1. Technical Field
The present invention relates to a flexible packaging film with a compostable, bio-based heat seal layer that can be used in packaging products and to a method of making the bio-based packaging material.
2. Description of Related Art
Multi-layered film structures made from petroleum-based products originating from fossil fuels are often used in flexible packages where there is a need for its advantageous barrier, sealant, and graphics-capability properties. Barrier properties in one or more layers are important in order to protect the product inside the package from light, oxygen or moisture. Such a need exists, for example, for the protection of foodstuffs, which may run the risk of flavor loss, staling, or spoilage if insufficient barrier properties are present to prevent transmission of such things as light, oxygen, or moisture into the package. The sealant properties are important in order to enable the flexible package to form an airtight or hermetic seal. Without a hermetic seal, any barrier properties provided by the film are ineffective against oxygen, moisture, or aroma transmission between the product in the package and the outside. A graphics capability is needed because it enables a consumer to quickly identify the product that he or she is seeking to purchase, allows food product manufacturers a way to label the nutritional content of the packaged food, and enables pricing information, such as bar codes, to be placed on the product.
One prior art multi-layer or composite film used for packaging potato chips and like products is illustrated in
Other materials used in packaging are typically petroleum-based materials such as polyester, polyolefin extrusions, adhesive laminates, and other such materials, or a layered combination of the above.
Once the material is formed and cut into desired widths, it can be loaded into a vertical form, fill, and seal machine to be used in packaging the many products that are packaged using this method.
Petroleum-based prior art flexible films comprise a relatively small part of the total waste stream produced when compared to other types of packaging. However, because petroleum films are environmentally stable, they have a relatively low rate of degradation. Consequently, such films can survive for long periods of time in a landfill. Another disadvantage of petroleum-based films is that they are made from oil, which many consider to be a limited, non-renewable resource. Consequently, a need exists for a biodegradable or compostable flexible film made from a renewable resource. In one embodiment, such film should be food safe and have the requisite barrier properties to store a low moisture shelf-stable food for an extended period of time without the product staling. The film should have the requisite sealable and coefficient of friction properties that enable it to be used on existing vertical form, fill, and seal machines.
The present invention is directed towards a flexible packaging film with a bio-based, compostable heat seal layer that can be used in packaging products. The bio-based heat seal layer comprises at least one of a polyhydroxybutyrate-valerate (“PHBV”) rich resin, a or polyhydroxy-alkanoate (“PHA”) resin, with certain properties that allow it to be coextruded as a heat seal layer for a biaxially oriented multi-layer polymer film.
In one embodiment, the multi-layer product side film composite comprises a barrier adhesion layer and a heat seal layer adhered to opposite sides of a barrier web layer, wherein the heat seal layer comprises a heat seal bio-based polymer comprising a first heat melting temperature and a second heat melting temperature, wherein the second heat melting temperature of the heat seal bio-based polymer is lower than the first heat melting temperature of the heat seal bio-based polymer. In another embodiment, the barrier web layer comprises a barrier web bio-based polymer having a first heat melting temperature, which is within 20° C. of the heat seal bio-based polymer first heat melting temperature.
In another embodiment, the barrier adhesion layer comprises a barrier adhesion bio-based polymer having a first heat melting temperature, which is within 20° C. of the heat seal bio-based polymer first heat melting temperature. In still another embodiment, the second heat melting temperature of the heat seal bio-based polymer is at least 20° C. lower than the first heat melting temperature of the heat seal bio-based polymer.
In one embodiment, the barrier web comprises a barrier web polymer comprising a second heat melting temperature which is higher than the second heat melting temperature of the heat seal bio-based polymer. In another embodiment, the barrier adhesion layer comprises a barrier adhesion polymer comprising a second heat melting temperature which is higher than the second heat melting temperature of the heat seal bio-based polymer. In still another embodiment, the barrier web comprises an amorphous bio-based polymer and the heat seal polymer comprises a crystalline bio-based polymer.
In one embodiment, a method of making a product side composite comprises co-extruding a barrier web layer between a barrier adhesion layer and a heat seal layer, wherein the heat seal layer comprises a heat seal bio-based polymer comprising a first heat melting temperature and a second heat melting temperature, wherein the second heat melting temperature of the heat seal bio-based polymer is lower than the first heat melting temperature of the heat seal bio-based polymer.
Other aspects, embodiments and features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying figures. The accompanying figures are schematic and are not intended to be drawn to scale. In the figures, each identical, or substantially similar component that is illustrated in various figures is represented by a single numeral or notation. For purposes of clarity, not every component is labeled in every figure. Nor is every component of each embodiment of the invention shown where illustration is not necessary to allow those of ordinary skill in the art to understand the invention. All patent applications and patents incorporated herein by reference are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control.
The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself, however, as well as a preferred mode of use, further objectives and advantages thereof, will be best understood by reference to the following detailed description of illustrative embodiments when read in conjunction with the accompanying figures, wherein:
The present invention is directed towards use of a bio-based, compostable polymer resin as the heat seal layer of a multi-layer polymer film. As used herein, the term “bio-based polymer” means a polymer where at least 80% of the polymer by weight is derived from a non-petroleum or biorenewable feedstock. In one embodiment, up to about 20% of the bio-based film can comprise a conventional polymer sourced from petroleum.
One problem with bio-based polymer resins, such as PHBV, PHA and PLA, is that some such resins are difficult to form into co-extrusion laminated polymer films. As a result, such films cannot currently be used exclusively in packaging. Using bio-based resins as the heat seal layer has not been done previously in the art because of the difficulty in processing.
One method of making the product side composite 550 of the multi-layer film of the present invention is depicted in
In one aspect of the invention, the polymer resin used for the heat seal layer 542 is a bio-based polymer resin with certain characteristics that enable its use as the heat seal layer. For example, after the heat seal layer has been extruded and cast with the barrier web layer, the heat seal layer must have a glass transition and melting temperature below the glass transition and melting temperature of the barrier web layer. The reason this is important is that when the heat seal equipment 322 and 326 depicted in
However, the polymer resins that are input into the extrusion unit 104 may have different physical properties before and after extrusion. The reason this occurs is that the first time a polymer resin is heated beyond its melting temperature in a differential scanning calorimeter (DSC), the processing conditions used to create the polymer resin will affect the glass transition and melting temperatures. The first heating cycle is referred to as the “first heat”. When the same polymer resin already subjected to first heat is heated a second time beyond its melting point in a DSC, it can have different melting temperatures. The second heating cycle is called the “second heat”. Thus, the first heat melting temperature and the second heat melting temperature can be different quantities. DSC methods of determining the glass transition and melting point of polymers are known in the art.
Similarly, the melting temperature of the polymer resin prior to extrusion casting or co-extrusion can be different than the melting temperature of the polymer film after extrusion. Applicants herein have discovered several bio-based resins that can be used effectively as a heat seal layer in conjunction with other bio-based polymers because they possess at least two characteristics (1) the bio-based heat seal resins have a first heat melting temperature approximately equivalent to bio-based resins that can be used as the barrier web layer and barrier adhesion layer, making them highly compatible as a co-extruded sheet, and (2) the bio-based heat seal resins also have second heat melting temperatures substantially below the first heat melting temperature, which allows them to be biaxially oriented and to melt and form a seal at temperatures below the temperature at which the barrier web and barrier adhesion layers melt and flow.
Another important aspect of the bio-based heat seal layer resins of the present invention is their ability to be processed on existing polymer film production equipment. Applicants herein have found that highly crystalline bio-based polymer resins have a lower coefficient of friction against the steel surfaces encountered by the polymer film during production, which improves their processability. More highly crystalline polymers also have a sharper melting point than less crystalline polymers. This property will help prevent the film from sticking to hot metal surfaces, and jamming during packaging and sealing operations. Finally, more highly crystalline polymers are less likely to block during storage when wound onto a roll after formation. Addition of anti-block particles may still be necessary, but at lower amounts than required by the prior art.
However, highly crystalline and slowly crystallizing polymers do not stretch as easily as amorphous, partial or controlled crystallinity polymers, due to internal fibrillation and voiding in the crystalline polymer. Therefore, Applicants have found that when a highly crystalline bio-based polymer is used as the heat seal layer, it should be combined with a barrier web layer comprising an amorphous bio-based polymer, which stretches more readily and provides support to the crystalline layer during processing. The amorphous barrier web layer and more crystalline heat seal layer work together to form a composite film with highly desirable properties. In one embodiment, the film is stretched at least 2.7× in the machine direction and at least 5× in the transverse direction.
In one embodiment of the present invention, the bio-based heat seal layer comprises less than 20% of the total weight of the product side composite film. If more than 20% by weight of a highly crystalline bio-based heat seal layer is used, the film is too difficult to process and will not form a film with desirable heat seal properties. In another embodiment, the bio-based heat seal layer is greater than 0.5 microns in thickness. Thicknesses below this limit will not permit adequate heat seal formation. In one embodiment, the practical upper limit for heat seal layer thickness is about 2 microns.
Applicants herein created several inventive multi-layered film sheets in accordance with the present invention. All of the multi-layered film sheets had a barrier web layer comprising NatureWorks 4032D (a PLA resin) and a barrier adhesion layer comprising NatureWorks 4042D (also a PLA resin). The following list of bio-based polymer resins were used to form a successful heat seal layer on these example inventive films: Enmat 5010P, a PHBV resin; Enmat 6010P, a PHBV resin; Metabolix P5001, a PHA resin; Metabolix P5001-HC, a PHA resin; and Meridian 11209, a PHA resin. These bio-based heat seal resins had first heat melting temperatures between about 150° C. and 170° C., and second heat melting temperatures between about 50° C. and 130° C. The first and second heat melting temperatures for the PLA resins used as the barrier web layer and barrier adhesion layer were between about 150° C. and 170° C. The technical effect of the difference in first and second heat melting temperature for the heat seal bio-based polymer is that it was able to be effectively co-extruded with the other bio-based polymers, to be biaxially oriented into a film and yet melt and form a seal at a lower temperature when used to form packages.
Thus, in one embodiment, the product side composite comprises a barrier adhesion layer and a heat seal layer adhered to opposite sides of a barrier web layer, wherein the heat seal layer comprises a heat seal bio-based polymer comprising a first heat melting temperature and a second heat melting temperature, wherein the second heat melting temperature of the heat seal bio-based polymer is lower than the first heat melting temperature of the heat seal bio-based polymer. In another embodiment, the barrier web layer comprises a barrier web bio-based polymer having a first heat melting temperature, which is within 20° C. of the heat seal bio-based polymer first heat melting temperature. In another embodiment, the barrier adhesion layer comprises a barrier adhesion bio-based polymer having a first heat melting temperature, which is within 20° C. of the heat seal bio-based polymer first heat melting temperature. In still another embodiment, the second heat melting temperature of the heat seal bio-based polymer is at least 20° C. lower than the first heat melting temperature of the heat seal bio-based polymer. In another embodiment, the barrier web polymer comprises a second heat melting temperature which is higher than the second heat melting temperature of the heat seal bio-based polymer. In another embodiment, the barrier adhesion polymer comprises a second heat melting temperature which is higher than the second heat melting temperature of the heat seal bio-based polymer.
In one embodiment, the biodegradable, bio-based film used for the heat seal layer 542 comprises polyhydroxy-alkanoate (“PHA”), available from Archer Daniels Midland of Decatur, Ill. PHA is a polymer belonging to the polyesters class and can be produced by microorganisms (e.g. Alcaligenes eutrophus) as a form of energy storage. In one embodiment, microbial biosynthesis of PHA starts with the condensation of two molecules of acetyl-CoA to give acetoacetyl-CoA which is subsequently reduced to hydroxybutyryl-CoA. Hydroxybutyryl-CoA is then used as a monomer to polymerize PHB, the most common type of PHA.
In the embodiment shown in
In one embodiment, the present invention provides a bio-based film comprising acceptable barrier properties. As used herein, a film having acceptable oxygen barrier properties has an oxygen transmission rate of less than about 150 cc/m2/day. As used herein, a film having acceptable moisture barrier properties comprises a water vapor transmission rate of less than about 5 grams/m2/day.
The metalized barrier/adhesion improving film layer 546 adjacent to the bio-based barrier web 540 can be one or more polymers selected from polypropylene, an ethylene vinyl alcohol (“EVOH”) formula, polyvinyl alcohol (“PVOH”), polyethylene, polyethylene terephthalate, nylon, and a nano-composite coating.
Below depicts EVOH formulas in accordance with various embodiments of the present invention.
The EVOH formula used in accordance with the present invention can range from a high ethylene EVOH to a low ethylene EVOH. As used herein a high ethylene EVOH corresponds to the above formula wherein n=25. As used herein, a low ethylene EVOH corresponds to the above formula wherein n=80. Low ethylene EVOH provides oxygen barrier properties but is more difficult to process. When metalized, EVOH provides acceptable moisture barrier properties. In one embodiment, the EVOH formula can be coextruded with a bio-based film layer 540 comprising PLA and the EVOH can then be metalized by methods known in the art including vacuum deposition.
In one embodiment, the metalized barrier/adhesion improving film layer comprises a metalized amorphous polyester, APET 416 that is less than about 10 gauge and preferably between about 2 and about 4 gauge in thickness. The APET can be coextruded with the bio-based film layer 540 comprising PLA and the APET can then be metalized by methods known in the art. In one embodiment, the metalized film 416 comprises a PVOH coating that is applied to the PLA as a liquid and then dried and stretched during film orientation, or coated onto a film and dried.
In one embodiment, one or both bio-based films 510540 consists of only PLA, or consists essentially of PLA. Alternatively, additives can be added to the outer base layer PLA film 540 or the barrier layer bio-based film 540 during the film making process to improve film properties such as the rate of biodegradation such as those disclosed in U.S. Patent Application Publication Number 2008/0038560 and U.S. patent application Ser. No. 12/707,368. Other optional additives that may be included in the polymer are fillers that increase the opacity of the film layer, such as titanium dioxide (TiO2).
Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
While this invention has been particularly shown and described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3113888 | Gold | Dec 1963 | A |
3217957 | Jarvie | Nov 1965 | A |
3258386 | Blythe | Jun 1966 | A |
3438428 | Balamuth | Apr 1969 | A |
3459610 | Dijkers | Aug 1969 | A |
3477970 | Beeman | Nov 1969 | A |
3498798 | Baur et al. | Mar 1970 | A |
3647111 | Stager | Mar 1972 | A |
4198256 | Andrews | Apr 1980 | A |
4373982 | Kreager | Feb 1983 | A |
4414045 | Wang | Nov 1983 | A |
4418841 | Eckstein | Dec 1983 | A |
4551371 | Eckstein | Nov 1985 | A |
4595611 | Quick | Jun 1986 | A |
4647332 | Ranger | Mar 1987 | A |
4859513 | Gibbons | Aug 1989 | A |
4892911 | Genske | Jan 1990 | A |
4982872 | Avery | Jan 1991 | A |
5057182 | Wuchinich | Oct 1991 | A |
5059804 | Fink | Oct 1991 | A |
5108807 | Tucker | Apr 1992 | A |
5153061 | Cavagna | Oct 1992 | A |
5155604 | Miekka | Oct 1992 | A |
5180765 | Sinclair | Jan 1993 | A |
5192620 | Chu | Mar 1993 | A |
5205473 | Coffin | Apr 1993 | A |
5213858 | Tanner et al. | May 1993 | A |
5216043 | Sipinen | Jun 1993 | A |
5230963 | Knoerzer | Jul 1993 | A |
5250627 | Yamamoto | Oct 1993 | A |
5296070 | Take | Mar 1994 | A |
5332586 | DiMino | Jul 1994 | A |
5391423 | Wnuk | Feb 1995 | A |
5458933 | Suskind | Oct 1995 | A |
5487940 | Bianchini | Jan 1996 | A |
5500459 | Hagemeyer | Mar 1996 | A |
5506036 | Bergerioux | Apr 1996 | A |
5508113 | Knoerzer | Apr 1996 | A |
5512338 | Bianchini | Apr 1996 | A |
5525421 | Knoerzer | Jun 1996 | A |
5540962 | Suskind | Jul 1996 | A |
5587048 | Streisel | Dec 1996 | A |
5604042 | Bianchini | Feb 1997 | A |
5631066 | O'Brien | May 1997 | A |
5654039 | Wenzel et al. | Aug 1997 | A |
5679421 | Brinton, Jr. | Oct 1997 | A |
5731093 | Chang | Mar 1998 | A |
5736204 | Suskind | Apr 1998 | A |
5747633 | Ito | May 1998 | A |
5750225 | Petty | May 1998 | A |
5756651 | Chen | May 1998 | A |
5766637 | Shine | Jun 1998 | A |
5776842 | Wood | Jul 1998 | A |
5837383 | Wenzel et al. | Nov 1998 | A |
5849374 | Gruber | Dec 1998 | A |
5891576 | Imai | Apr 1999 | A |
5895723 | Utz | Apr 1999 | A |
5908918 | Chen | Jun 1999 | A |
5939467 | Wnuk | Aug 1999 | A |
5948546 | Bafford | Sep 1999 | A |
5985772 | Wood | Nov 1999 | A |
6003670 | Beer | Dec 1999 | A |
6025028 | Asrar | Feb 2000 | A |
6027677 | Ostapchenko | Feb 2000 | A |
6033747 | Shiotani | Mar 2000 | A |
6036796 | Halbert | Mar 2000 | A |
6071618 | Cook | Jun 2000 | A |
6080478 | Karhuketo | Jun 2000 | A |
6132822 | Overcash | Oct 2000 | A |
6146508 | Gopalraja | Nov 2000 | A |
6168857 | Andersen | Jan 2001 | B1 |
6176953 | Landreth | Jan 2001 | B1 |
6183814 | Nangeroni et al. | Feb 2001 | B1 |
6193911 | Hunt | Feb 2001 | B1 |
6200404 | Andersen | Mar 2001 | B1 |
6207792 | Gruber | Mar 2001 | B1 |
6232389 | Feeney | May 2001 | B1 |
6235825 | Yoshida | May 2001 | B1 |
6245437 | Shiiki | Jun 2001 | B1 |
6248430 | Toyoda | Jun 2001 | B1 |
6285922 | Bloss | Sep 2001 | B1 |
6294047 | Chakar | Sep 2001 | B1 |
6301860 | Gunderman | Oct 2001 | B1 |
6338870 | Jaccoud | Jan 2002 | B1 |
6350531 | Sugimoto | Feb 2002 | B1 |
6358576 | Adur | Mar 2002 | B1 |
6361609 | Ouellette | Mar 2002 | B1 |
6387211 | Chakar | May 2002 | B1 |
6492613 | Bollinger et al. | Dec 2002 | B2 |
6511563 | Roylance | Jan 2003 | B2 |
6523732 | Popoola | Feb 2003 | B1 |
6544607 | Kuroki | Apr 2003 | B1 |
6547929 | Bobsein | Apr 2003 | B2 |
6573340 | Khemani | Jun 2003 | B1 |
6574944 | Capodieci | Jun 2003 | B2 |
6576294 | Phillips | Jun 2003 | B1 |
6600008 | Kobayashi | Jul 2003 | B1 |
6645584 | Kuusipalo | Nov 2003 | B1 |
6649732 | Kobayashi | Nov 2003 | B2 |
6660008 | Foerster | Dec 2003 | B1 |
6660211 | Topolkaraev | Dec 2003 | B2 |
6677048 | Karhuketo | Jan 2004 | B2 |
6709718 | O'Brien | Mar 2004 | B2 |
6716499 | Vadhar | Apr 2004 | B1 |
6740731 | Bigg | May 2004 | B2 |
6769229 | Kinigakis | Aug 2004 | B2 |
6811826 | Rule et al. | Nov 2004 | B2 |
6815079 | Rosenbaum | Nov 2004 | B2 |
6824632 | Blanchard | Nov 2004 | B2 |
6863644 | Cook | Mar 2005 | B1 |
6877975 | Wuchinich | Apr 2005 | B2 |
6942821 | Davrit | Sep 2005 | B2 |
6960374 | Terada | Nov 2005 | B1 |
6974612 | Frisk | Dec 2005 | B1 |
6977113 | Kody | Dec 2005 | B2 |
6984443 | Kuroki | Jan 2006 | B2 |
7060142 | Yamamoto | Jun 2006 | B2 |
7128969 | Busch | Oct 2006 | B2 |
7132490 | Obuchi et al. | Nov 2006 | B2 |
7160977 | Hale | Jan 2007 | B2 |
7172814 | Hudson | Feb 2007 | B2 |
7173080 | Yamada | Feb 2007 | B2 |
7214414 | Khemani | May 2007 | B2 |
7223359 | Torkelson | May 2007 | B2 |
7351449 | Hunt | Apr 2008 | B2 |
7351785 | Matsumoto | Apr 2008 | B2 |
7368160 | Inglis | May 2008 | B2 |
7422782 | Haedt | Sep 2008 | B2 |
7514528 | Kauffman | Apr 2009 | B2 |
7520959 | Kikuchi | Apr 2009 | B2 |
7707803 | Mori et al. | May 2010 | B2 |
7718718 | Kanzawa | May 2010 | B2 |
7771551 | Schroeder | Aug 2010 | B2 |
7785682 | Sato et al. | Aug 2010 | B2 |
7794555 | LaFond | Sep 2010 | B2 |
7842761 | Flynn | Nov 2010 | B2 |
7854994 | Henderson-Rutgers | Dec 2010 | B2 |
7943218 | Knoerzer | May 2011 | B2 |
7951436 | Knoerzer | May 2011 | B2 |
7951438 | Lee | May 2011 | B2 |
8105667 | Knoerzer | Jan 2012 | B2 |
8201606 | Specht | Jun 2012 | B2 |
8225583 | Waldherr | Jul 2012 | B2 |
8507084 | Deng | Aug 2013 | B2 |
8734933 | Paolilli et al. | May 2014 | B2 |
8795803 | Paolilli et al. | Aug 2014 | B2 |
8859056 | O'Neill et al. | Oct 2014 | B2 |
20010001284 | Shaw | May 2001 | A1 |
20020014318 | Bobsein | Feb 2002 | A1 |
20020098341 | Schiffer | Jul 2002 | A1 |
20020127358 | Berlin | Sep 2002 | A1 |
20020160201 | Ohkura | Oct 2002 | A1 |
20030008136 | Bliznyuk | Jan 2003 | A1 |
20030162013 | Topolkaraev | Aug 2003 | A1 |
20030166748 | Khemani | Sep 2003 | A1 |
20030193104 | Melican | Oct 2003 | A1 |
20030215644 | Deshpande | Nov 2003 | A1 |
20040029258 | Heaney | Feb 2004 | A1 |
20040076778 | Mori | Apr 2004 | A1 |
20040115424 | Cowton | Jun 2004 | A1 |
20040185287 | Reighard | Sep 2004 | A1 |
20040229327 | Agblevor | Nov 2004 | A1 |
20050096422 | Torkelson | May 2005 | A1 |
20050112363 | Ning | May 2005 | A1 |
20050136202 | Kendig | Jun 2005 | A1 |
20050194110 | Richardson | Sep 2005 | A1 |
20060019045 | Bourgeois | Jan 2006 | A1 |
20060046006 | Bastion et al. | Mar 2006 | A1 |
20060057260 | Barry | Mar 2006 | A1 |
20060069234 | Kauffman | Mar 2006 | A1 |
20060099436 | Schwark | May 2006 | A1 |
20060110615 | Karim | May 2006 | A1 |
20060144905 | Oblak | Jul 2006 | A1 |
20060159860 | Korowicki | Jul 2006 | A1 |
20060177674 | Aritake | Aug 2006 | A1 |
20060194010 | Hiscock | Aug 2006 | A1 |
20060207295 | Huenermann | Sep 2006 | A1 |
20060275563 | Duffy | Dec 2006 | A1 |
20060286323 | Siegel | Dec 2006 | A1 |
20070037912 | Mohanty | Feb 2007 | A1 |
20070059541 | Yoshida | Mar 2007 | A1 |
20070154719 | Meijlink et al. | Jul 2007 | A1 |
20070158012 | Heil | Jul 2007 | A1 |
20070184220 | Cleveland | Aug 2007 | A1 |
20070224368 | Hara | Sep 2007 | A1 |
20070259139 | Furneaux | Nov 2007 | A1 |
20080038560 | Knoerzer | Feb 2008 | A1 |
20080069988 | Sato | Mar 2008 | A1 |
20080070047 | Rehkugler | Mar 2008 | A1 |
20080107847 | Yamane | May 2008 | A1 |
20080131616 | Besson | Jun 2008 | A1 |
20080241500 | Hoegg | Oct 2008 | A1 |
20090017240 | Charbonnel et al. | Jan 2009 | A1 |
20090022919 | Chicarella | Jan 2009 | A1 |
20090061126 | Knoerzer | Mar 2009 | A1 |
20090081396 | Hokari et al. | Mar 2009 | A1 |
20090142614 | Mori | Jun 2009 | A1 |
20090148713 | Lee | Jun 2009 | A1 |
20090148715 | Lee | Jun 2009 | A1 |
20090199964 | Fayet | Aug 2009 | A1 |
20090200359 | Chen | Aug 2009 | A1 |
20090220794 | O'Neill | Sep 2009 | A1 |
20090250171 | Wieduwilt | Oct 2009 | A1 |
20090253871 | Flynn | Oct 2009 | A1 |
20090269580 | Shiba et al. | Oct 2009 | A1 |
20090286090 | Ting | Nov 2009 | A1 |
20090311544 | Lee | Dec 2009 | A1 |
20090324917 | Wang | Dec 2009 | A1 |
20090324972 | Hoffman et al. | Dec 2009 | A1 |
20100009208 | Lee | Jan 2010 | A1 |
20100040904 | Cloutier | Feb 2010 | A1 |
20100062269 | Ogita | Mar 2010 | A1 |
20100072104 | Kohl | Mar 2010 | A1 |
20100101722 | Suto | Apr 2010 | A1 |
20100147466 | Sans Marimon | Jun 2010 | A1 |
20100178394 | Exner | Jul 2010 | A1 |
20100178523 | Iyengar et al. | Jul 2010 | A1 |
20100184891 | Akutsu et al. | Jul 2010 | A1 |
20100209614 | Sakata | Aug 2010 | A1 |
20100221560 | Knoerzer et al. | Sep 2010 | A1 |
20100330382 | Dou | Dec 2010 | A1 |
20110005959 | Van Puijenbroek | Jan 2011 | A1 |
20110027590 | Abe | Feb 2011 | A1 |
20110072766 | Haus | Mar 2011 | A1 |
20110081543 | Lee | Apr 2011 | A1 |
20110104437 | Yamamura | May 2011 | A1 |
20110200844 | Fayne | Aug 2011 | A1 |
20110244185 | Dou | Oct 2011 | A1 |
20120111476 | Bang | May 2012 | A1 |
20120141766 | Paulino | Jun 2012 | A1 |
20120219790 | Mount | Aug 2012 | A1 |
20120288693 | Stanley et al. | Nov 2012 | A1 |
20130101831 | Knoerzer et al. | Apr 2013 | A1 |
20130101855 | Cham | Apr 2013 | A1 |
20130122280 | Yokota | May 2013 | A1 |
Number | Date | Country |
---|---|---|
1386631 | Dec 2002 | CN |
19523530 | Sep 1996 | DE |
10347015 | Apr 2005 | DE |
0058571 | Aug 1982 | EP |
0229476 | Jul 1987 | EP |
0333390 | Sep 1989 | EP |
2000-185381 | Jul 2000 | JP |
2003-191425 | Jul 2003 | JP |
2003-276144 | Sep 2003 | JP |
2004106314 | Apr 2004 | JP |
2004-256570 | Sep 2004 | JP |
2004-351629 | Dec 2004 | JP |
2007-083409 | Apr 2007 | JP |
2011-63002 | Mar 2011 | JP |
9601736 | Jan 1996 | WO |
9618544 | Jun 1996 | WO |
9631303 | Oct 1996 | WO |
2004-093883 | Nov 2004 | WO |
2006029835 | Mar 2006 | WO |
2007047133 | Apr 2007 | WO |
2012085060 | Apr 2013 | WO |
Entry |
---|
Hashimoto et al (JP 2000-185381) English translation, Apr. 7, 2000. |
Agarwal, Mukul, et al. “Characterization of the Degradation of Polylactic Acid Polymer in a Solid Substrate Environment,” Biotechnol. Prog. 1998, vol. 14, pp. 517-526 (10 pages). |
Devlieger, J.J., “Green plastics for food packaging,” TNO Industrial Technology, Chapter 24, pp. 519-534, The Netherlands, date unknown. |
Goldsberry, Clare, “The Greening of an Industry: PLA film coatings replacing thermoplastics,” Modern Plastics Worldwide magazine, Feb. 2007, pp. 54 and 56, United States. |
Kolybaba, M., “Biodegradable Polymers: Past, Present, and Future” The Society for Engineering in Agricultural, Food, and Biological Systems, Paper No. RRV03-00007, Oct. 2003, 15 pages. |
Liu, Lillian,“Bioplastics in Food Packaging: Innovative Technologies for Biodegradable Packaging” San Jose State University Packaging Engineering, Feb. 2006, 13 pages. |
Malwitz, Matthew M., et al., “Orientation of Platelets in Multilayered Nanocomposite Polymer Films,” Journal of Polymer Science: Part B: Polymer Physics, vol. 41, 3237-3248 (2003) © Wiley Periodicals, Inc., United States. |
NatureWorks LLC PLA Polymer 4032D “Biaxially Oriented Films—High Heat” pp. 1-3, © 2005. |
NatureWorks LLC Health and Safety, “Material Safety Data Sheet” pp. 1-10, Jul. 19, 2006. |
“Nanophasen-Materialen” In: Rompp Lexikon Chemie, 10. Auflage, 1998, Thieme Verlag, StuttgartISBN: 3-13-734910-9vol. 4, p. 2804 (3 pages). |
“PCT International Search Report dated Nov. 22, 2013, from PCT Application No. PCT/US13/47106 (7 pages).” |
“PCT International Search Report dated Dec. 2, 2013, from PCT Application No. PCT/US13/47128 (8 pages).” |
Tokiwa, Yutaka “Biodegradability of Plastics,” Int. J. of Mol. Sci. Sep. 2009, 10(9):3722-3724, published online Aug. 26, 2009 (18 pages). |
PCT International Search Report dated Feb. 21, 2014, from PCT Application No. PCT/US13/53478 (6 pages). |
PCT International Search Report dated Feb. 21, 2014, from PCT Application No. PCT/US13/53473 (6 pages). |
Machine translation of German Patent Publication No. DE10347015 A1 published on Apr. 28, 2005 (5 pages). |
Machine translation of Japanese Patent Publication No. 2011/063002 A2 published on Mar. 31, 2011 (18 pages). |
Kim & Chang translation of excerpt of Japanese Patent Publication No. 2011/063002 A2 published on Mar. 31, 2011 (1 page). |
Smook, Gary A., The Handbook for Pulp and paper Technologists, Chapter 14—Secondary Fiber, pp. 205-217. |
Somiya, Satoshi et al., “Degradation phenomena under water environment of cotton yarn reinforced Polylactic-acid,” T. Prouix (ed), Time Dependent Constitutive Behavior and Fracture/Failure Processes, vol. 3, Conference Proceedings of the Society for Experimental Mechanics Series 15, DOI 10.1007/978-1-4419-9794-4—27, The Society for Experimental Mechanics, Inc. 2011, pp. 175-182 •. |
PCT International Search Report dated Apr. 3, 2014 from PCT Application No. PCT/US13/68512 (8 pages). |
Schmitz, Peter, et al. “Films,” Ullmann's Encyclopedia of Industrial Chemistry, 5th ed., vol. A11 (1988), pp. 85-110 (26 pages). |
Number | Date | Country | |
---|---|---|---|
20130288025 A1 | Oct 2013 | US |