The present invention generally relates to film-type switching elements.
Film-type switching elements, such as membrane switches, film-type pressure sensors or similar devices usually include a first carrier film (also referred to as carrier foil) and a second carrier film arranged at a certain distance from one another by means of a spacer. The spacer, e.g. comprising a double-sided adhesive film, has at least one opening, which extends between the first and second carrier films, and which defines, by its contour, the active zone of the switching element. At least two electrodes are arranged within the active zone between said first and second carrier films in such a way that, in response to a pressure acting on the switching element, the first and second carrier films are pressed together against the reaction force of the elastic carrier films and an electrical contact is established between the at least two electrodes. Advantageously, the carrier films are mono- or multilayer polymer films onto which the electrodes and other elements of the electric circuit are printed or otherwise applied in form of a conductive (or resistive) ink or paste (e.g. ink comprising silver or graphite particles).
Two basic configurations exist for such switching elements. In the so-called “through-mode” variant, the first and second electrodes are arranged opposite one another in the active zone, i.e. each one of the first and second electrodes is disposed on its respective carrier film. In the so-called “shunt-mode” variant, both the first and second electrodes are arranged on the same one of the first and second carrier films, while a contact element is placed opposite the first and second electrodes on the other one of the carrier films. In each of these variants, the switching element may be implemented as a simple on-off switching element, having a substantially step-like electrical response, or as a pressure-sensitive switching element, showing a gradual decrease of resistance as a function of pressure. In the latter case, at least one of the electrodes and the contact element comprises a layer of pressure-sensitive material, whose resistance decreases continuously or by minute steps with increasing pressure being applied thereon.
The electrical response of such a switching element (e.g. the resistance or impedance between the first and second electrodes as a function of the applied pressure) depends on various parameters, including the type and shape of the electrodes, the arrangement of the electrodes within the active zone, the properties (thickness, modulus of elasticity and the like) of the carrier films, the dimensions and the configuration of the active zone, the separation between the electric elements that have to come into contact, the choice of the pressure sensitive material (if present), etc.
Both in an on-off switching element (which has no pressure-sensitive layer) and in a pressure-sensitive switching element (which has such a layer), the resistance between the first and second electrodes remains at a very high level (e.g. several MO) until increasing pressure causes the electric elements on the first and second carrier films to touch so that a current may flow between them. The pressure at which the initial physical contact occurs is referred to as threshold pressure. In an on-off switching element, the transition from highly resistive (insulating) state to conductive state occurs abruptly, i.e. in a narrow pressure range. Modifying the above parameters basically results in shifting the threshold from lower pressure values to higher ones or vice-versa. In a pressure-sensitive switching element, the transition takes place over a broader pressure range (i.e. with a smaller slope or with through a plurality of small steps); in this case, the above parameters not only have an influence on the threshold pressure but also on the appearance of the curve describing the electrical response as a function of pressure. Ways to tailor the electrical response of switching elements are described, for instance, in U.S. Pat. No. 7,187,264, U.S. Pat. No. 7,064,650 and US 2005/0006216 A1.
The above-described switching elements can be manufactured cost-effectively and have proven to be extremely robust and reliable in practice. That is the reason why such switching elements are commonly used in automotive safety applications e.g. as seat occupation sensors for seat belt reminders or for controlling auxiliary restraint systems.
A concern in the production of switching elements, e.g. for the automotive industry, is to guarantee substantially the same electrical response throughout a specified temperature range (such as from −40° C. to 105° C. for the automotive industry). Different measures for enhancing the uniformity of the response of such switching elements as a function of temperature have already been proposed. For instance, WO-A-2004/053908 discloses a foil-type switching element wherein at least one of the carrier films comprises a multi-layered configuration with at least two layers of different materials. By the use of appropriate materials and by suitably dimensioning the thickness of the different layers, the mechanical properties of these multi-layered carrier films may be precisely tuned to the specific requirements of a wide range of applications. WO 2006/058880 describes various carrier film materials having improved behaviour with respect to the more conventional carrier film materials like polyethylene terephthalate (PET) and polyethylene naphthalate (PEN).
The disclosure provides a film-type switching element having reduced sensitivity to temperature variations.
A film-type switching element comprises, as mentioned hereinbefore, a first carrier film, a second carrier film and a spacer that separates the carrier films a certain distance apart from one another. The spacer includes a spacer film, e.g. a double-sided adhesive film, which is arranged between and attached to the first and second carrier films, and whose thickness corresponds to the distance between the carrier films. The spacer has an opening therein, which extends between the first and second carrier films and defines the active zone of the film-type switching element, i.e. the region in which the first and second carrier films may be resiliently brought together in response to compressive force acting on the film-type switching element. A contact arrangement comprising at least a first and a second electrode is arranged in the active zone on at least one of the first and second carrier films in such a way that an electric contact is established between the first and second electrodes when the first and second carrier films are brought together. According to an important aspect of the invention, the spacer comprises a frame element, separate from (i.e. not incorporated within) the spacer film, which circumferentially extends around the opening so as to border (i.e. frame) the opening on its entire height or a part thereof. The frame element is held in place, relative to the spacer film, by a border surface of the spacer film turned towards the opening (in the plane of the spacer film) and at least one of the first and second carrier films (in the direction perpendicular to the plane of the spacer film). For the purposes of the present the term “film” is to be understood as designating a comparatively thin, flexible membrane, i.e. a sheet-like barrier of material.
In the investigations leading to the present invention, it was discovered that deformations induced by a mismatch of the thermal expansion coefficients of carrier film materials and spacer materials affect the response of the switching element to a much larger extent than expected. This is true, in particular, for switching elements in which the spacer film comprises layers of adhesive, by means of which its is attached to the carrier films, since the thermal behaviour of these adhesives normally substantially differs from that of the carrier films. The mismatch of the thermal expansion coefficients leads to deformations of the carrier films at the active zones, where the carrier films are not supported by the spacer film. In particular, the carrier films may bend into the opening in response to a temperature change so that they get closer to one another even without any external pressure being applied. Those skilled will appreciate that the frame element of the invention supports at least one of the carrier films around the opening. Accordingly, stress induced by a temperature variation at the edge of the spacer layer in contact with the carrier film does no longer cause bending of the carrier film into the opening because the frame element opposes to such deformation. Preferably, the frame element is made of a material having substantially the same thermal behaviour as at least one (more preferably: both) of the carrier films (i.e. the thermal expansion coefficient of the frame element lies preferably in the range from about 50 to about 150% of the thermal expansion coefficient of the carrier films). For instance, for preferred carrier films comprising PET film, PEN film and/or PI film, the thermal expansion coefficient typically ranges from 20 to 60 ppm/K; the thermal expansion coefficient of the frame element in this case preferably ranges from about 10 to about 100 ppm/K. More specifically, if the carrier films have a thermal expansion coefficient of about 40 ppm/K, the frame element is preferably chosen so as to have a thermal expansion coefficient in the range from about 20 to about 60 ppm/K. Most preferably, the frame element is made of the same material as at least one of the carrier films, so that the thermal expansion of the frame element corresponds to that of the carrier film.
According to a preferred embodiment of the invention, the frame element has a height corresponding substantially to the thickness of the spacer film (i.e. to the height of the border of the spacer film turned towards the opening) such that it is held in place by both the first and second carrier films. As will be appreciated, in this embodiment, the spacer film is not immediately contiguous to the active zone, but is separated from it by the “wall” formed by the frame element. To further describe such a frame element, it will be referred to the “first front surface” to designate the part of the surface of the frame element that is normally in contact with the first carrier film, to the “second front surface” to designate the part of the surface of the frame element that is facing towards or is in contact with the second carrier film, the “inner side surface” to designate the part of the surface of the frame element that delimits the opening and to the “outer side surface” to designate the part of the surface of the frame element that is in contact with the border of the spacer film holding the frame element in place. The first and second front surfaces are essentially parallel to one another. It will also be referred to the “inner contour” and the “outer contour” of the frame element to designate the curve obtained by projecting the inner side surface or the outer side surface, respectively, onto one of the carrier films.
As will be appreciated, the shape of the frame element may be chosen among a great variety of possibilities, depending on the requirements of the specific application of the switching element. The simplest and possibly the most used shape is that of a perforated annular disk, having an inner diameter corresponding to the diameter of the opening and an outer diameter fitting into the recess or gap accommodating the frame element in the spacer film. It shall be noted that the outer contour of the frame element does not necessarily correspond to the inner contour (the inner contour could e.g. be circular while the outer is polygonal, elliptical, star-shaped, etc., and vice versa). The inner contour could also be given a shape as described in U.S. Pat. No. 7,187,264, so as to define the active zone as a union of a convex inner region and peripheral outer regions extending radially outwardly (in the plane of the spacer film) from the convex inner region. The width of the frame element in the radial directions (i.e. those directions that depart radially from the middle or the geometric centre of the active zone in the plane defined by the spacer film) preferably amounts to between 10 and 30% (more preferably between 15 and 25%) of the diameter or the largest dimension of the active zone.
According to an embodiment of the invention, the frame element is held in place, in the plane of the spacer film, by form fit with the latter, i.e. the outer contour of the frame element is conjugate to the contour of the recess or gap that accommodates the frame element in the spacer film.
Those skilled will appreciate that, in principle, no bonding (no gluing, in particular) of the frame element to the carrier films and the spacer film is necessary, since the frame element is secured in position by the adjoining spacer film and carrier films. Notwithstanding that, the frame element may also be welded to at least one of the first and second carrier films, e.g. by ultrasonic welding. It should be noted that the response of the switching element is different in these two variants. Indeed, in the first variant, the carrier film that is depressed into the opening in the frame element may partially lift off from the frame element while pivoting about the inner edge of the frame element. In the second variant, such lifting off is reduced or rendered impossible.
As another measure to tailor the response of the switching element, the transition region between the inner surface and the first front surface of the frame element or the transition region between the inner surface and the second front surface of the frame element may be formed as a rounded or partially rounded edge.
For the sake of completeness, it shall be noted that the switching element of the present invention may be implemented both as an on-off switching element and as a pressure-sensitive switching element, as defined in the introduction. The switching element may be configured as a through-mode switching element, having the first electrode arranged on the first carrier film and the second electrode on the second carrier film in facing relationship with the first electrode. Alternatively, the switching element may be configured as a shunt-mode switching element, in which both the first and second electrodes are arranged on one of the first and second carrier films, and in which a contact element is arranged on the other one of the first and second carrier films, in facing relationship with the first and second electrodes in such a way that the electric contact between the first and second electrodes is established via the contact element as the first and second carrier films are brought together.
Further details and advantages of the present invention will be apparent from the following detailed description of several not limiting embodiments with reference to the attached drawings, wherein:
A switching element according to first preferred embodiment is generally referenced with numeral 10 in
The spacer film 16 is provided with a gap (or recess) therein, in which the frame element 18 is accommodated. The outer side surface of the frame element 18 is in contact with the border of the spacer film 16 delimiting the gap, in such a way that the frame element 18 is held in position by the spacer film 16. The inner side surface 22 of the frame element 18 delimits an opening in the spacer arrangement formed by the spacer film 16 and the frame element 18. The opening defines the active zone of the switching element 10. As illustrated in
The first and second carrier films span over the opening and may be brought closer to one another as pressure (indicated by arrow 24) is exerted on them (
The electrical resistance between the first and second electrodes 26, 28 is very high (in the MO range or above) as long as the contact element 30 is not pressed onto the electrodes 26, 28. If the pressure 24 applied to the switching element exceeds a certain threshold, the contact element 30 gets into contact with the first and second electrodes, as a consequence of which the resistance between the latter drops dramatically. If at least one of the first and second electrodes and the contact element comprises a layer of pressure-sensitive material (not shown in the drawings), the electrical resistance decreases gradually with increasing pressure.
Those skilled will appreciate that the frame element 18 prevents deformations induced by a mismatch between the thermal expansion coefficients of the material of the carrier films 12, 14 materials and one or more of the materials of the spacer film. For comparison,
In the switching element 10 of
As will be apparent to those skilled, the switching elements described with reference to
Number | Date | Country | Kind |
---|---|---|---|
07110865.8 | Jun 2007 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP08/57575 | 6/16/2008 | WO | 00 | 7/12/2010 |