This application claims priority to International Application No. PCT/EP2013/070101 filed Sep. 26, 2013 and to German Application No. 10 2012 217 945.3 filed Oct. 1, 2012; the entire contents of each are incorporated herein by reference.
The invention relates to a film chamber and a method for detecting a leak on a non-rigid specimen, for example a food package. Non-rigid specimens have a flexible structure which yields upon variations in pressure. When the pressure differences between the inner pressure of the specimen and the ambient pressure are too great, there is a risk that the specimen ruptures or is at least damaged.
Conventionally, non-rigid specimens are filled with a test gas and the test gas is measured in the exhaust gas flow of the pump system used to create the pressure differences required. As an alternative, the use of a specific test gas can be omitted, if the sensor is adapted to the filling gas inside the specimen. In this measuring method, influences of the ambient gas can compromise the measuring result.
It is known to use film chambers as test chambers in leak detection, wherein at least one wall region, and preferably the entire test chamber, is made of a flexible, preferably elastically deformable material such as a film, for example. The flexible wall region is formed in the region of the chamber in which the specimen is located during the measurement of the leakage. When the pressure in the chamber is reduced, the flexible chamber wall clings to the specimen, whereby the chamber volume is reduced. Thereby, disturbing influences such as, for example, pressure changes caused by temperature variations, are reduced. Further, the clinging flexible wall region supports the specimen and prevents a deformation or even bursting of the specimen. This is advantageous in particular with specimens of a soft material having a less than stable shape, for example packages. Such film test chambers are described for example in JP-A62-112027, EP 0 152 981 A1 and EP 0 741 288 B1.
In leak detection by means of evacuated film chambers, the pressure increase in the chamber is not influenced exclusively by a leak on the specimen. Rather, the pressure in the film chamber rises in the region outside the specimen also due to desorption of gas that is released from the material of the specimen or of the film chamber. Further, the pressure rise can be influenced virtually by a pressure compensation inside the film chamber.
These additional parameters that influence the pressure rise affect the measurement and have to be taken into account as measuring errors.
It is an object of the invention to provide a precise method for leak detection on a non-rigid specimen, as well as to provide a corresponding device.
The method of the present invention is defined in claim 1. The device of the present invention is defined in claim 5.
According to the invention, an external overpressure is applied at least to the flexible wall region of the film chamber during the pressure measurement, the overpressure exceeding the pressure in the film chamber in the region outside the specimen and the pressure inside the specimen. For this purpose, a pressurizing device is provided for generating the external pressure on the wall region.
The external pressure causes a compression of the soft specimen, whereby the pressure in the specimen changes. Here, the leakage rate is proportional to the square of the pressure difference between the film chamber and the specimen. However, the desorption is not influenced by the external pressure.
Preferably, the film chamber is pressurized periodically, i.e. the pressure is increased up to a predefined threshold value and is thereafter lowered again, with the increasing and the subsequent lowering of the pressure being repeated periodically. Thereby, also the pressure inside the specimen changes periodically, as does the leakage rate of the specimen, so that also the pressure rise in the film chamber is superimposed with a periodic part. This periodic part is independent of the desorption and can be used as a measure of the leakage rate of the specimen.
In this regard, the amplitude and/or the phase of the development of the periodic pressure increase occurring can be evaluated. The phase shift between the periodic signal of the pressure exerted on the film chamber from outside and the periodic part of the pressure increase inside the film chamber can be used as the phase. The periodic pressure increase primarily influences the leakage rate of the specimen and influences the disturbing desorption of gases to a much lesser extent or not at all, so that the leakage rate of the specimen can be separated from the virtual leaks.
The application of external pressure on the flexible wall region can be performed pneumatically or hydraulically by means of a fluid pressure chamber. Here, the film chamber can be included in a fluid pressure chamber. As an alternative or in addition, mechanical pressure may be exerted at least on a flexible wall region of the film chamber. The mechanical pressure can be generated by means of a die, for example by means of a die acting on the film chamber from two opposite sides.
The following is a detailed description of embodiments of the present invention with reference to the Figures. In the Figures:
In the embodiments of
After the specimen 18 has been introduced into the film chamber 12, the film chamber is evacuated and a manometer 20 is used to detect the pressure profile in the film chamber 12 in the region outside the specimen 18.
In the embodiment shown in
The embodiment shown in
In the embodiment shown in
In
Number | Date | Country | Kind |
---|---|---|---|
10 2012 217 945 | Oct 2012 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/070101 | 9/26/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/053393 | 4/10/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4593554 | Aarts | Jun 1986 | A |
5513516 | Stauffer | May 1996 | A |
6167751 | Fraim | Jan 2001 | B1 |
20030126912 | Cook | Jul 2003 | A1 |
20070220965 | Walraet | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
0 152 981 | Aug 1985 | EP |
0 450 688 | Oct 1991 | EP |
0 741 288 | Aug 2002 | EP |
S60-227144 | Nov 1985 | JP |
S 62112027 | May 1987 | JP |
H04-013943 | Jan 1992 | JP |
H05-215588 | Aug 1993 | JP |
H10-185752 | Jul 1998 | JP |
2000-046685 | Feb 2000 | JP |
Entry |
---|
English Translation (JP S60-227144 A), Aarts, Product Suppliers AG, pp. 1-17. |
PCT/EP2013/070101 International Search Report dated Apr. 10, 2014, (4 pages including English translation). |
English language translation of Office Action and Search Report in corresponding Japanese Application No. 2015-533586, dated Apr. 12, 2017, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20150241298 A1 | Aug 2015 | US |