprises an airfoil, an airfoil tip, a tip shroud, and a fillet extending along an intersection of the airfoil tip and the tip shroud. The fillet defines a fillet profile variable about the intersection to facilitate improved aerodynamic airflow about the intersection.
In another aspect, a gas turbine engine including a turbine rotor blade is provided. The gas turbine engine includes a turbine rotor blade comprising an airfoil, an airfoil tip, a tip shroud, and a fillet extending along an intersection of the airfoil tip and the tip shroud. The fillet defines a fillet profile variable about the intersection to facilitate improved aerodynamic airflow about the intersection.
A tip shroud, including a fillet, that generally is formed integrally with the turbine rotor blade at the radially outer end of an airfoil, provides a surface area that covers a tip of the airfoil. During operation, the tip shroud engages, at opposite ends, the tip shrouds of the immediately circumferentially-adjacent rotor blades such that a generally annular ring or shroud is formed that substantially circumscribes a hot gas path. This annular ring contains the expanding combustion to facilitate improving engine efficiency. The fillet joins the tip shroud to the airfoil and provides support to the tip shroud to prevent it from dislodging from the tip of the airfoil.
Generally, in terms of engine performance, it is desirable to have relatively large tip shrouds that each extend over substantially the entire radial outer end of the airfoil. Conversely, it is desirable that the fillet remain small and streamlined to guide the hot gas flow over the airfoil. Given these competing components, i.e., a large tip shroud to divert the greatest possible amount of air through the airfoils versus an aerodynamic rotor blade to increase engine efficiency, a more aerodynamic fillet is described herein that streamlines the flow of combustion gases while enabling for the tip shroud to adequately contain the hot gas flow.
In operation, air flows into intake side 19 and is routed to compressor 15. Compressed air is channeled from compressor 15 to combustor 16, wherein it is mixed with a fuel and ignited to generate combustion gases. The combustion gases are channeled via hot gas path 20 from combustor 16 towards turbine 22, where turbine converts the heat energy into mechanical energy to power compressor 15 and/or another load (not shown).
In the exemplary embodiment, fillet 50 is defined and extends between airfoil 46 and tip shroud 48. More specifically, fillet 50 extends within the intersection formed between a tip 49 of airfoil 46 and tip shroud 48. Fillet 50 provides structural support to airfoil 46 and to tip shroud 48, and is shaped as described in more detail below, to facilitate streamlining a flow of hot gases past airfoil 46. In the exemplary embodiment, fillet 50 is sized and oriented relative to the intersection of tip shroud 48 and airfoil tip 49 to facilitate an aerodynamic flow of combustion gases through turbine 12 (shown in
During operation, hot combustion gases flow over both pressure side 53 and suction side 55 of airfoil 46 to induce rotation of rotor blade 38. Specifically, the flow of the hot gases over both pressure side 53 and suction side 55 of airfoil 46 induces rotor blades 26, 30, and 34 to rotate about each respective rotor disk 27, 29, and 31 (shown in
The orientation and shape of fillet 50 is dependent at each X, Y, and Z location upon three parameters: offset 1 (O1), offset 2 (O2), and Rho. Offset 1 is designated O1 and is a normal line having a linear distance measured in inches from airfoil 46 at each X, Y, and Z location designated P (apex location 64) along radially inner surface 60 of tip shroud 48 to an edge point 61 defined along intersection line 59. Offset 2 is designated O2 and is a normal line having a linear distance measured in inches from tip shroud 48 at each X, Y, and Z location P (apex location 64) along surfaces 53 and 55 of airfoil 46 to an edge point 63 defined along intersection line 58. Intersection line 59, shown as edge point 61, defines the edge of O1, and intersection line 58, shown as edge point 63, defines the edge of O2. Lines 58 and 59 define the edges of offsets O2 and O1, respectively, such that fillet 50 is defined within the area contained between intersection lines 58 and 59. Edge points 61 and 63 are connected at respective tip shroud 48 and airfoil 46 such that edges 58 and 59 of fillet 50 are defined. Offsets O1 and O2 are determined by an iterative process at each P location about tip shroud 48 and airfoil tip 49 intersection, resulting in a more aerodynamic flow about fillet 50.
Rho is a non-dimensional shape parameter ratio at each location P. In the exemplary embodiment, Rho is defined as the ratio of:
wherein, as illustrated in
The X, Y, and Z coordinate values, as well as the parameters O1, O2, D1, D2 and Rho are given in Table I as follows:
The Z value in Table I is a distance defined between the X-axis (engine centerline 23, shown in
Moreover, Table I defines fillet 50 profile about the intersection of airfoil tip 49 and tip shroud 48. Any number of X, Y, and Z locations may be used to define this profile. Thus, the profiles defined by the values of Table I embrace fillet profiles intermediate the given X, Y, and Z locations as well as profiles defined using fewer X, Y, and Z locations when the profiles defined by Table I are connected by smooth curves extending between the given locations of Table I.
Also, it will be appreciated that fillet 50 may be scaled up or scaled down geometrically for use in other similar fillet designs in other turbines. For example, the offsets O1 and O2, as well as the X, Y, and Z coordinate values may be scaled by modifying the O1, O2, X, Y, and Z values according to a multiple to produce a scaled-up or scaled-down version of fillet 50. Because Rho is a non-dimensional value, modifying the O1, O2, X, Y, and Z values would not change the value of Rho.
It will also be appreciated that fillet 50 may be defined relative to airfoil 46 since the Cartesian coordinate system used to define fillet 50 and to define airfoil 46 identified above are common. Thus, fillet 50 may be defined relative to airfoil profile 47 shape at 7.5% span of airfoil 46 just radially inwardly of fillet 50. A Cartesian coordinate system of X, Y and Z values given in Table II below define the profile 47 of airfoil 46 at 7.5% span. The Z coordinate value at 97.560.45, the Z=0 value being at the X-axis, centerline 23 (shown in
In the exemplary embodiment, profile section 47 of airfoil 46 at 7.5% span is defined by connecting the X and Y values with smooth continuing arcs. By using a common origin 62 for the X, Y, and Z coordinate systems for fillet 50 points defined in Table I and airfoil profile 47 points defined in Table II at 7.5% span, fillet surface 74 configuration is defined in relation to airfoil profile 47 at 7.5% span. Other percentage spans could be used to define this relationship and the 7.5% span as used is exemplary only. These values represent fillet 50 and airfoil profile 47 at 7.5% spanat ambient, non-operating or non-hot conditions and are for an uncoated surface. Moreover, the dimensions of Table I may be scaled to account for engine size, manufacturing tolerances, coating thickness, or operational tolerances as described below.
As fillet 50, there are typical manufacturing tolerances as well as coatings which must be accounted for in airfoil profile 47. Accordingly, the values for profile 47 at 7.5% span given in Table II are for a nominal airfoil 46. It will therefore be appreciated that typical manufacturing tolerances, i.e., ±values, including any coating thicknesses, are additive to the X and Y values given in Table II below. Accordingly, a distance of ±0.05 inches in a direction normal to any surface location along airfoil profile 47 at 7.5% span defines an airfoil profile envelope, i.e., a range of variation between measured points on the actual airfoil surface at nominal cold or room temperature and the ideal position of those points as given in Table II below at the same temperature. Airfoil 46 within this range of variation retains the desired aerodynamic flow through rotor blades 38 (shown in
Thus, by defining airfoil profile 47 at 97.5% span and using the same Cartesian coordinate system as used to define fillet 50, the relationship between fillet 50 and airfoil 46 is established such that fillet 50 provides for an aerodynamic flow of air through the turbine.
A fillet defined between an airfoil and a tip shroud, such as fillet 50 above, not only provides support to the tip shroud to prevent it from dislodging from the tip of the airfoil, but also facilitates aerodynamic flow of hot combustion gases through the turbine of a gas turbine engine. As described above, in terms of engine performance, it is desirable to have relatively large tip shrouds that each extend over substantially the entire radial outer end of the airfoil. Conversely, it is desirable that the fillet remain small and streamlined to guide the hot gas flow over the airfoil. Given these competing components, i.e., a large tip shroud to divert the greatest possible amount of air through the airfoils versus an aerodynamic rotor blade to increase engine efficiency, the aerodynamic fillet described above streamlines the flow of combustion gases while enabling for the tip shroud to adequately contain the hot gas flow.
The fillet according to the present disclosure effectively balances these competing objectives such that engine performance goals may be satisfied. That is, the fillet shape of the present disclosure provides a profile that effectively guides hot gas flow through the turbine while facilitating containment of the hot gases by the tip shroud. In addition, the fillet shape according to the present application provides for other operational efficiencies, including, for example, stage airflow efficiency, enhanced aeromechanics, reduced thermal stresses, and reduced mechanical stresses when compared to other conventional fillet shapes. As one of ordinary skill in the art will appreciate, the effectiveness of the fillet shape according to the present invention may be verified by computational fluid dynamics (CFD); traditional fluid dynamics analysis; Euler and Navier-Stokes equations; flow testing (for example in wind tunnels), modification of the tip shroud; combinations thereof, and other design processes and practices. These methods of determination are merely exemplary, and are not intended to limit the invention in any manner.
Although specific features of various embodiments of the invention may be shown in some drawings and not in others, this is for convenience only. In accordance with the principles of the invention, any feature of a drawing may be referenced and/or claimed in combination with any feature of any other drawing.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
Number | Name | Date | Kind |
---|---|---|---|
6857853 | Tomberg et al. | Feb 2005 | B1 |
6893216 | Snook et al. | May 2005 | B2 |
7063509 | Snook et al. | Jun 2006 | B2 |
8057186 | Brittingham | Nov 2011 | B2 |
20080170946 | Brittingham et al. | Jul 2008 | A1 |
Number | Date | Country |
---|---|---|
1507064 | Feb 2005 | EP |
1559869 | Aug 2005 | EP |
Entry |
---|
EP Search Report and Written Opinion dated Feb. 25, 2014 issued in connection with corresponding EP Application No. 13194959.6. |
Number | Date | Country | |
---|---|---|---|
20140154079 A1 | Jun 2014 | US |