Claims
- 1. A high-speed filling machine comprising a plurality of individual filling units operated in common from a common drive means, each of said individual filling units including a cylinder, a flexible rolling diaphragm secured within said cylinder to delimit a working chamber in the cylinder on one side of the diaphragm, a single piston arranged with clearance in said cylinder on the other side of said diaphragm for reciprocation in the cylinder, said clearance between the piston and the cylinder permitting said flexible diaphragm to roll and unroll on a sidewall of said piston and a wall of said cylinder during filling and discharging of a fluid from the working chamber of said filling unit, passage means in said cylinder for providing fluid communication with said working chamber, a single piston rod extending between said piston and said common drive means for transmitting a driving force from said common drive means to said piston during a discharge stroke of said filling unit, the sidewall of said piston upon which said diaphragm is rolled and unrolled being tapered outwardly from the end of said piston adjacent said diaphragm to thereby increase the working life of said rolling diaphragm, and means for adjusting a length of said piston rod to change the distance that said piston penetrates into said cylinder with a given piston discharge stroke length whereby the volume dispensed by the individual filling units can be finely adjusted as a result of a change in the average effective diaphragm diameter which occurs with a change of piston penetration in the cylinder in cooperation with the tapered sidewall of said piston.
- 2. A filling machine according to claim 1, wherein said piston rod includes a piston rod formed of at least two parts which are adjustably connected with each other to provide said means for adjusting the length of said piston rod.
- 3. A filling machine according to claim 2, wherein a first part of said two part piston rod is connected to said common drive means and an end of a second part of said two part piston rod contacts said piston during said discharge stroke, said first and second parts being adjustably connected with each other.
- 4. A filling machine according to claim 3, wherein adjacent ends of said first and second parts are adjustably connected in telescoping relation by a threaded connection.
- 5. A filling machine according to claim 3, wherein said end of said second part of said two part piston rod which contacts said piston during said discharge stroke is rounded so that said piston can swivel about said piston rod to reduce the possibility of the diaphragm rubbing on itself during operation of said filling machine.
- 6. A filling machine according to claim 1, wherein both the piston sidewall and a spaced, opposed wall of the cylinder upon which said diaphragm is rolled and unrolled during filling and discharging are tapered like degree in opposite directions so that the convolution width of the diaphragm remains essentially constant with reciprocation of the piston in the cylinder during operation of the filling machine thereby increasing the working life of the diaphragm.
- 7. A filling machine according to claim 1, wherein said common drive means comprises a common drive bar for connection with the piston rods of said plurality of individual filling units, eccentric drive means, and connecting means drivingly connecting said eccentric drive means with said common drive bar to convert the rotary movement of the eccentric drive means into reciprocating movement of the pistons by way of said common drive bar and the piston rods and said connecting means including common volume-adjusting means in said connecting means for adjusting simultaneously the volume of all filling units connected with said common drive bar.
- 8. A method of finely adjusting the volume dispensed by a filling unit of a high-speed filling machine comprising a plurality of individual filling units driven from a common drive means and wherein each filling unit includes, a cylinder, a flexible rolling diaphragm secured within the cylinder to delimit a working chamber in the cylinder on one side of the diaphragm, a single piston arranged with clearance in the cylinder on the other side of the diaphragm for reciprocation in the cylinder, the clearance between the piston and the cylinder permitting the flexible diaphragm to roll and unroll on a sidewall of the piston and a wall of said cylinder during filling and discharging of a fluid from the working chamber of the filling unit, passage means in the cylinder for providing fluid communication with the working chamber, a single piston rod extending between the piston and the common drive means for transmitting a driving force from the drive means to the piston during a discharge stroke of the filling unit, the sidewall of the piston and the cylinder wall on which the diaphragm is rolled and unrolled being tapered in opposite directions a like degree so that the convolution width of the diaphragm remains essentially constant with reciprocation of the piston in the cylinder during the operation to increase the working life of the diaphragm, comprising the step of changing the distance that the piston penetrates into the cylinder with a given piston discharge stroke length to adjust the volume dispensed by the filling unit as a result of a change in the average effective diaphragm diameter which occurs with a change in piston penetration in the cylinder in cooperation with the tapered sidewall of the piston and tapered cylinder wall.
- 9. A method according to claim 8, wherein the step of changing the distance that the piston penetrates into the cylinder with a given piston discharge stroke length is effected by adjusting the length of the piston rod extending between the piston and the common drive means.
RELATED INVENTIONS
This application is a continuation-in-part application of applicant's earlier, copending application Ser. No. 449,196 filed Dec. 13, 1982 which, in turn, is a continuation-in-part application of application Ser. No. 350,649 filed Feb. 22, 1982, now abandoned.
US Referenced Citations (19)
Continuation in Parts (2)
|
Number |
Date |
Country |
| Parent |
449196 |
Dec 1982 |
|
| Parent |
350649 |
Feb 1982 |
|