None.
None.
1. Field of the Invention
The present invention relates generally to gas turbine engine, and more specifically to a film cooling hole for a turbine airfoil.
2. Description of the Related Art Including Information Disclosed Under 37 CFR 1.97 and 1.98
In a gas turbine engine, such as a large frame heavy-duty industrial gas turbine (IGT) engine, a hot gas stream generated in a combustor is passed through a turbine to produce mechanical work. The turbine includes one or more rows or stages of stator vanes and rotor blades that react with the hot gas stream in a progressively decreasing temperature. The efficiency of the turbine—and therefore the engine—can be increased by passing a higher temperature gas stream into the turbine. However, the turbine inlet temperature is limited to the material properties of the turbine, especially the first stage vanes and blades, and an amount of cooling capability for these first stage airfoils.
The first stage rotor blade and stator vanes are exposed to the highest gas stream temperatures, with the temperature gradually decreasing as the gas stream passes through the turbine stages. The first and second stage airfoils (blades and vanes) must be cooled by passing cooling air through internal cooling passages and discharging the cooling air through film cooling holes to provide a blanket layer of cooling air to protect the hot metal surface from the hot gas stream.
Turbine airfoils (which include rotor blades and stator vanes) include film cooling holes to discharge a layer of film cooling air over a surface of the airfoil to form a blanket of cool air against the hot gas stream that flows over the surface. In one prior art film cooling hole, the film hole passes straight through the airfoil wall at a constant diameter and exits at an angle to the surface. Some of the cooling air is ejected directly into the mainstream gas flow causing turbulence, coolant dilution and a loss of downstream film effectiveness. Also, the hole breakout in the streamwise elliptical shape will induce stress in a blade application.
A turbine airfoil with a film cooling hole that has both a divergent shape and a convergent shape diffusion section. The film cooling hole includes a parallel flow section at an inlet followed by a diffusion section that is divergent on the two side walls and convergent on the downstream side wall or upstream side wall. A thin exit slot opens onto the airfoil surface that has a width much greater than the opening length in the streamwise flow direction.
An electrode is used to form the film hole and includes an electrode holder, a diffusion forming section extending from the holder, and a parallel section that forms the film hole inlet section. To form the film hole, the electrode is pushed into the metal surface to the desired length, and then the electrode is pivoted to form the convergent wall. The electrode is then removed from the metal surface to leave the film cooling hole.
A film cooling hole for use in a turbine stator vane or rotor blade to produce a layer of film cooling air on a hot gas surface of the part. The film cooling hole is formed by an electrode that is pushed into the metal surface and then slightly pivoted to form the convergent section of the film hole.
The convergent and divergent film cooling hole of the present invention will allow for radial diffusion of the streamwise oriented flow to combine both aspects of radial and streamwise straight film cooling holes. The thin convergent and divergent diffusion shaped film cooling hole includes a parallel flow section at an inlet section followed the convergent section on the downstream side wall in the streamwise flow direction. The convergent downstream wall will create an elongation for the film cooling slot in a spanwise direction. This transforms the cooling slot from a conical shape to a thin elongated shape at the exit opening onto the airfoil surface.
The divergent side walls create a diffusion of the cooling air in the streamwise flow direction and further elongates the film cooling slot exit opening. This will enhance the spread of the cooling air flow on the airfoil surface resulting in a better film coverage on the airfoil surface than the prior art film holes by ejecting the cooling air at a much lower angle to the airfoil surface. This will minimize shear mixing between the cooling air layers and the hot gas stream resulting in a longer lasting film layer and better film cooling at a higher effective level on the airfoil surface. also, the thinner opening of the exit hole on the airfoil surface will eliminate the hot gas entrainment problem discussed above with
The convergent and divergent film cooling hole can be formed by the use of electric discharge machining (EDM) process. A single point electrode with a two-dimensional shape (not counting the thickness) or with multiple electrodes formed on one holder can be used for the formation of the hole. The expansion angle of the film hole can be from around 15 degrees to around 25 degrees.
The convergent and divergent film cooling hole forms an expansion in a radial direction and a convergent in the streamwise direction. Hot gas ingestion and internal flow separation in the prior art film cooling holes is eliminated. Coolant penetration into the gas path is minimized, yielding a good buildup of the coolant sub-boundary layer next to the airfoil surface, a lower aerodynamic mixing loss due to low angle of cooling air discharge, a better film coverage in the spanwise direction and a high film effectiveness for a longer distance downstream of the film exit slot. The end results of both benefits produce a better film cooling effectiveness level for the turbine airfoil.
Number | Name | Date | Kind |
---|---|---|---|
4705455 | Sahm et al. | Nov 1987 | A |
4992025 | Stroud et al. | Feb 1991 | A |
5313038 | Kildea | May 1994 | A |
5382133 | Moore et al. | Jan 1995 | A |
6368060 | Fehrenbach et al. | Apr 2002 | B1 |
7262382 | Beaumont et al. | Aug 2007 | B2 |
20040265488 | Hardwicke et al. | Dec 2004 | A1 |
20080286090 | Okita | Nov 2008 | A1 |