This application is a National Phase Application of PCT International Application No. PCT/IB2013/059118, International Filing Date, Oct. 4, 2013, claiming priority to Italian Patent Application No. TO2012A000869, filed Oct. 5, 2012, and Italian Patent Application No. TO2013A000302, filed Apr. 15, 2013, all of which are hereby incorporated by reference in their entirety.
The present invention relates in general to isobaric filling machines for filling bottles with alimentary liquids, such as wine and beer, and more particularly to filling devices intended to be installed on such machines, as described and claimed herein.
A filling device of the type described above is known for example from EP-A-2 236 454.
The filling of bottles is generally classified in two categories, i.e. level filling and volumetric filling, depending on the technology used to detect when the right amount of liquid supplied has been reached. In turn, level filling differs depending on the liquid to be processed. In the case of non-gaseous liquids filling is performed at atmospheric pressure or under a slight vacuum, in the case of gaseous liquids an isobaric filling is performed and in the case of viscous liquids filling is performed under conditions where there is a pressure difference, obtained by creation of high vacuum or by overpressure.
The filling device according to the present invention falls within the category of level-filling devices, and more precisely devices of the type performing isobaric level filling (hereinafter simply referred to as “isobaric filling”).
The filling device 10 also comprises a closure member 36 (referred to below as first closure member) which is provided with a seal member 38 and is fixed to the inner tube 26, coaxially therewith, so as to cooperate with a conical surface portion 40 of the inner cavity 18 of the body 12. The inner tube 26, and together therewith the first closure member 36, is movable with respect to the assembly formed by the body 12 and by the outer tube 24 between a lowered position (shown in
The filling device 10 also comprises a second closure member 66 which is positioned coaxially with the inner tube 26, above the latter, and is movable axially with respect to the inner tube 26 between an open position (position shown in
In the case of gaseous liquids, and more particularly in the case of sparkling wine, the bottle filling cycle with a filling device such as that of the known type shown in
First of all, the bottle to be filled is raised by means of a pneumatic piston so as to be pressed against the seal member 30 of the centring cone 28 until the centring cone 30 comes into contact against the body 12 around the outlet section of the nozzle 20, so as to provide a perfect seal between the body and the bottle in order to contain the filling pressure.
This is followed by a deaeration step, during which the air contained inside the bottle is forced out of it by means of a liquid-ring vacuum pump (not shown).
Then the bottle is put in communication with the portion of the tank 16 situated above the level L of the liquid through the inner tube 26 (with the second closure member 66 in the open position) in order to carry out the pressure compensation step, during which the gas under pressure contained in the tank passes from the latter into the bottle until the gas contained in the tank and the gas contained in the bottle are at the same pressure.
Once a balance between the pressure of the gas in the tank 16 and the pressure of the gas in the bottle is reached, the spring 46 causes raising of the inner tube 26, and together therewith of the first closure member 36, thus allowing the liquid contained in the tank to fill the bottle passing through the annular passage defined between the nozzle 20 and the inner tube 26 (filling step). During filling of the bottle with the liquid, the gas previously introduced into the bottle returns into the top portion of the tank 16 flowing inside the inner tube 26. When the level of the liquid in the bottle has reached a given predefined value, the assembly formed by the inner tube 26 and by the first closure member 36 is moved into the lowered position so as to interrupt the flow of fluid from the tank into the bottle. The filling step is then followed by a levelling step during which gas under a slight overpressure (about 0.2 bar greater than the pressure present in the bottle) is introduced into the bottle through the annular passage defined between the nozzle 20 and the inner tube 26, with the first closure member 36 remaining in the lowered position, so that the excess liquid contained in the bottle, i.e. the liquid which is situated above the bottom end of the inner tube 26, is conveyed back into the tank 16 through this tube.
This is followed by a degassing step during which the inside of the bottle is put in communication with the outside so as to eliminate slowly the overpressure produced during the previous step.
Finally, the pneumatic piston is lowered so as to allow removal of the bottle which has now been filled.
The main drawback of the known filling devices for isobaric filling machines, such as that described above with reference to
A further drawback of the known isobaric filling devices is that adjustment of the filling level is obtained by displacing vertically the inner tube (gas return tube), which results in these devices being particularly complex.
Moreover, the known isobaric filling devices are all provided with a certain number of springs in order to ensure that the pressure levels are balanced and perform opening or closing of the closure members, this resulting in these devices being constructionally even more complicated and creating greater problems during washing and sterilization, in view of the large surface area of the springs exposed to contact with the liquid.
An object of the present invention is to provide a filling device for an isobaric filling machine for filling bottles with alimentary liquids which is not affected by the drawbacks of the prior art discussed above, in particular which is able to offer a high degree of precision as regards the filling level of the bottle, is constructionally and functionally simple and is easy to wash and sterilize.
This and other objects are fully achieved according to the present invention by means of filling devices as described and claimed herein.
Owing to the fact that the first closure member is arranged at the bottom end of the inner tube so as to cooperate with the bottom end of the outer tube, closure of the liquid flow occurs in the vicinity of the hole through which the inner tube communicates with the inside of the bottle, thus allowing a greater degree of precision of the filling level to be obtained, moreover without the need to carry out the levelling step described above.
Preferably, the second closure member is also arranged close to the bottom end of the inner tube so as to open/close this tube at the bottom, instead of at the top. Owing to this arrangement of the second closure member, a high degree of precision of the filling level is obtained without having to carry out a step for emptying the inner tube via which, in the known filling devices, the liquid present in the inner tube is conveyed back into the tank. In fact, as will result more clearly from the description below, once the inner tube has been closed at the bottom by means of the second closure member, any liquid contained inside the tube itself at the end of the filling step cannot return into the bottle and therefore cannot modify the (correct) filling level reached. The fact of being able to avoid carrying out the aforementioned emptying step means that an (albeit minimum) amount of liquid is not conveyed back into the tank and therefore the risk of contamination of the product inside the tank is further reduced.
According to an embodiment, the filling device comprises a pressure sensor for measuring the pressure reached inside the bottle, which allows opening and closing of the closure members to be controlled without having to provide special springs, resulting in the device being less complex from a constructional and functional point of view and easier to wash and sterilize.
According to an embodiment, the body of the filling device is movable vertically with respect to the tank of the filling machine, which allows adjustment of the filling level by simply varying the vertical position of the body since, by varying the vertical position of the body, the stop position of the centring cone is also varied.
Further features and advantages of the present invention will result more clearly from the following detailed description provided purely by way of non-limiting examples, with reference to the attached drawings.
With reference to
An annular conduit 44 is therefore defined between the outer tube 24 and the inner tube 26, extending as far as the bottom end of the outer tube and allowing the liquid contained in the tank 16 to flow through it downwards to fill a bottle. The liquid flow along the annular conduit 44 is controlled by a first closure member 36 provided with a seal member 38. The first closure member 36 is fixed to the inner tube 26, coaxially therewith, at a bottom end portion thereof which projects downwards from the outer tube 24, in order to cooperate with the bottom end of the outer tube 24. The inner tube 26, along with the first closure member 36, is movable with respect to the outer tube 24 between a raised position (shown in
The centring cone 28 is mounted on a support plate 54 which is fixed to the bottom end of a pair of rods 56 (only one of which is visible in the cross-sectional view of
According to an embodiment, the body 12 has, mounted thereon, a proximity sensor 60 for detecting the presence of the bottle underneath the filling device 10 in order to start the filling method and/or a pressure sensor 84 for measuring the pressure reached inside the bottle.
The filling device 10 also comprises an actuation unit 62 which is associated with the top end of the inner tube 26 to control the vertical movement of the latter, as well as that of the first closure member 36 with the associated seal member 38, between the lowered position and raised position defined above and to control the flow of gas through this tube. The actuation unit 62 is mounted on a cover 64 of the tank 16 and comprises a first linear actuator and a second linear actuator which are mounted in series with each other, wherein the first linear actuator is able to control the vertical movement of the inner tube 26 and the second linear actuator is able to control the vertical movement of a second closure member 66 to open or close the inner tube 26, in this case the top end of this tube. The first linear actuator is preferably formed as a double-acting pneumatic cylinder and comprises a cylinder 68 fixed to the cover 64 of the tank 16 coaxially with the inner tube 26 and a piston 70 mounted slidably in the cylinder 68. The piston 70 has a stem 72 which projects downwards from the cylinder 68 and is fixed to the top end of the inner tube 26 so as to be integral therewith during its vertical translation movement. The second linear actuator is also preferably formed as a double-acting pneumatic cylinder and comprises a cylinder 74, which is connected to the piston 70 of the first linear actuator so as to be integral with the latter during its vertical translation movement, and a piston 76 mounted slidably in the cylinder 74. The piston 76 has a stem 78 which projects downwards from the cylinder 74 and extends through a coaxial cylindrical cavity 80 formed in the stem 72 of the piston 70 of the first linear actuator. The second closure member 66 is fixed to the bottom end of the stem 78 and is therefore integral with the stem 78 during its vertical translation movement.
According to an embodiment, the body 12 is vertically movable so as to allow the stop position of the centring cone 28 to be varied. Preferably, the bodies 12 of all the filling devices 10 with which the machine is provided are mounted on a same support flange 86 able to be moved vertically.
Preferably, the valve assembly 32 of each filling device 10 is directly or indirectly fixed to the body 12 of the respective device so as to move vertically together with the latter. In the case where the aforementioned support flange 86 is present, the valve assemblies 32 of all the filling devices 10 of the machine will be preferably mounted on this flange as well.
Operation of the filling device 10 in the case of filling of a bottle with a sparkling wine will now be described.
First of all the bottle to be filled is raised by means of a pneumatic piston (not shown) to be pressed against the seal member 30 of the centring cone 28 until the centring cone 30 comes into contact against the bottom side of the body 12, so as to provide a perfect seal between body and bottle for containing the filling pressure. The proximity sensor 60 detects the presence of the bottle underneath the filling device 10 and starts the filling process.
The pneumatically operated valve 34a is then activated to connect the inside of the bottle with a vacuum circuit 82a and thus start a deaeration step during which the air contained inside the bottle is expelled therefrom. Once the deaeration step has been completed, the pneumatically operated valve 34a is activated to close the vacuum circuit 82a.
This is followed by a pressure compensation step during which the gas present in the tank 16 and the gas present in the bottle are set to the same pressure. For this purpose, the pneumatically operated valve 34b is activated to connect the inside of the bottle with the top part of the tank 16, i.e. the part situated above the level L of the liquid, by means of a circuit 82b. During the pressure compensation step, the pressure sensor 84 measures the pressure reached inside the bottle. In the event of bottle breaking or bursting, the pressure sensor 84 indicates that the compensation pressure has not been reached and the machine interrupts the filling cycle. Once the pressure compensation step has been completed, the pneumatically operated valve 34b is activated to close the circuit 82b.
An overpressure step is then carried out, during which a certain overpressure is created in the bottle. For this purpose, the pneumatically operated valve 34c is activated to open a circuit 82c through which the inside of the bottle is brought to a pressure which is slightly higher (for example, about 0.2 bar higher) than the pressure present in the tank. Then the pneumatically operated valve 34c is closed and the second closure member 66 is raised by means of the second pneumatic cylinder (cylinder 74 and piston 76) so as to connect the inner tube 26 to the part of the tank 16 above the level L of the liquid contained therein. Owing to the effect of the overpressure present inside the bottle, any liquid droplets remaining on the inner wall of the inner tube 26 are propelled inside the tank 16. In this way, these droplets are prevented from falling into the bottle and therefore giving rise to the possible formation of foam. The overpressure step may be omitted should foam formation conditions not exist.
At this point a filling step is performed, during which the liquid contained in the tank 16 is introduced into the bottle up to a predetermined level. For this purpose the first pneumatic cylinder (cylinder 68 and piston 70) is operated so as to cause the displacement of the assembly formed by the inner tube 26 and by the first closure member 36 into the lowered position and therefore allow the liquid to fall by gravity from the tank 16 into the bottle via the annular conduit 44. During the filling step, as the liquid gradually fills the bottle, the gas already present in the bottle returns into the tank 16 via the hole 52 and the inner tube 26. The filling step terminates when the liquid in the bottle reaches a level such as to obstruct the hole 52 provided in the first closure member 36. It will be noted in this connection that in the filling device 10 according to the invention the final level of the liquid in the bottle is defined by the sinking of the first closure member 36 inside the bottle. In order to vary the filling level, it is therefore sufficient to vary the position of the body 12. This position defines in fact the stop position of the centring cone 28 when the bottle is pushed upwards against said centring cone at the start of the filling cycle, and therefore a variation in this position results in a corresponding variation in the relative position of the first closure member 36 with respect to the bottle. Since the body 12 is preferably mounted on the support flange 86, which is common to all the filling devices of the machine, the adjustment of the filling level is carried out simultaneously for all the filling devices present on the machine. Moreover, the adjustment of the filling level may be carried out while the machine is in operation.
Once the predefined filling level has been reached, the first pneumatic cylinder 68, 70 is operated to cause the displacement of the assembly formed by the inner tube 26 and the first closure member 36 into the raised position, so as to close the annular conduit 44 at the bottom. At this point an emptying step is performed, during which the liquid present in the inner tube 26 is conveyed back into the tank 16. For this purpose, the pneumatically operated valve 34c is opened and by means of the circuit 82c creates a pressure inside the bottle slighter higher than the pressure present in the tank (about 0.2 bar higher) so as to propel the liquid present in the inner tube 26 into the tank 16. Once the emptying step has been completed, the second pneumatic cylinder 74, 76 is operated to cause lowering of the second closure member 66 and therefore the closure of the inner tube 26 also at its top end.
Finally, a degassing step is carried out, during which the pneumatically operated valve 34d is opened and closed in succession, thus putting alternately the inside of the bottle in communication with a circuit 82d which is at atmospheric pressure in order to eliminate gradually the pressure present in the bottle and therefore limit the formation of foam.
The advantages achieved by a filling device according to the embodiment described above with reference to
First of all, owing to the fact that the first closure member with a seal member which opens/closes the flow passage area for the liquid from the tank to the bottle is provided at the bottom end of the inner tube and cooperates with the bottom end of the outer tube, closure of the liquid flow passage occurs in the vicinity of the hole via which the inner tube communicates with the inside of the bottle, thus making it possible to obtain a greater precision of the filling level and therefore avoid having to carry out the filling step, which is instead necessary in the case of the known filling devices, such as that according to
Moreover, owing to the presence, on the body of each filling device, of a pressure sensor for measuring the pressure reached inside the bottle, it is possible to control opening and closing of the closure members without the need for springs, resulting in a device which is less complex from a constructional and functional point of view and easier to wash and sterilize.
Moreover, owing to the fact that the body of the filling device is movable vertically with respect to the tank of the filling machine—and the filling level may therefore be adjusted by simply varying the vertical position of the body, instead of varying the vertical position of the inner tube of the filling device—the device is much simpler from a constructional and functional point of view.
Moreover, whereas in the known filling devices, the respective duration of the deaeration, levelling and degassing steps is determined by the profiles of the cams which operate the valves and, therefore, once these profiles have been defined, they are fixed, with the filling device according to the present invention, owing to the fact that the valves are pneumatically operated valves, it is instead possible to vary the duration of each step by modifying the control program which controls opening and closing of these valves.
Moreover, whereas in the known filling machines, the valves associated with each filling device are situated partly in the vicinity of the body of the filling device and partly above the tank, which results in obvious size problems, in the filling device according to the present invention all the valves of the valve assembly, together with the associated conduits, are mounted on the support flange on which the body of the filling device is also mounted, and are therefore situated in the vicinity of the neck of the bottle during the filling cycle, thus allowing a reduction in the volumes of the conduits involved during the various steps of the filling cycle.
A filling device for filling machines according to a further embodiment of the present invention is shown in
With reference therefore to
According to the embodiment of
As already mentioned above, owing to this arrangement of the second closure member in the vicinity of the bottom end of the inner tube, the filling device is able to ensure a high degree of precision of the filling level without the need to carry out a step for emptying the inner tube via which, in the known filling devices, the liquid present in the inner tube is conveyed back into the tank.
Moreover, with such a filling device it is possible to carry out more efficiently compared to the prior art, the degassing step (i.e. that step of the filling cycle in which the inside of the bottle is put in communication alternately with the atmospheric pressure in order to eliminate gradually the pressure present inside the bottle and therefore limit the formation foam) on difficult products such as sparkling wine, beer, etc., owing to the fact that the arrangement of the second closure member at the bottom end of the inner tube allows the volume of gas contained in the inner tube to be excluded from the degassing step, with the result that the volume of gas to be degassed is about half that of the conventional filling devices in which the second closure member is situated at the top end of the inner tube.
Naturally, the principle of the invention remaining unchanged, the embodiments and the constructional details may be greatly modified with respect to those described and illustrated purely by way of a non-limiting example, without thereby departing from the scope of the invention as described and claimed herein.
Number | Date | Country | Kind |
---|---|---|---|
TO2012A0869 | Oct 2012 | IT | national |
TO2013A0302 | Apr 2013 | IT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2013/059118 | 10/4/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/054027 | 4/10/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3834428 | Rademacher | Sep 1974 | A |
3908717 | Rademacher | Sep 1975 | A |
4102365 | Jordan et al. | Jul 1978 | A |
5080147 | Millet et al. | Jan 1992 | A |
5372167 | Hirose et al. | Dec 1994 | A |
5474113 | Rademacher | Dec 1995 | A |
5564481 | Clusserath | Oct 1996 | A |
5634500 | Clusserath | Jun 1997 | A |
7243483 | Clusserath | Jul 2007 | B2 |
7647950 | Clusserath | Jan 2010 | B2 |
8695647 | Ruble | Apr 2014 | B2 |
20010045242 | Clusserath | Nov 2001 | A1 |
20020179177 | Tsukano | Dec 2002 | A1 |
20040118479 | Tsukano | Jun 2004 | A1 |
20050199314 | Ruble | Sep 2005 | A1 |
20110197996 | Clusserath | Aug 2011 | A1 |
20140360624 | Clusserath | Dec 2014 | A1 |
20150013833 | Clusserath | Jan 2015 | A1 |
20160009533 | Clusserath | Jan 2016 | A1 |
20160016774 | Clusserath | Jan 2016 | A1 |
20160025267 | Clusserath | Jan 2016 | A1 |
20160052765 | Clusserath | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
1995208 | Nov 2008 | EP |
2236454 | Oct 2010 | EP |
994101 | Nov 1951 | FR |
2552749 | Apr 1985 | FR |
1515804 | Jun 1978 | GB |
Number | Date | Country | |
---|---|---|---|
20150274332 A1 | Oct 2015 | US |