Film grain simulation based on pre-computed transform coefficients

Information

  • Patent Grant
  • 10715834
  • Patent Number
    10,715,834
  • Date Filed
    Wednesday, September 30, 2015
    9 years ago
  • Date Issued
    Tuesday, July 14, 2020
    4 years ago
Abstract
Film grain simulation within a receiver (11) occurs by first obtaining at least one block of pre-computed transformed coefficients. The block of pre-computed transformed coefficients undergoes filtering responsive to a frequency range that characterizes a desired pattern of the film grain. In practice, the frequency range lies within a set of cut frequencies fHL, fVL, fHH and fVH of a filter in two dimensions that characterizes a desired film grain pattern. Thereafter, the filtered set of coefficients undergoes an inverse transform to yield the film grain pattern.
Description
TECHNICAL FIELD

This invention relates to a technique for simulating film grain in an image.


BACKGROUND OF THE INVENTION

Motion picture films comprise silver-halide crystals dispersed in an emulsion, coated in thin layers on a film base. The exposure and development of these crystals form the photographic image consisting of discrete tiny particles of silver. In color negatives, the silver undergoes chemical removal after development and tiny blobs of dye occur on the sites where the silver crystals form. These small specks of dye are commonly called ‘grain’ in color film. Grain appears randomly distributed on the resulting image because of the random formation of silver crystals on the original emulsion. Within a uniformly exposed area, some crystals develop after exposure while others do not.


Grain varies in size and shape. The faster the film, the larger the clumps of silver formed and blobs of dye generated, and the more they tend to group together in random patterns. The grain pattern is typically known as ‘granularity’. The naked eye cannot distinguish individual grains, which vary from 0.0002 mm to about 0.002 mm. Instead, the eye resolves groups of grains, referred to as blobs. A viewer identifies these groups of blobs as film grain. As the image resolution becomes larger, the perception of the film grain becomes higher. Film grain becomes clearly noticeable on cinema and high-definition images, whereas film grain progressively loses importance in SDTV and becomes imperceptible in smaller formats.


Motion picture film typically contains image-dependent noise resulting either from the physical process of exposure and development of the photographic film or from the subsequent editing of the images. The photographic film possesses a characteristic quasi-random pattern, or texture, resulting from physical granularity of the photographic emulsion. Alternatively, a similar pattern can be simulated over computed-generated images in order to blend them with photographic film. In both cases, this image-dependent noise is referred to as grain. Quite often, moderate grain texture presents a desirable feature in motion pictures. In some instances, the film grain provides visual cues that facilitate the correct perception of two-dimensional pictures. Film grain is often varied within a single film to provide various clues as to time reference, point of view, etc. Many other technical and artistic uses exist for controlling grain texture in the motion picture industry. Therefore, preserving the grainy appearance of images throughout image processing and delivery chain has become a requirement in the motion picture industry.


Several commercially available products have the capability of simulating film grain, often for blending a computer-generated object into a natural scene. Cineon® from Eastman Kodak Co, Rochester N.Y., one of the first digital film applications to implement grain simulation, produces very realistic results for many grain types. However, the Cineon® application does not yield good performance for many high-speed films because of the noticeable diagonal stripes the application produces for high grain size settings. Further, the Cineon® application fails to simulate grain with adequate fidelity when images are subject to previous processing, for example, such as when the images are copied or digitally processed.


Another commercial product that simulates film grain is Grain Surgery™ from Visual Infinity Inc., which is used as a plug-in of Adobe® After Effects®. The Grain Surgery™ product appears to generate synthetic grain by filtering a set of random numbers. This approach suffers from disadvantage of a high computational complexity.


None of these past schemes solves the problem of restoring film grain in compressed video. Film grain constitutes a high frequency quasi-random phenomenon that typically cannot undergo compression using conventional spatial and temporal methods that take advantage of redundancies in the video sequences. Attempts to process film-originated images using MPEG-2 or ITU-T/ISO H.264 compression techniques usually result either in an unacceptably low degree of compression or complete loss of the grain texture.


Thus, there exists a need for a technique simulating film grain, especially a technique that affords relatively low complexity.


BRIEF SUMMARY OF THE INVENTION

Briefly, in accordance with the present principles, there is provided a method for simulating a block of film grain. The method begins by obtaining a pre-computed block of transformed coefficients. The block of pre-computed block of transformed coefficients then undergoes filtering responsive to a frequency range that characterize a desired pattern of the film grain. (In practice, the frequency range lies within a set of cut frequencies fHL, fVL, fHH and fVH of a filter, in two dimensions, that characterizes a desired film grain pattern.) Thereafter, the filtered set of coefficients undergoes an inverse transform to yield the film grain pattern.





DETAILED DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a block schematic diagram of the combination of a transmitter and receiver in a film grain processing chain useful for practicing the technique of the present principles;



FIG. 2 depicts, in flow chart form, the steps of a first method for creating a block of film grain using pre-computed coefficients;



FIG. 3 depicts, in flow chart form, the steps of a method for film grain pattern creation using pre-computed Discrete Cosine Transformation (DCT) coefficients of a single image of Gaussian Noise; and



FIG. 4 depicts, in flow chart form, the steps of a method for film grain pattern creation using pre-computed Discrete Cosine Transformation (DCT) coefficients of several images of Gaussian Noise.





DETAILED DESCRIPTION

To understand the technique of the present principles for simulating film grain using a set of pre-computed transformed coefficients, a brief overview of film grain simulation will prove helpful. FIG. 1 depicts a block schematic diagram of a transmitter 10, which receives an input video signal and, in turn, generates a compressed video stream at its output. In addition, the transmitter 10 also generates information indicative of the film grain (if any) present in the sample. In practice, the transmitter 10 could comprises part of a head-end array of a cable television system, or other such system that distributes compressed video to one or more downstream receivers 11, only one of which is shown in FIG. 1. The transmitter 10 could also take the form of encoder that presents media like DVDs. The receiver 11 decodes the coded video stream and simulates film grain in accordance with the film grain information and decoded video, both received from the transmitter 10 or directly from the media itself in the case of a DVD or the like, to yield an output video stream that has simulated film grain. The receiver 11 can take the form of a set-top box or other such mechanism that serves to decode compressed video and simulate film grain in that video.


The overall management of film grain requires the transmitter 10 (i.e., the encoder) provide information with respect to the film grain in the incoming video. In other words, the transmitter 10 “models” the film grain. Further the receiver 11 (i.e., decoder) simulates the film grain according to the film grain information received from the transmitter 10. The transmitter 10 enhances the quality of the compressed video by enabling the receiver 11 to simulate film grain in the video signal when difficulty exists in retaining the film grain during the video coding process.


In the illustrated embodiment of FIG. 1, the transmitter 10 includes a video encoder 12 which encodes the video stream using any of the well known video compression techniques such as the ITU-T Rec. H.264|ISO/IEC 14496-10 video compression standard. Optionally, a film grain remover 14, in the form of a filter or the like depicted in dashed lines in FIG. 1, could exist upstream of the encoder 12 to remove any film grain in the incoming video stream prior to encoding. To the extent that the incoming video contains no film grain, no need would exist for the film grain remover 14.


A film grain modeler 16 accepts the input video stream, as well as the output signal of the film grain remover 14 (when present). Using such input information, the film grain modeler 16 establishes the film grain in the incoming video signal. In its simplest form, the film grain modeler 16 could comprise a look up table containing film grain models for different film stocks. Information in the incoming video signal would specify the particular film stock originally used to record the image prior to conversion into a video signal, thus allowing the film grain modeler 16 to select the appropriate film grain model for such film stock. Alternatively, the film grain modeler 16 could comprise a processor or dedicated logic circuit that would execute one or more algorithms to sample the incoming video and determine the film grain pattern that is present.


The receiver 11 typically includes a video decoder 18 that serves to decode the compressed video stream received from the transmitter 10. The structure of the decoder 18 will depend on the type of compression performed by the encoder 12 within the transmitter 10. Thus, for example, the use within the transmitter 10 of an encoder 12 that employs the ITU-T Rec. H.264|ISO/IEC 14496-10 video compression standard to compress outgoing video will dictate the need for an H.264-compliant decoder 18. Within the receiver 11, a film grain simulator 20 receives the film grain information from the film grain model 16. The film grain simulator 20 can take the form of a programmed processor, or dedicated logic circuit having the capability of simulating film grain for combination via a combiner 22 with the decoded video stream.


Film grain simulation aims to synthesize film grain samples that simulate the look of the original film content. As described, film grain modeling occurs at the transmitter 10 of FIG. 1, whereas film grain simulation occurs at the receiver 11. In particular, film grain simulation occurs in the receiver 11 along with the decoding the incoming video stream from the transmitter 10 upstream of the output of the decoded video stream. Note that the decoding process that occurs in the receiver 11 makes no use of images with added film grain. Rather, film grain simulation constitutes a post-processing method for synthesizing simulated film grain in the decoded images for display. For that reason, the ITU-T Rec. H.264|ISO/IEC 14496-10 video compression standard contains no specifications regarding the film grain simulation process. However, film grain simulation requires information concerning the grain pattern in the incoming video signal, which information typically undergoes transmission in a film grain characteristics Supplemental Enhancement Information (SEI) message when using the ITU-T Rec H.264|ISO/IEC 14496-10 video compression standard as specified by the Amendment 1 (Fidelity Range Extensions) of that compression standard.


Film grain simulation in accordance with the present principles makes use of a pre-computed set of transformed coefficients. In other words, the simulation process begins with a block, typically, although not necessarily, of N×N size, whose coefficients have been transformed in advance of simulation, typically, but not necessarily, using a Discrete Cosine Transformation. Other transformations are possible. Bit-accurate implementation of the simulation method of the present principles occurs by performing an integer inverse transform on the block of pre-computed values.


The film grain simulation method of the present principles presents an interesting tradeoff between complexity and memory requirements when compared to previously disclosed methods. On the one hand, the present method reduces the complexity of the transform-based approaches, by avoiding computation of the direct transform. On the other hand, the method reduces the memory requirements of database-based approaches by storing transformed coefficients instead of film grain patterns. The proposed method could be applied to HD DVD systems, BD ROM systems as well as satellite broadcasting just to cite a few examples.



FIG. 2 illustrates in flow-chart form, the steps of the method of the present principles, for simulating film grain using pre-computed coefficients. The method of FIG. 2 commences upon execution of the start step 100 during which initialization typically happens, although such initialization need not necessarily to occur. Thereafter, step 102 occurs during which a block of pre-computed transformed coefficients, typically, although not necessarily, N×N in size, is read from a memory 103. Many techniques exist for creating the set of pre-computed coefficients in the memory 103 of FIG. 2. For example, the transformed coefficients could be pre-computed using a Discrete Cosine Transformation (DCT) on a set of random values, as described in detail with respect to FIGS. 3 and 4. Other techniques exist for computing a set of transformed coefficients in advance of film grain simulation. The transformed coefficients then undergo frequency filtering during step 105 using a predefined set of cut frequencies fHL, fVL, fHH and fVH that represent cut-off frequencies (in two dimensions) of a filter that characterizes the desired film grain pattern. During step 106, the frequency filtered block of transformed coefficients undergoes an inverse transformation, typically, although not necessarily, an Inverse Discrete Cosine Transformation (IDCT), to yield a block of film grain, before the process ends with step 108. Under some circumstances, scaling of the inversely transformed block of coefficient following step 106 will prove useful prior to ending of the process.



FIG. 3 illustrates in flow chart form a method for film grain pattern simulation using pre-computed DCT coefficients of a single image of Gaussian random noise. The method of FIG. 3 commences upon execution of the start step 300 during which initialization occurs, although such initialization need not necessarily happen. Thereafter, step 202 occurs during which a block of pre-computed transformed coefficients, typically, although not necessarily N×N in size, is read from a memory 203. The block of coefficients read from the memory 203 during step 202 typically has been created by applying a DCT transform to an N×N image of Gaussian random values.


Following step 202, step 204 occurs, initiating entry into a loop that repeats for all possible film grain sizes and shapes. Upon entry into the loop, the transformed coefficients undergo frequency filtering during step 205 using a predefined set of cut frequencies fHL, fVL, fHH and fVH that represent cut-off frequencies (in two dimensions) of a filter that characterizes the desired film grain pattern. Next step 206 occurs during which the frequency filtered block of transformed coefficients undergoes an inverse transformation, typically, although not necessarily, an Inverse Discrete Cosine Transformation (IDCT), to yield a block of film grain. Under some circumstances, scaling of the inversely transformed block of coefficients following or preceding step 206 will prove useful.


Thereafter, the block of film grain that results from the inverse transformation performed during step 206 (or after scaling if such scaling occurs) undergoes storage in a database 209 during step 208. The loop initiated during step 204 undergoes repeating (i.e., steps 205 and 206 are repeated) for all possible film grain sizes and shapes, whereupon loop execution ends during step 210, after which the method ends during step 212. As can be appreciated from the foregoing description, the single image of Gaussian random values read from the memory 203 during step 202 of FIG. 3 serves as the kernel for each of the film grain patterns stored in the database 210.



FIG. 4 illustrates in flow chart form a method for film grain pattern simulation using pre-computed DCT coefficients of multiple images of Gaussian random noise. The method of FIG. 4 commences upon execution of the start step 300 during which initialization occurs, although such initialization need not necessarily happen. Next step 301 occurs, initiating entry into a loop that repeats for all possible film grain size and shape. Upon entry into the loop, step 302 occurs and a block of pre-computed transformed coefficients, typically, although not necessarily, N×N in size, is read from a memory 303. The block of coefficients read from the memory 303 during step 302 typically comprises a database of DCT transforms of N×N images of Gaussian random values.


Following step 302, step 305 occurs and the N×N image of DCT coefficients read from the memory 303 undergoes frequency filtering using a predefined set of cut frequencies fHL, fVL, fHH and fVH that represent cut-off frequencies (in two dimensions) of a filter that characterizes the desired film grain pattern. Next step 306 occurs during which the frequency filtered block of transformed coefficients undergoes an inverse transformation, typically, although not necessarily, an Inverse Discrete Cosine Transformation (IDCT), to yield a block of film grain. Under some circumstances, scaling of the inversely transformed block of coefficients following step 306 will prove useful.


Thereafter, step 308 occurs and the block of film grain that results from the inverse transformation performed (and scaling if performed) undergoes storage in a database 309 during step 308.


The loop initiated during step 301 undergoes repeating (i.e., steps 302-308 are repeated) for all possible film grain sizes and shapes, whereupon loop execution ends during step 310, after which the method ends during step 312. Unlike the method of FIG. 3 that makes use of a single DCT image of Gaussian random values for all possible film grain shapes and sizes, the method of FIG. 4 makes use of a separate DCT image for each different film grain shape and size. Both methods allow creating a database of film grain values upon system initialization or reset for storage in conventional memory such as an SRAM memory.


The foregoing describes a technique for simulating film grain using pre-computed transformed coefficients, thereby reducing complexity.

Claims
  • 1. A method for simulating film grain in a decoded video stream, comprising: receiving an encoded video stream;receiving film grain information indicative of a desired film grain pattern;decoding the encoded video stream;accessing a set of transformed coefficients from a memory;generating the film grain by frequency filtering the set of transformed coefficients responsive to a frequency range that characterizes the desired pattern of film grain for blending the film grain with the decoded video stream.
  • 2. The method according to claim 1 wherein the film grain information is received in a Supplemental Enhancement Message.
  • 3. A method, comprising: transmitting an encoded video stream to a decoder; andtransmitting to the decoder film grain information indicative of a desired film grain pattern so the decoder can decode the encoded video and can generate film grain by accessing a set of transformed coefficients from a memory of the decoder and frequency filtering the set of transformed coefficients responsive to a frequency range that characterizes the desired pattern of the film grain to combine the film grain with the decoded video stream.
  • 4. The method according to claim 3 wherein the film grain information is transmitted in a Supplemental Enhancement Message.
  • 5. Apparatus comprising: a transmitter configured to (a) encode input video and transmit such encoded video; and (b) model film grain present in the input video to generate and transmit film grain information indicative of a desired film grain pattern, whereby the film grain is generated by accessing a set of transformed coefficients from a memory and frequency filtering the set of transformed coefficients responsive to a frequency range that characterizes the desired film grain pattern.
  • 6. The apparatus according to claim 5 wherein the film grain information is transmitted in a Supplemental Enhancement Message.
  • 7. The apparatus according to claim 5 wherein the transmitter includes one of a processor or dedicated logic circuit.
  • 8. The apparatus according to claim 5 wherein the transmitter comprises an encoder.
  • 9. The apparatus according to claim 8 wherein the encoder encodes input video in accordance with the ITU-T Rec. H.264 | ISO/IEC 14496-10 video compression standard.
  • 10. An apparatus for simulating film grain in a decoded video stream comprising: a decoder configured to (a) receive an encoded video stream; (b) receive film grain information indicative of a desired film grain pattern; (c) decode the encoded video stream; (d) access a set of transformed coefficients from a memory and generate the film grain by frequency filtering a set of transformed coefficients responsive to a frequency range that characterizes the desired pattern of film grain for blending the film grain with the decoded video stream.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 11/667,581, filed May 10, 2007. This application claims priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application Ser. No 60/630,640, filed Nov. 23, 2004, the teachings of which are incorporated herein.

US Referenced Citations (136)
Number Name Date Kind
4897775 Kaassens Jan 1990 A
4935816 Faber Jun 1990 A
4998167 Jaqua Mar 1991 A
5028280 Ihara et al. Jul 1991 A
5140414 Mowry Aug 1992 A
5216556 Steinberg et al. Jun 1993 A
5262248 Ihara et al. Nov 1993 A
5285402 Keith Feb 1994 A
5335013 Faber Aug 1994 A
5374954 Mowry Dec 1994 A
5406326 Mowry Apr 1995 A
5453840 Parker et al. Sep 1995 A
5457491 Mowry Oct 1995 A
5461596 Barrett Oct 1995 A
5471572 Buchner et al. Nov 1995 A
5475425 Przyborski et al. Dec 1995 A
5526446 Adelson et al. Jun 1996 A
5550815 Cloonan et al. Aug 1996 A
5629769 Cookingham et al. May 1997 A
5636295 Kim Jun 1997 A
5641596 Gray et al. Jun 1997 A
5659332 Rybczynski Aug 1997 A
5687011 Mowry Nov 1997 A
5706361 Kent et al. Jan 1998 A
5709972 Cookingham et al. Jan 1998 A
5715008 Sekiguchi et al. Feb 1998 A
5742892 Chaddha Apr 1998 A
5767860 Zimmer et al. Jun 1998 A
5805782 Foran Sep 1998 A
5817447 Yip Oct 1998 A
5831673 Przyborski et al. Nov 1998 A
5832172 Jeon Nov 1998 A
5845017 Keyes Dec 1998 A
5917609 Breeuwer et al. Jun 1999 A
6067125 May May 2000 A
6134200 Timmermans Oct 2000 A
6216838 Bacher et al. Apr 2001 B1
6219838 Cherichetti et al. Apr 2001 B1
6233647 Bentz et al. May 2001 B1
6266817 Chaddha Jul 2001 B1
6269180 Sevigny Jul 2001 B1
6285711 Ratakonda et al. Sep 2001 B1
6327304 Miller et al. Dec 2001 B1
6327391 Ohnishi et al. Dec 2001 B1
6370192 Pearlstein et al. Apr 2002 B1
6370197 Pearlstein Apr 2002 B1
6373992 Nagao Apr 2002 B1
6441918 Hori Aug 2002 B1
6459699 Kimura et al. Oct 2002 B1
6496221 Wolf et al. Dec 2002 B1
6559849 Anderson et al. May 2003 B1
6587509 Suzuki et al. Jul 2003 B1
6650327 Airey et al. Nov 2003 B1
6665369 Ukita Dec 2003 B2
6667815 Nagao Dec 2003 B1
6724942 Arai Apr 2004 B1
6728317 Demos Apr 2004 B1
6744928 Juri et al. Jun 2004 B1
6839152 Fan et al. Jan 2005 B2
6868190 Morton Mar 2005 B1
6963668 Engeldrum et al. Nov 2005 B2
6987586 Bogdanowicz Jan 2006 B2
6990251 Edgar Jan 2006 B2
6990252 Shekter Jan 2006 B2
6995793 Albadawi et al. Feb 2006 B1
7065255 Chen et al. Jun 2006 B2
7092016 Morton et al. Aug 2006 B2
7106907 Lin et al. Sep 2006 B2
7149247 Sullivan Dec 2006 B2
7239359 Matsuyama Jul 2007 B2
7245783 Fielding Jul 2007 B2
7362911 Frank Apr 2008 B1
7596239 Winger et al. Sep 2009 B2
7630005 Takei Dec 2009 B2
7653132 Dang Jan 2010 B2
7664337 Balram et al. Feb 2010 B2
7680356 Boyce et al. Mar 2010 B2
7738722 Gomila et al. Jun 2010 B2
7742655 Gomila et al. Jun 2010 B2
7856055 Zhou et al. Dec 2010 B2
7889939 Llach et al. Feb 2011 B2
7958532 Paul et al. Jun 2011 B2
20010056568 Hirotsu et al. Dec 2001 A1
20020003903 Engeldrum et al. Jan 2002 A1
20020016103 Behnke Feb 2002 A1
20020034337 Shekter Mar 2002 A1
20020106103 Jones et al. Aug 2002 A1
20020133764 Wang Sep 2002 A1
20020154140 Tazaki Oct 2002 A1
20020171649 Fogg Nov 2002 A1
20030011615 Tidwell Jan 2003 A1
20030031128 Kim et al. Feb 2003 A1
20030043922 Kalker et al. Mar 2003 A1
20030063778 Rowe et al. Apr 2003 A1
20030068097 Wilson et al. Apr 2003 A1
20030086623 Berkner et al. May 2003 A1
20030101453 Matsuyama et al. May 2003 A1
20030206231 Chen et al. Nov 2003 A1
20030206662 Avinash et al. Nov 2003 A1
20030218610 Mech et al. Nov 2003 A1
20040006575 Visharam et al. Jan 2004 A1
20040013308 Jeon et al. Jan 2004 A1
20040071363 Kouri et al. Apr 2004 A1
20040073926 Nakamura et al. Apr 2004 A1
20040101059 Joch et al. May 2004 A1
20040208389 Lin Oct 2004 A1
20040264795 Fielding Dec 2004 A1
20060007460 Bogdanowicz et al. Jan 2006 A1
20060013320 Oguz et al. Jan 2006 A1
20060072660 Jia et al. Apr 2006 A1
20060082649 Gomila et al. Apr 2006 A1
20060083316 Cooper et al. Apr 2006 A1
20060083426 Cooper et al. Apr 2006 A1
20060083429 Joly Apr 2006 A1
20060104366 Huang et al. May 2006 A1
20060133686 Gomila et al. Jun 2006 A1
20060182183 Winger Aug 2006 A1
20060183275 Schoner et al. Aug 2006 A1
20060256853 Schlockermann et al. Nov 2006 A1
20060256871 Boyce et al. Nov 2006 A1
20060291557 Tourapis Dec 2006 A1
20070002947 Lu et al. Jan 2007 A1
20070030996 Winger et al. Feb 2007 A1
20070036452 Llach et al. Feb 2007 A1
20070047658 Tourapis et al. Mar 2007 A1
20070058866 Boyce et al. Mar 2007 A1
20070058878 Gomila et al. Mar 2007 A1
20070070241 Boyce et al. Mar 2007 A1
20070104380 Gomila et al. May 2007 A1
20070117291 Cooper et al. May 2007 A1
20070140588 Balram et al. Jun 2007 A1
20070297515 Gomila et al. Dec 2007 A1
20080025781 Koyama Jan 2008 A1
20080152250 Gomila et al. Jun 2008 A1
20080252781 De Waele et al. Oct 2008 A1
20100104025 Rose et al. Apr 2010 A1
Foreign Referenced Citations (68)
Number Date Country
364285 Oct 1989 EP
363715 Apr 1990 EP
575006 Jun 1993 EP
0622000 Nov 1994 EP
0756281 Jan 1997 EP
1175091 Jan 2002 EP
1215624 Jun 2002 EP
800313 Nov 2003 EP
1511320 Mar 2005 EP
1812940 Oct 2005 EP
1611740 Jan 2006 EP
1661089 May 2006 EP
1690423 Aug 2006 EP
2312124 Oct 1997 GB
1156069 Jun 1989 JP
3187661 Aug 1991 JP
497681 Mar 1992 JP
4097681 Mar 1992 JP
04349458 Dec 1992 JP
5252459 Sep 1993 JP
879765 Mar 1996 JP
8079765 Mar 1996 JP
8149466 Jun 1996 JP
9062718 Mar 1997 JP
9139940 May 1997 JP
9247681 Sep 1997 JP
9275529 Oct 1997 JP
10509297 Sep 1998 JP
200041242 Feb 2000 JP
2001357090 Dec 2001 JP
2001357095 Dec 2001 JP
2002359845 Dec 2002 JP
2002374541 Dec 2002 JP
200324326 Jan 2003 JP
2003163853 Jun 2003 JP
2003179923 Jun 2003 JP
2004120057 Apr 2004 JP
2004135169 Apr 2004 JP
2007507172 Mar 2007 JP
2007529945 Oct 2007 JP
2073913 Feb 1997 RU
2088962 Aug 1997 RU
2139637 Oct 1999 RU
WO8907799 Aug 1989 WO
WO9206409 Apr 1992 WO
WO9314591 Jul 1993 WO
WO9404960 Mar 1994 WO
WO9520292 Jul 1995 WO
WO9710676 Mar 1997 WO
WO9722204 Jun 1997 WO
WO9729632 Aug 1997 WO
WO0018109 Mar 2000 WO
WO0146992 Jun 2001 WO
WO0174064 Oct 2001 WO
WO0177871 Oct 2001 WO
WO0233958 Apr 2002 WO
WO0251160 Jun 2002 WO
WO03005731 Jan 2003 WO
WO2004095829 Nov 2004 WO
WO2004104931 Dec 2004 WO
WO2004105250 Dec 2004 WO
WO2005027045 Mar 2005 WO
WO2005032143 Apr 2005 WO
WO2005034518 Apr 2005 WO
WO2005039188 Apr 2005 WO
WO2005039189 Apr 2005 WO
WO2006022705 Mar 2006 WO
WO2006057703 Jun 2006 WO
Non-Patent Literature Citations (37)
Entry
Wiegand et al: “Overview of the H.264/AVC Video Coding Standard”; IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, No. 7, Jul. 2003.
Bjontegaard: “Addition of Comfort Noise as Post Processing”, ITU-Telecommunications Standardizations Sector, 2nd Meeting, Sunriver: Oregon, Sep. 8-11, 1997.
Byun et al: “Power Efficient MPEG-4 Decoder Architecture Featuring Low-complexity Error Resilience”; Proceedings IEEE Asia-Pac Conference 2002, pp. 225-228.
Conklin et al: “Filter for Inloop Deblocking”; Joint Video Team; 5th Meeting, Fairfax, Virginia; May 6-10, 2002.
McMahon et al: “High Quality SD & HD AVC Test Results”; Joint Video Team, 5th Meeting, Geneva, Switzerland, Oct. 9-17, 2002.
Naderi et al: “Estimation of Images Degraded by Film-Grain Noise”; Abstract. Applied Optics, vol. 17, Issue 8, pp. 1228-1237. 1978.
Pirsch et al: “VLSI Architectures for Video Compression”; IEEE Symposium on Signals, Systems and Electronics; Feb. 1995, vol. 83, Issue 2, pp. 220-246.
Schlockerman et al: “Film Grain Coding in H.264/AVC”; Joint Video Team; 9th Meeting, San Diego, California, Sep. 2-5, 2003.
Sullivan et al: “The H.264/AVC Advanced Video Coding Standard: Overview & Introduction to the Fidelity Range Extensions”: Proceedings of SPIE, vol. 5558, Bellingham, Washington, 2004.
List, et al., Adaptive Deblocking Filter, IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, No. 7, Jul. 2003.
Campisi et al., Signal-Dependent Film Grain Noise Generation Using Homomorphic Adaptive Filtering, IEE Proc.-Vis. Image Signal Process, vol. 147, No. 3, Jun. 2000.
Gomila, et al., SEI Message for Film Gain Encoding, Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC1/SV29/WG11 and ITU-T SG16 Q.6), 8th meeting: Geneva, CH, May 23-27, 2003.
Gomila, SEI Message for Film Grain Encoding: Syntax and Results, Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6) 7th Meeting: San Diego, California, USA, Sep. 2-5, 2003.
Wenger et al., “RTP Payload Format for H.264 Video”, IETF Standard-Working-Draft, Internet Engineering Task Force, IETF, vol. AVT, No. 11, Aug. 2004, CH.
Tourapis et al., “Quantization Offset Matrices for Fidelity Range Extensions”, JVT of ISO/IEC MPEG&ITU-T VCEG, Document: JVT-L032, 12th Meeting: Redmond, Washington, Jul. 19-23, 2004.
Peng et al., “Adaptive Frequency Weighting for Fine-Granualarity-Scalability”, Visual Communications and Image Processing 2002, Proceedings of SPIE, vol. 4671, 2002.
Oktem et al., “Transform Domain Algorithm for Reducing Effect of Film-Grain Noise in Image Compression”, Electronics Letters, vol. 35, No. 21, Oct. 14, 1999.
Al-Shaykh et al., “Restoration of Lossy Compressed Noisy Images”, IEEE Transactions on Image Processing, vol. 3, No. 10, Oct. 1999.
Shahnaz et al., “Image Compression in Signal-Dependent Noise”, Applied Optics, vol. 38, No. 26, Sep. 10, 1999.
Zhao et al., Constant Quality Rate Control for Streaming MPEG-4 FGS Video, IEEE, 2002.
Al-Shaykh et al., “Lossy Compression of Noisy Images”, IEEE Transactions on Image Processing, vol. 7, No. 12, Dec. 1998.
Brightwell et al., “Automated Correction of Film Unsteadiness, Dirt and Grain”, International Broadcasting Convention, Sep. 16-20, 1994.
Fischer et al., “Image Sharpening Using Permutation Weighted Medians”, National Science Foundation, Mar. 12, 2018.
Yan et al., “Signal-Dependent Film Grain Noise Removal and Generation Based on Higher-Order Statistics”, Ontario, Canada, IEEE, 1997.
Chavel et al., “Film Grain Noise in Partially Coherent Imaging”, Optical Engineering, vol. 19, No. 3, May/Jun. 1980.
McLean et al., “Telecine Noise Reduction”, The Institution of Electrical Engineers, London, UK, Jan. 16, 2001, pp. 1-6.
Al-Shaykh et al, “Lossy Compression of Images Corrupted by Film Grain Noise”, IEEE, Atlanta, GA, 1996.
Prades-Nebot, “Rate control for Fully Fine-Grained Scalable Video Coders”, Visual Communications and Image Processing 2002, Proceedings of SPIE, vol. 4671, 2002.
Van Der Schaar, “Fine-Granualarity-Scalability for Wireless Video and Scalable Storage”, Visual Communications and Image Processing 2002, Proceedings of SPIE, vol. 4671, 2002.
Yan et al., “Efficient Video Coding with Hybrid Spatial and Fine-Grain SNR Scalabilities”, Visual Communications and Image Processing 2002, Proceedings of SPIE, vol. 4671, 2002.
Yan et al., “Film Grain Noise Removal and Generation for Color Images”, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, May 15, 1998.
Zhang et al., “Constant Quality Constrained Rate Allocation for FGS Video Coded Bitstreams”, Visual Communications and Image Processing 2002, Proceedings of SPIE, vol. 4671, 2002.
Yoshida, “Go With the Grain, Film R&D Chief Urges, for Art's Sake”, EE Times, Feb. 7, 2005.
Chen, “Transporting Compresssed Digital Video, Chapter 5: Time Stamping for Decoding and Presentation”, Dordrecht, London, 2002, pp. 133-136.
Puri et al., “Video Coding Using the H.264/MPEG-4 AVC Compression Standard”, Signal Processing: Image Communication 19, 2004, pp. 793-849.
Gomila et al., “Film Grain Modeling vs. Encoding”, JVT of ISO/IEC MPEG & ITU-T VCEG, Document: JVT-K036, 11th Meeting: Munich, DE, Mar. 15-19, 2004.
Gomila et al., “Simplification of th eJVT deblocking filter” Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)3rd Meeting: Fairfax, Virginia, USA, May 6-10, 2002.
Related Publications (1)
Number Date Country
20160021399 A1 Jan 2016 US
Continuations (1)
Number Date Country
Parent 11667581 May 2007 US
Child 14870484 US