The present invention generally relates to films (e.g., polymer films) and methods of manufacture, and in at least some embodiments, perforated films and methods of manufacture for medical use.
In one embodiment there is a flexible body comprising a film (e.g., a polymer film) having a first surface and an opposing second surface, the film having a plurality of apertures extending from the first surface to the second surface and a plurality of raised lips protruding from the first surface such that each of the plurality of apertures is surrounded by a one of the plurality of raised lips. In a preferred embodiment, the film is comprised of a polymeric material (i.e., a polymer film). In one embodiment, the polymer film comprises a bioresorbable polymer. In one embodiment, the bioresorbable polymer contains repeat units selected from the group consisting of: L-lactic acid, D-lactic acid, L-lactide, D-lactide, D,L-lactide, glycolide, a lactone, a lactam, trimethylene carbonate, a cyclic carbonate, a cyclic ether, para-dioxanone, beta-hydroxybutyric acid, beta-hydroxypropionic acid, beta-hydroxyvaleric acid, and a combination thereof. In one embodiment, the bioresorbable polymer contains repeat units selected from the group consisting of: L-lactic acid, D-lactic acid, L-lactide, D-lactide, D,L-lactide, ε-caprolactone, trimethylene carbonate, para-dioxanone, and a combination thereof. In one embodiment, the bioresorbable polymer is a copolymer of glycolide, trimethylene carbonate, lactide and caprolactone.
In one embodiment, the first surface includes a contiguous planar portion extending between the plurality of raised protruding lips. In one embodiment, the plurality of raised protruding lips each have an outer edge that is raised above the contiguous planar portion by approximately 0.1 mm to approximately 1.0 mm. In one embodiment, the polymer film comprises a plurality of discrete eluting drug components and wherein the polymer film is configured to elute the plurality of discrete drug components at different time periods following implantation of the flexible body. In a further embodiment, the flexible body comprises at least one seam configured to form the polymer film into a sheath. In one embodiment, the polymer film has a first tensile strength in a first planar direction and a second tensile strength in a second planar direction that is perpendicular to the first planar direction, wherein the first tensile strength is substantially equal to the second tensile strength. In one embodiment, the polymer film has a nominal thickness of no greater than 0.06 mm. In one embodiment, the first surface has a first tactile feel that is different from a second tactile feel of the second surface.
In another embodiment there is a method of producing a polymer film comprising: placing a polymer solution into a one sided mold having a plurality of protrusions extending from a bottom of the mold wherein the polymer solution is characterized by a viscosity that inhibits the unaided flow of the polymer throughout the mold; urging the polymer solution around each of the plurality of protrusions; and solidifying the polymer solution. In one embodiment, the mold includes a perimeter form extending to an elevation that is substantially equal to an elevation of each of the plurality of protrusions. In one embodiment, the urging comprises drawing an urging means such as a blade, bar, squeegee or roller across the perimeter form and the plurality of protrusions to force the polymer solution to flow around the plurality of protrusions and throughout the mold such that the polymer solution has a substantially uniform thickness. In one embodiment, an outer surface of each of the protrusions is substantially free of polymer solution after the drawing. In one embodiment, the placing step includes depositing the polymer solution in the mold such that a portion of the polymer solution is above the elevation of the perimeter form and the protrusions.
In one embodiment, solidifying the polymer solution includes reducing a thickness of the polymer solution. In one embodiment, solidifying the polymer solution includes forming a meniscus of solidified polymer around each of the plurality of protrusions. In one embodiment, a distance from the bottom of the mold to a top of each of the plurality of protrusions is less than approximately 0.3 mm. In one embodiment, the polymer solution contains a drug. In one embodiment, the polymer solution is formed by combining a solvent, a polymer, and the drug at a temperature below 90° C. In one embodiment, the perimeter form defines a total mold area and the plurality of protrusions define an area that is at least about 15% of the total mold area. In a further embodiment, the method comprises peeling the drug eluting film from the mold.
In one embodiment, the polymer solution comprises a cross-linkable pre-polymer solution. In one embodiment, the solidifying step includes cross-linking the polymer by applying UV radiation, temperature change, polymerization catalysts, soluble crosslinking agents or combinations thereof to the polymer solution. In one embodiment, the polymer solution includes discrete drug units. In one embodiment, the polymer solution comprises a first solvent and a polymer and the solidifying step includes exposing the polymer solution to a second solvent in which the first solvent is soluble and in which the polymer and the drug are not soluble such that the first solvent is at least substantially removed from the polymer solution and the polymer solidifies to contain the drug.
The foregoing summary, as well as the following detailed description of embodiments of the polymer films and methods of manufacture, will be better understood when read in conjunction with the appended drawings of exemplary embodiments. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.
In the drawings:
Infections represent a major challenge in orthopedic or trauma surgery. Despite prophylactic measures like asepsis and antisepsis, the surgery site is still a site of access for local pathogens to become virulent and cause infections.
Coating an implantable device with a drug such as an antibiotic, has been effective to reduce infection. However, given the large number, sizes, and shapes of implants and other medical devices, the regulatory, financial, and logistical burden of providing a coating for each device is enormous. The problem is amplified if one considers additional drugs to use in coatings such as analgesics, antineoplastic agents and growth promoting substances.
Embodiments of the present invention are directed to improved perforated polymer films and novel casting methods of making the same. In some embodiments, the films are for use with implantable medical devices though the films may be used in any application.
Commercial methods of forming a perforated film currently existing generally involve forming a solid film as a first step, then punching or cutting holes into the film as a second step. An advantage of at least some of the embodiments described herein is that the holes or perforations of the film are formed at the same time that the film is formed. This may be useful when the polymer film formed is very thin and at risk for damage due to subsequent handling or processing or when the thickness and/or strength of the film makes it difficult to punch or cut by traditional methods without damaging the film. Such a process may also be advantageous when the polymer solution contains a drug or other active that may be damaged by subsequent cutting or punching steps.
Embodiments of the present invention may also be useful for making quantities of cast film such as those which are considered too small to make economically by traditional methods which are typically continuous processes designed for high volume production. An additional advantage of at least some embodiments of the invention is that perforations formed in the cast sheet can have complex shapes. A further advantage of at least some of the embodiments of the invention is that at least one side of the film may be formed to have a non-planar surface which in some embodiments increases friction and gives an improved tactile feel. These advantages of the present invention, as well as others, are described in further detail below.
Referring to the drawings in detail, wherein like reference numerals indicate like elements throughout, there is shown in
Referring to the embodiment of
In one embodiment, film 10 may be formed from a single thin sheet of a biologically-compatible material. In one embodiment, film 10 is comprised of two or more sheets of material. In a preferred embodiment, the biologically-compatible material is bioresorbable. In embodiments used with a medical (see
In some embodiments, a bioresorbable film 10 has advantages over non-resorbable meshes which, for example, can become encased with or embedded in dense fibrous tissue or present other issues associated with long term foreign body exposure. In some embodiments, film 10 is only partially bioresorbable.
A bioabsorbable polymer may be used in order to provide a controlled release of a drug such as an antibiotic, with a definite end point. Continuous, long term presence of an antibiotic is often undesirable, since this can create conditions for development of antibiotic resistant bacteria. In one embodiment, complete degradation of film 10 ensures that the drug will be completely released in a pre-determined and/or selectable time. In one embodiment, the drug release can be completely released or substantially completely released even where the film 10 is not fully absorbed.
The absorption of film 10 may also impact and/or control the release of the antibiotic in the continuous release phase. As the film degrades, for example, the permeability of the film may increase, and more drug may be released. In some embodiments, the polymer used must be for a structure that is flexible, have relatively high tensile strength, and be able to be processed by solution casting. In one embodiment, film 10 is comprised of a co-polymer that includes one or more of four monomers; glycolide, lactide, caprolactone, and trimethylene carbonate. Glycolide may be included and may have the effect of speeding up degradation of film 10. Lactide may also be included and may have the effect of increasing mechanical strength of film 10. Caprolactone and trimethylene carbonate may be used and may have the effect of increasing flexibility of film 10.
In one embodiment, the bioresorbable polymer includes one or more of PLA, PGA, polycaprolactone, polydioxanone, TMC and copolymers of these. In one embodiment, the bioresorbable polymer is produced from a copolymer of glycolic acid, caprolactone lactic acid, and trimethylene carbonate. In one embodiment, the bioresorbable polymer is produced from a copolymer of approximately 60% glycolic acid, approximately 20% caprolatone, approximately 10% lactic acid and approximately 10% trimethylene carbonate. In one embodiment, the bioresorbable polymer contains repeat units selected from the group consisting of: L-lactic acid, D-lactic acid, L-lactide, D-lactide, D,L-lactide, glycolide, a lactone, a lactam, trimethylene carbonate, a cyclic carbonate, a cyclic ether, para-dioxanone, beta-hydroxybutyric acid, beta-hydroxypropionic acid, beta-hydroxyvaleric acid, and a combination thereof. In one embodiment, the bioresorbable polymer contains repeat units selected from the group consisting of: L-lactic acid, D-lactic acid, L-lactide; D-lactide, D,L-lactide, ε-caprolactone, trimethylene carbonate, para-dioxanone, and a combination thereof. In one embodiment, the bioresorbable polymer is a copolymer of glycolide, trimethylene carbonate, lactide and caprolactone. Film 10 may also or alternatively include natural biopolymers such as alginate, chitosan, collagen, gelatin, hyaluronate, zein and others.
Still referring to
In some embodiments, thickness h3 of film 10 is approximately 0.05 mm. In some embodiments, thickness h3 of film 10 is approximately no greater than 0.05 mm. In some embodiments, thickness h3 of film 10 is less than approximately 0.05 mm. In some embodiments, thickness h3 of film 10 is approximately 0.06 mm. In some embodiments, thickness h3 of film 10 is approximately 0.07 mm. In some embodiments, thickness h3 of film 10 is approximately 0.08 mm. In some embodiments, thickness h3 of film 10 is approximately 0.09 mm. In some embodiments, thickness h3 of film 10 is approximately 0.1 mm. In some embodiments, thickness h3 of film 10 is approximately 0.2 mm. In some embodiments, thickness h3 of film 10 is approximately 0.3 mm. In some embodiments, thickness h3 of film 10 is approximately 0.4 mm. In some embodiments, thickness h3 of film 10 is approximately 0.5 mm.
In one embodiment, thickness h3 of film 10 is approximately uniform throughout film 10. In some embodiments, film 10 is tapered toward on or more edges along the outer periphery. In some embodiments, thickness h3 of film 10 differs in two or more sections to control strength or drug delivery of each area.
In some embodiments, film 10 must be of sufficient strength to withstand mechanical forces such as implantation, drilling and screw placement. In one embodiment, film 10 has a first tensile strength in a first planar direction and a second tensile strength in a second planar direction that is perpendicular to the first planar direction, where the first tensile strength is substantially equal to the second tensile strength. In one embodiment, film 10 has the strength characteristics as listed in tables 1-3 below.
In one embodiment, film 10 has a tensile strain at yield (Offset 0.2%) of approximately 2% to approximately 4% and/or a mean tensile strain of approximately 3%. In one embodiment, film 10 has a tensile stress at yield (Offset 0.2%) of approximately 9 MPa to approximately 14 MPa, and/or a mean tensile stress at yield of approximately 12.5 MPa. In one embodiment, film 10 has a tensile stress at maximum load of approximately 25 MPa to approximately 30 MPa, and/or a mean tensile stress at maximum load of approximately 27 MPa. In one embodiment, film 10 has a tensile strain at break (standard) of approximately 30% to approximately 215%, and/or a mean tensile strain at break of approximately 89%. In one embodiment, film 10 has an automatic Young's modulus of approximately 430 MPa to approximately 750 MPa, and/or a mean automatic Young's modulus of approximately 590 MPa. Film 10 may be characterized by combination of one or more of the foregoing properties.
Referring to
Apertures 14 may be configured to be any size and shape. In one embodiment, apertures 14 are defined by substantially cylindrical sidewalls. In some embodiments, apertures 14 have sidewalls that have segments that are inwardly facing convex surfaces. In some embodiments, the inwardly facing convex surface is substantially parabolic. Apertures 14 need not be perfectly round in cross section, and in some embodiments, may be ovoid, elliptical, star or diamond in shape. In some embodiments, apertures 14 extend to one or more apexes. In one embodiment, such apexes promote tears in film 10 during use (e.g., where a zone of weakness is created by the aperture). In one embodiment, apertures 14 extend completely through sheet 12 from an inside surface 10b to an outside surface 10a (see
Apertures 14 may be configured to allow for any desired porosity of film 10. In one embodiment, the porosity of film 10 is greater than approximately 0.01. In one embodiment, the porosity of film 10 is greater than approximately 0.02. In one embodiment, the porosity of film 10 is greater than approximately 0.03. In one embodiment, the porosity of film 10 is greater than approximately 0.04. In one embodiment, the porosity of film 10 is greater than approximately 0.05. In one embodiment, the porosity of film 10 is greater than approximately 0.06. In one embodiment, the porosity of film 10 is greater than approximately 0.07. In one embodiment, the porosity of film 10 is greater than approximately 0.08. In one embodiment, the porosity of film 10 is greater than approximately 0.09. In one embodiment, the porosity of film 10 is greater than approximately 0.10. In one embodiment, the porosity of film 10 is greater than approximately 0.11. In one embodiment, the porosity of film 10 is greater than approximately 0.12. In one embodiment, the porosity of film 10 is greater than approximately 0.13. In one embodiment, the porosity of film 10 is greater than approximately 0.15. In one embodiment, the porosity of film 10 is greater than approximately 0.15. In one embodiment, the porosity of film 10 is greater than approximately 0.16. In one embodiment, the porosity of film 10 is greater than approximately 0.17. In one embodiment, the porosity of film 10 is greater than approximately 0.18. In one embodiment, the porosity of film 10 is greater than approximately 0.19. In one embodiment, the porosity of film 10 is greater than approximately 0.20.
Referring to
Referring to
In one embodiment, first surface 10a includes a contiguous planar portion extending between the plurality of raised protruding lips 14a. In one embodiment, lip 14a is substantially in the shape of the outer surface of an impact crater. In one embodiment, lip 14a includes a continuous concave surface. In one embodiment, lip 14a includes a parabolic concave surface. In one embodiment, one or more of lips 14a (or, in some embodiments, each lip 14a) has a conave outer surface and an convex opposing inner surface, either or both of which are parabolic in shape. In one embodiment, lips 14a each have an edge that is raised above the contiguous planar portion of first surface 10a by approximately 0.1 mm to approximately 1.0 mm. In one embodiment, lips 14a each have an edge that is raised above the contiguous planar portion of first surface 10a by approximately 0.1 mm. In one embodiment, lips 14a each have an edge that is raised above the contiguous planar portion of first surface 10a by approximately 0.2 mm. In one embodiment, lips 14a each have an edge that is raised above the contiguous planar portion of first surface 10a by approximately 0.3 mm. In one embodiment, lips 14a each have an edge that is raised above the contiguous planar portion of first surface 10a by approximately 0.4 mm. In one embodiment, lips 14a each have an edge that is raised above the contiguous planar portion of first surface 10a by approximately 0.5 mm. In one embodiment, lips 14a each have an edge that is raised above the contiguous planar portion of first surface 10a by approximately 0.6 mm. In one embodiment, lips 14a each have an edge that is raised above the contiguous planar portion of first surface 10a by approximately 0.7 mm. In one embodiment, lips 14a each have an edge that is raised above the contiguous planar portion of first surface 10a by approximately 0.8 mm. In one embodiment, lips 14a each have an edge that is raised above the contiguous planar portion of first surface 10a by approximately 0.9 mm. In one embodiment, lips 14a each have an edge that is raised above the contiguous planar portion of first surface 10a by approximately 1.0 mm.
In one embodiment, due to lips 14a, first surface 10a has a first tactile feel that is different (e.g., distinguishable by a surgeon wearing a surgical glove) from a second tactile feel of second surface 10b without lips 14a. In one embodiment, apertures 14 in one or more areas on first surface 10a each are bounded by a raised lip 14a and apertures 14 in one or more other areas on first surface 10a are not so bounded. In one embodiment, height h4 (see
In some embodiments, film 10 includes one or more drugs or other substance for delivery in the body. Such drugs include, but are not limited to, antimicrobial agents, anti-fibrotic agents, anesthetics and anti-inflammatory agents as well as other classes of drugs, including biological agents such as proteins, growth inhibitors and the like.
In one embodiment, film 10 includes an antibiotic. The antibiotic selected may be active against the majority of bacteria found in orthopedic implant related infections. These include primarily staphylococci, and Gram negative bacilli.
In one embodiment, the drug selected must be stable during the manufacturing processes required to fabricate the implant. In one embodiment, film 10 includes gentamicin. Gentamicin sulfate is thermally stable above 100° C., and is stable to organic solvents including DMSO, which is used in the manufacturing process in some embodiments.
Referring to
In one embodiment, the relative amounts of drug released during these two phases are controlled by the particle size. In one embodiment, drug components 30 are evenly distributed throughout film 10, and any drug components 30 in contact with a surface of film 10 are dissolved more rapidly than a drug component 30 that is not in contact with a surface of film 10. In one embodiment, a quantity of drug components 30 that are in contact with a surface of film 10 upon implantation are configured to release in a burst upon implantation. In one embodiment, the larger the size of drug components 30, the higher the proportion of drug components 30 in contact with the surface, and the greater the burst release. For this reason, the size of drug components 30, in one embodiment, is kept under 10 microns in diameter which reduces the burst release to approximately 20 to 35% of the total drug content. In one embodiment, drug components 30 are under 20 microns in diameter.
In one embodiment, film 10 is configured to deliver multiple drugs from one or more independent layers, some of which may contain no drug. In another embodiment, film 10 may include a plurality of drug components each being characterized by a different release rate from film 10 such that a first drug is associated with a first release profile that is different from a second release profile of a second drug.
Referring to
In one embodiment, the manufacturing method of polymer films 10 was developed to make polymer films 10 for use as drug delivery membranes. In one embodiment, film 10 is solvent cast. In some embodiments, solvent casting methods are advantageous in the fabrication of films 10 that contain a drug component 30 that could be potentially damaged by the heat and shear of melt processes such as blown film extrusion. Producing films using a punch press (e.g., with many hundreds or thousands of holes or holes with complicated geometry) may also be time consuming and expensive. In some embodiments, a solvent and drug 30 are first mixed to form a well distributed suspension then polymer is added into the solution.
In some embodiments, methods described here allow for formation of the thin films 10 and formation of apertures 14 in a single step. In some embodiments, methods described herein allow for a film 10 with thousands of apertures 14 with accurate control of geometry and placement and accurate control of film thickness.
Referring to
In one embodiment, mold 18 includes a cavity depth of approximately 0.25 mm. In one embodiment, a distance from the bottom of the mold 18a to a top of each of the plurality of posts 20 is equal to the cavity depth (i.e., the height of peripheral wall 22) or vice versa. In one embodiment, posts 20 are longer than the desired thickness of film 10. In one embodiment, posts 20 extend 0.3 mm from the bottom of mold 18a. In one embodiment, posts 20 extend 0.2 mm from the bottom of mold 18a. In one embodiment, posts 20 extend 0.25 mm from the bottom of mold 18a. In one embodiment, posts 20 extend 0.3 mm from the bottom of mold 18a. In one embodiment, posts 20 extend 0.35 mm from the bottom of mold 18a. In one embodiment, posts 20 extend 0.4 mm from the bottom of mold 18a. In one embodiment, posts 20 extend 0.45 mm from the bottom of mold 18a. In one embodiment, posts 20 extend 0.5 mm from the bottom of mold 18a.
In one embodiment, posts 20 are arranged to produce the selected size, shape, pattern, and arrangement of apertures 14 described above. In one embodiment, a perimeter form or peripheral wall 22 defines a total mold area, and the plurality of posts 20 define an area that is substantially equal to or corresponding to the open pore area of film 10.
In one embodiment, mold 18 includes a trough 24 that extends at least partially around peripheral wall 22 of mold 18. In one embodiment, trough 24 extends around the entire peripheral wall 22 of mold 18. In some embodiments, trough 24 retains any excess polymer that flows or is urged over peripheral wall 22. In one embodiment, mold 18 includes an extension 40 extending laterally from at least one outer edge of mold 18. In one embodiment, extension 40 is provided for grasping and manipulating mold 18 without contacting the polymer solution within mold 18.
In one embodiment, a polymer solution 28 for adding to mold 18 is formed. In one embodiment, a polymer material is dissolved at a 4:1 solvent to polymer ration in dimethyl sulfoxide (DMSO) at elevated temperature and the drug gentamicin sulfate is added at 13% by weight. In one embodiment, polymer solution 28 is formed by introducing drug units 30 to a polymer/solvent blend at a temperature below 90° C. In one embodiment, polymer solution 28 comprises a cross-linkable pre-polymer such as polyurethanes, polyfumarates, polymethacrylates, etc.
Referring to
Referring to
Referring to
In one embodiment, solidifying the polymer solution reduces a thickness of the polymer solution from a thickness h1 to a thickness h3. In one embodiment, solidifying the polymer solution reduces a thickness of the polymer solution proximate posts 20 from a thickness h1 to a thickness h4. In one embodiment, thickness h4 of film 10 proximate posts 20 is greater than a thickness h1 of film 10 between posts 20. In one embodiment, lips 14a are formed by polymer solution forming a meniscus around each of posts 20 during solidifying of polymer solution 28 to film 10. In one embodiment, meniscus or lip 14a is approximately the same height h4 as height or depth h1 of the mold 18. In one embodiment, height h4 of lips 14a may be controlled by careful selection of the material and geometry of posts 20 or by coating posts 20 with, for example, a lubricious material such as a fluoropolymer or silicone mold release. In one embodiment, height h4 of lips 14a is controlled by the concentration of the polymer solution.
Referring to
Referring to
Film 10 may be manufactured by alternative methods. In one embodiment, polymer solution 28 can be cast onto perforated film material with a backing blotter layer, then the perforated film is removed from the blotter layer, removing the cast solution where there were holes in the casting sheet. One difference with such a process from the above described processes is that, in some embodiments, it does not create a raised lip around apertures 14.
In another embodiment, porous films may also be formed by a lyophilazation or freeze-drying method. In one embodiment, a thin solid film of polymer solution is cast in a mold, then the mold chilled to a temperature below the freezing point of the solution, then placed under vacuum to remove the solvent from the film. In some embodiments, this process will also produce fine pores which are much smaller than those described in some of the embodiments above.
In one embodiment, the polymer material used to form the cast film could be a crosslinkable prepolymer liquid, which is cast into the film mold as described, squeegeed to fill the mold and remove excess material, then crosslinked in place by UV radiation, temperature, a catalyst or other means. In one embodiment, this process could produce a very similar final product as described above, except that the final thickness of the cast film would be close to or the same as the depth of the mold, and there would be little or no meniscus or lip 14a around apertures 14.
In another embodiment, a thin porous film can be formed by a screen printing process. In one embodiment, a layer of solution is screen printed in the final pattern, then dried. In one embodiment, this produces a much thinner layer, however multiple layers of polymer can be screen printed and dried one on top of the other to build up the desired thickness of film.
In another embodiment, a similar casting process could be performed as described above using a glass plate with a pattern made from a hydrophobic polymer such as silicone, in the shape of the desired perforations. In one embodiment, when a thin layer of polymer solution is cast onto the plate, the surface tension differences between the glass and the patterned polymer cause the solution to concentrate on the glass surface, and pull away from the patterned hydrophobic polymer surface. In one embodiment, the solution is then dried to form a solid film with perforations in the same pattern as the silicone polymer. In one embodiment, this process could also be performed with a crosslinkable prepolymer liquid as described above.
In another embodiment, a thin porous polymer film is made using a two-sided mold, where the polymer solvent solution is injected into the mold, and chilled to solidify the solution. In one embodiment, the mold is then opened and one side removed, leaving the chilled solution in the cavity side. In one embodiment, the chilled solution side is placed into an oven to dry the polymer solution and form a film 10.
Referring to
Referring to
In addition to sleeves 32, 34, 36, 38, film 10 may be used, in some embodiments, for other medical applications such as hernia repair mesh, adhesion barrier, soft tissue augmentation, filtration membranes, drug delivery membranes, bone graft containment (e.g., for maintaining bone graft in place for example in a spinal fusion procedure, or segmental defect grafting in a long bone), or wound care products such as bandages.
In one exemplary embodiment, implants were tested by implantation in sheep. The implants were metal plates with tubular, thin (0.05-0.08 mm), transparent polymer sleeves carefully slipped over the metal plates just before they were surgically inserted and attached to the bone. The sleeves had a tight fit, covered the metal plates completely over the entire length, although they were open at both ends of the plates. The sleeves were comprised of a synthetic copolyester (glycolide, caprolactone, trimethylenecarbonate, lactide) with perforation holes of 1.5 mm diameter equally spaced throughout. One group of sleeves contained triclosan (2,4,4′-trichloro-2′-hydroxydiphenyl ether) at a concentration of 1%, one group of sleeves contained gentamicin at a concentration of 10%, and one group of sleeves contained a combination of both triclosan (1%) and gentamicin (10%). The concentration of gentamicin and Triclosan were chosen based on in vitro testing to determine the therapeutic window for each compound.
The hydrophobic triclosan was in complete solution within the polymer, in contrast to the hydrophilic gentamicin, which remained suspended as 10-20 μm small particles. In vitro testing has shown that due to its poor water solubility, triclosan is released from these films only slowly over a to 3 weeks period, with minimal initial burst release.
Approximately 50% of the more water soluble gentamicin which is exposed to the surface of the sleeves was released into the adjacent tissue within 24 hours after insertion. The remaining gentamicin encapsulated in the depth of the polymer dissolves more slowly and was released over a 2 to 3 week period after implantation. The polymer was designed to degrade through hydrolysis within 60 days after surgery.
The sleeves with or without antimicrobial agents were proven biocompatible, with minimal effect on soft tissue and bone healing and not corrosive to the metallic implants. Additional details of the experiment can be found in Vet Surg. 2012 Jan. 12. Biodegradable Sleeves for Metal Implants to Prevent Implant-Associated Infection: An Experimental In Vivo Study in Sheep. Von Plocki S C, Armbruster D, Klein K, Kämpf K, Zlinszky K, Hilbe M, Kronen P, Gruskin E, von Rechenberg B., which is hereby incorporated by reference in its entirety.
In one exemplary embodiment, film 10 is manufactured by the following method:
Determination of Gentamicin Moisture Content:
The moisture content of gentamicin sulfate powder is measured by a loss on drying method. Approximately 0.5 grams of gentamicin is weighed in a glass jar, then heated under vacuum to 110° C. for 3 hours and weighed a second time. The weight loss is recorded as the moisture content, which is used to calculate the percent moisture.
Solution Mixing:
14.69 grams of gentamicin sulfate powder is weighed, compensating for the percent moisture content as calculated above. This is mixed into 400 g of DMSO solvent in a 1 L vessel, using a paddle mixer. The mixture is stirred for 30 minutes until the gentamicin is uniformly distributed. 100 g of a copolymer containing glycolic acid, caprolactone, lactic acid, and trimethylene carbonate monomers is added to the suspension, and the mixing vessel is heated to 65° C. Mixing is continued for 2 hours until the polymer is completely dissolved into the solution, then the solution temperature is reduced to 55° C.
Film Casting & Solvent Drying:
A casting mold and drawing blade made from high density polyethylene are used to cast thin perforated films from the polymer solution. The casting mold and drawing blade are pre-cleaned using an alkaline detergent solution and loaded into an automated CNC casting fixture. 15 ml of the polymer solution are drawn up in a polypropylene syringe, which is loaded into the casting fixture. The casting fixture automatically dispenses the solution onto the casting mold, and draws the blade across the surface of the mold. The mold filled with polymer solution is placed into a solvent drying oven at 85° C. for approximately 90 minutes to dry the film. The molds are removed from the drying oven and the films are peeled from the molds within 2 minutes.
Sleeve Sealing:
An impulse heat sealing press with specially shaped dies is used to seal and cut the cast film into the shape of a sleeve. Two cast films are placed into the press, and the press is closed with a pressure of 80 psi and heated to 200° C. for 4 seconds. The sleeves are removed from the excess film material and cut to the appropriate length. Sealed sleeves can be dried under vacuum at 50° C. and sealed in moisture barrier packaging to prevent degradation of the bioabsorbable polymer.
It will be appreciated by those skilled in the art that changes could be made to the exemplary embodiments shown and described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the exemplary embodiments shown and described, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the claims. For example, specific features of the exemplary embodiments may or may not be part of the claimed invention and features of the disclosed embodiments may be combined. Unless specifically set forth herein, the terms “a”, “an” and “the” are not limited to one element but instead should be read as meaning “at least one”.
It is to be understood that at least some of the figures and descriptions of the invention have been simplified to focus on elements that are relevant for a clear understanding of the invention, while eliminating, for purposes of clarity, other elements that those of ordinary skill in the art will appreciate may also comprise a portion of the invention. However, because such elements are well known in the art, and because they do not necessarily facilitate a better understanding of the invention, a description of such elements is not provided herein.
Further, to the extent that the method does not rely on the particular order of steps set forth herein, the particular order of the steps should not be construed as limitation on the claims. The claims directed to the method of the present invention should not be limited to the performance of their steps in the order written, and one skilled in the art can readily appreciate that the steps may be varied and still remain within the spirit and scope of the present invention.
This application claims the benefit of U.S. Provisional Patent Application No. 61/580,679 filed Dec. 28, 2011 entitled “Films and Methods of Manufacture”, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3155095 | Brown | Nov 1964 | A |
3719736 | Woodruf | Mar 1973 | A |
3949037 | Volent | Apr 1976 | A |
4148871 | Pitt et al. | Apr 1979 | A |
4297993 | Harle | Nov 1981 | A |
4587268 | Pfirrmann | May 1986 | A |
4605414 | Czajka | Aug 1986 | A |
4605730 | Shalaby et al. | Aug 1986 | A |
4659700 | Jackson | Apr 1987 | A |
4730726 | Holzwarth | Mar 1988 | A |
4774091 | Yamahira et al. | Sep 1988 | A |
4863444 | Biomer | Sep 1989 | A |
4888023 | Averill et al. | Dec 1989 | A |
5021241 | Yamahira et al. | Jun 1991 | A |
5084050 | Draenert | Jan 1992 | A |
5093319 | Higham et al. | Mar 1992 | A |
5100668 | Edelman | Mar 1992 | A |
5104266 | Daryoush | Apr 1992 | A |
5147400 | Kaplan et al. | Sep 1992 | A |
5260066 | Wood | Nov 1993 | A |
5268178 | Calhoun et al. | Dec 1993 | A |
5281221 | Tadych | Jan 1994 | A |
5324519 | Dunn et al. | Jun 1994 | A |
5326356 | Della Valle et al. | Jul 1994 | A |
5383928 | Scott | Jan 1995 | A |
5456721 | Legrand | Oct 1995 | A |
5458653 | Davidson | Oct 1995 | A |
5462563 | Shearer | Oct 1995 | A |
5468253 | Bezwada | Nov 1995 | A |
5489305 | Morgan | Feb 1996 | A |
5507814 | Gilbert | Apr 1996 | A |
5521193 | Flynn | May 1996 | A |
5549676 | Johnson | Aug 1996 | A |
5567431 | Vert et al. | Oct 1996 | A |
5571204 | Nies | Nov 1996 | A |
5637113 | Tartaglia et al. | Jun 1997 | A |
5656605 | Hansson | Aug 1997 | A |
5679299 | Gilbert et al. | Oct 1997 | A |
5693085 | Buirge et al. | Dec 1997 | A |
5713904 | Errico et al. | Feb 1998 | A |
5716981 | Hunter et al. | Feb 1998 | A |
5725570 | Heath | Mar 1998 | A |
5755720 | Mikhail | May 1998 | A |
5795584 | Totakura et al. | Aug 1998 | A |
5798113 | Dionne et al. | Aug 1998 | A |
5800519 | Sandock | Sep 1998 | A |
5800544 | Demopulos et al. | Sep 1998 | A |
5800828 | Dionne | Sep 1998 | A |
5800829 | Dionne et al. | Sep 1998 | A |
5824088 | Kirsch | Oct 1998 | A |
5834001 | Dionne et al. | Oct 1998 | A |
5855906 | McClay | Jan 1999 | A |
5869077 | Dionne et al. | Feb 1999 | A |
5871767 | Dionne et al. | Feb 1999 | A |
5873906 | Lave et al. | Feb 1999 | A |
5874099 | Dionne et al. | Feb 1999 | A |
5876432 | Lau et al. | Mar 1999 | A |
5919225 | Lau et al. | Jul 1999 | A |
5919235 | Husson et al. | Jul 1999 | A |
5947893 | Agrawal et al. | Sep 1999 | A |
5955095 | Gentile et al. | Sep 1999 | A |
5984926 | Jones | Nov 1999 | A |
6001123 | Lau et al. | Dec 1999 | A |
6013104 | Kampner | Jan 2000 | A |
6015429 | Lau et al. | Jan 2000 | A |
6017362 | Lau | Jan 2000 | A |
6060640 | Pauley | May 2000 | A |
6063395 | Markkula | May 2000 | A |
6071567 | Castelli et al. | Jun 2000 | A |
6083523 | Dionne et al. | Jul 2000 | A |
6117442 | Markkula et al. | Sep 2000 | A |
6143029 | Rippstein | Nov 2000 | A |
6143033 | Paul et al. | Nov 2000 | A |
6165202 | Kokish et al. | Dec 2000 | A |
6165210 | Lau | Dec 2000 | A |
6180052 | Ouellette et al. | Jan 2001 | B1 |
6193746 | Strecker | Feb 2001 | B1 |
6221097 | Wang et al. | Apr 2001 | B1 |
6232869 | Roby et al. | May 2001 | B1 |
6235869 | Roby et al. | May 2001 | B1 |
6248112 | Gambale et al. | Jun 2001 | B1 |
6254627 | Friedberg | Jul 2001 | B1 |
6258125 | Paul et al. | Jul 2001 | B1 |
6277084 | Abele | Aug 2001 | B1 |
6280411 | Lennox | Aug 2001 | B1 |
6287291 | Bigus | Sep 2001 | B1 |
6287331 | Heath | Sep 2001 | B1 |
6287628 | Hossainy et al. | Sep 2001 | B1 |
6287638 | Castelli et al. | Sep 2001 | B1 |
6290721 | Heath | Sep 2001 | B1 |
6299894 | Markkula | Oct 2001 | B1 |
6306166 | Barry | Oct 2001 | B1 |
6322804 | Dionne et al. | Nov 2001 | B1 |
6331186 | Wang et al. | Dec 2001 | B1 |
6331188 | Lau et al. | Dec 2001 | B1 |
6337088 | Gentile et al. | Jan 2002 | B1 |
6350284 | Tormaia | Feb 2002 | B1 |
6379381 | Hossainy et al. | Apr 2002 | B1 |
6383190 | Preissman | May 2002 | B1 |
6419694 | Sandock | Jul 2002 | B1 |
6432141 | Stocks et al. | Aug 2002 | B1 |
6443980 | Wang et al. | Sep 2002 | B1 |
6447522 | Gambale et al. | Sep 2002 | B2 |
6451003 | Prosl et al. | Sep 2002 | B1 |
6451050 | Rudakov et al. | Sep 2002 | B1 |
6468300 | Freidberg | Oct 2002 | B1 |
6476079 | Jukarainen et al. | Nov 2002 | B1 |
6482235 | Lambrecht et al. | Nov 2002 | B1 |
6491720 | Vallana et al. | Dec 2002 | B1 |
6494898 | Roby et al. | Dec 2002 | B1 |
6497709 | Heath | Dec 2002 | B1 |
6503556 | Harish et al. | Jan 2003 | B2 |
6503954 | Bhat et al. | Jan 2003 | B1 |
6517570 | Lau et al. | Feb 2003 | B1 |
6520984 | Garrison et al. | Feb 2003 | B1 |
6545097 | Pinchuk et al. | Apr 2003 | B2 |
6547812 | Hu | Apr 2003 | B1 |
6554863 | Paul et al. | Apr 2003 | B2 |
6569180 | Sirhan et al. | May 2003 | B1 |
6592569 | Bigus et al. | Jul 2003 | B2 |
6592885 | Phaneuf et al. | Jul 2003 | B2 |
6596296 | Nelson et al. | Jul 2003 | B1 |
6602290 | Esnouf et al. | Aug 2003 | B2 |
6607544 | Boucher et al. | Aug 2003 | B1 |
6613072 | Lau et al. | Sep 2003 | B2 |
6632235 | Weikel et al. | Oct 2003 | B2 |
6641587 | Scribner et al. | Nov 2003 | B2 |
6645241 | Strecker | Nov 2003 | B1 |
6660038 | Boyer, II et al. | Dec 2003 | B2 |
6666880 | Chiu et al. | Dec 2003 | B1 |
6692498 | Niiranen et al. | Feb 2004 | B1 |
6706058 | Hierlemann et al. | Mar 2004 | B2 |
6713119 | Hossainy et al. | Mar 2004 | B2 |
6716216 | Boucher et al. | Apr 2004 | B1 |
6716444 | Castro | Apr 2004 | B1 |
6719773 | Boucher et al. | Apr 2004 | B1 |
6726691 | Osorio et al. | Apr 2004 | B2 |
6746483 | Bojarski et al. | Jun 2004 | B1 |
6749626 | Bhat et al. | Jun 2004 | B1 |
6759054 | Chen et al. | Jul 2004 | B2 |
6767369 | Boyer, II et al. | Jul 2004 | B2 |
6790224 | Gerberding | Sep 2004 | B2 |
6790228 | Hossainy et al. | Sep 2004 | B2 |
RE38614 | Paul et al. | Oct 2004 | E |
6818247 | Chen et al. | Nov 2004 | B1 |
6827743 | Eisermann et al. | Dec 2004 | B2 |
6840770 | McDevitt | Jan 2005 | B2 |
6855770 | Pinchuk | Feb 2005 | B2 |
6863530 | McDevitt | Mar 2005 | B2 |
6863692 | Meulink | Mar 2005 | B2 |
6883520 | Lambrecht et al. | Apr 2005 | B2 |
6884427 | Barrows | Apr 2005 | B1 |
6899719 | Reiley et al. | May 2005 | B2 |
6908624 | Hossainy | Jun 2005 | B2 |
6946143 | Kim et al. | Sep 2005 | B2 |
6953560 | Castro et al. | Oct 2005 | B1 |
6960351 | Dionne et al. | Nov 2005 | B2 |
6979341 | Scribner et al. | Dec 2005 | B2 |
6981991 | Ferree | Jan 2006 | B2 |
6986788 | Paul et al. | Jan 2006 | B2 |
7001390 | Gebhardt | Feb 2006 | B2 |
7014659 | Boyer, II et al. | Mar 2006 | B2 |
7025791 | Levine et al. | Apr 2006 | B2 |
7037332 | Kutryk et al. | May 2006 | B2 |
7041308 | Shalaby et al. | May 2006 | B2 |
7056577 | Bruce et al. | Jun 2006 | B1 |
7070613 | Weber et al. | Jul 2006 | B2 |
7087082 | Paul et al. | Aug 2006 | B2 |
7087087 | Boyer et al. | Aug 2006 | B2 |
7101392 | Heath | Sep 2006 | B2 |
7108717 | Freidberg | Sep 2006 | B2 |
7115146 | Boyer, II et al. | Oct 2006 | B2 |
7122058 | Levine et al. | Oct 2006 | B2 |
7131986 | Sirhan et al. | Nov 2006 | B2 |
7137993 | Acosta et al. | Nov 2006 | B2 |
7147656 | Andreas et al. | Dec 2006 | B2 |
7153306 | Ralph et al. | Dec 2006 | B2 |
7153307 | Scribner et al. | Dec 2006 | B2 |
7168605 | Walak | Jan 2007 | B2 |
7169405 | Trieu | Jan 2007 | B2 |
7175873 | Roorda et al. | Feb 2007 | B1 |
7182779 | Acosta et al. | Feb 2007 | B2 |
7192448 | Ferree | Mar 2007 | B2 |
7198047 | Lambrecht et al. | Apr 2007 | B2 |
7208008 | Clarke | Apr 2007 | B2 |
7238168 | Sirhan et al. | Jul 2007 | B2 |
7247313 | Roorda et al. | Jul 2007 | B2 |
7252671 | Scribner et al. | Aug 2007 | B2 |
7261720 | Stevens et al. | Aug 2007 | B2 |
7267694 | Levine et al. | Sep 2007 | B2 |
7270668 | Adreas et al. | Sep 2007 | B2 |
7279008 | Brown et al. | Oct 2007 | B2 |
7279175 | Chen et al. | Oct 2007 | B2 |
7294146 | Chew et al. | Nov 2007 | B2 |
7296998 | Bartee et al. | Nov 2007 | B2 |
7300456 | Andreas et al. | Nov 2007 | B2 |
7300465 | Paul et al. | Nov 2007 | B2 |
7309350 | Landreville et al. | Dec 2007 | B2 |
7311727 | Mazumder et al. | Dec 2007 | B2 |
7329285 | Levine et al. | Feb 2008 | B2 |
7347873 | Paul et al. | Mar 2008 | B2 |
7347875 | Levine et al. | Mar 2008 | B2 |
7351255 | Andreas | Apr 2008 | B2 |
7357812 | Andreas et al. | Apr 2008 | B2 |
7402172 | Chin et al. | Jul 2008 | B2 |
7407512 | Bojarski et al. | Aug 2008 | B2 |
7458990 | Chieng | Dec 2008 | B2 |
7465318 | Sennett et al. | Dec 2008 | B2 |
7473277 | Boyer, II et al. | Jan 2009 | B2 |
7491234 | Palasis | Feb 2009 | B2 |
7503936 | Trieu | Mar 2009 | B2 |
7504125 | Pacetti et al. | Mar 2009 | B1 |
7550012 | Lavelle | Jun 2009 | B2 |
7553539 | Bruce | Jun 2009 | B2 |
7578834 | Abdou | Aug 2009 | B2 |
7608114 | Levine et al. | Oct 2009 | B2 |
7611481 | Cleary et al. | Nov 2009 | B2 |
7618432 | Pedersen et al. | Nov 2009 | B2 |
7618448 | Schmitz et al. | Nov 2009 | B2 |
7618647 | Weber | Nov 2009 | B2 |
7622146 | Roorda et al. | Nov 2009 | B2 |
7622530 | Pinchuk et al. | Nov 2009 | B2 |
7666216 | Hogendijk et al. | Feb 2010 | B2 |
7678068 | Levine et al. | Mar 2010 | B2 |
7682647 | Hossainy et al. | Mar 2010 | B2 |
7686781 | Vinten-Johansen | Mar 2010 | B2 |
7691401 | Castro et al. | Apr 2010 | B2 |
7695446 | Levine et al. | Apr 2010 | B2 |
7698111 | Abrahad et al. | Apr 2010 | B2 |
7704545 | Kantor et al. | Apr 2010 | B2 |
7731750 | Bojarski et al. | Jun 2010 | B2 |
7740657 | Brown, Jr. et al. | Jun 2010 | B2 |
7744620 | Pedersen et al. | Jun 2010 | B2 |
7758535 | Levine et al. | Jul 2010 | B2 |
7758642 | Bojarski et al. | Jul 2010 | B2 |
7758881 | Dugan | Jul 2010 | B2 |
7766861 | Levine et al. | Aug 2010 | B2 |
7766973 | Levine et al. | Aug 2010 | B2 |
7771382 | Levine et al. | Aug 2010 | B2 |
7785615 | Dave | Aug 2010 | B2 |
7789915 | Lavelle et al. | Sep 2010 | B2 |
7803183 | Kutryk et al. | Sep 2010 | B2 |
7988732 | Bojarski et al. | Feb 2011 | B2 |
8900620 | Fulmer et al. | Dec 2014 | B2 |
9381683 | Armbruster et al. | Jul 2016 | B2 |
9579260 | Fulmer et al. | Feb 2017 | B2 |
20010039456 | Boyer, II et al. | Nov 2001 | A1 |
20020055749 | Esnouf et al. | May 2002 | A1 |
20020062147 | Yang | May 2002 | A1 |
20020187260 | Sheppard, Jr. et al. | Dec 2002 | A1 |
20030088307 | Shulze et al. | May 2003 | A1 |
20030093111 | Ken et al. | May 2003 | A1 |
20030107149 | Yang | Jun 2003 | A1 |
20030149466 | Gerberding | Aug 2003 | A1 |
20040093058 | Cottone et al. | May 2004 | A1 |
20040093062 | Glastra | May 2004 | A1 |
20040146546 | Garrett et al. | Jul 2004 | A1 |
20040225359 | Bojarski et al. | Nov 2004 | A1 |
20040267347 | Cervantes | Dec 2004 | A1 |
20040267354 | Ringeisen | Dec 2004 | A1 |
20050019404 | Sung | Jan 2005 | A1 |
20050129732 | Rubsamen | Jun 2005 | A1 |
20050159805 | Weber et al. | Jul 2005 | A1 |
20050181977 | Hunter et al. | Aug 2005 | A1 |
20050209629 | Kerr et al. | Sep 2005 | A1 |
20050209704 | Maspero et al. | Sep 2005 | A1 |
20050246021 | Ringeisen et al. | Nov 2005 | A1 |
20050261782 | Hoganson | Nov 2005 | A1 |
20050278011 | Pokeham | Dec 2005 | A1 |
20060093646 | Cima et al. | May 2006 | A1 |
20060234061 | Buckel et al. | Oct 2006 | A1 |
20060259122 | Eliseev | Nov 2006 | A1 |
20060263355 | Quan et al. | Nov 2006 | A1 |
20060276906 | Hoag et al. | Dec 2006 | A1 |
20060286137 | Sandhu et al. | Dec 2006 | A1 |
20070038299 | Stone et al. | Feb 2007 | A1 |
20070118211 | Gazza | May 2007 | A1 |
20070141103 | Benedict et al. | Jun 2007 | A1 |
20070142892 | Dave et al. | Jun 2007 | A1 |
20070198040 | Buevich et al. | Aug 2007 | A1 |
20070213801 | Kutryk et al. | Sep 2007 | A1 |
20070255422 | Wei et al. | Nov 2007 | A1 |
20080033548 | Xuenong et al. | Feb 2008 | A1 |
20080057096 | Ibsen | Mar 2008 | A1 |
20080097570 | Thornton et al. | Apr 2008 | A1 |
20080107711 | Shelokov | May 2008 | A1 |
20080112892 | Veenstra et al. | May 2008 | A1 |
20080125847 | Krever et al. | May 2008 | A1 |
20080128315 | Buevich et al. | Jun 2008 | A1 |
20080132922 | Buevich et al. | Jun 2008 | A1 |
20080132992 | Bates et al. | Jun 2008 | A1 |
20080195218 | Jones | Aug 2008 | A1 |
20080241212 | Moses et al. | Oct 2008 | A1 |
20080262630 | Fulmer et al. | Oct 2008 | A1 |
20090012595 | Seliktar et al. | Jan 2009 | A1 |
20090018640 | State | Jan 2009 | A1 |
20090062899 | Dang et al. | Mar 2009 | A1 |
20090069904 | Picha | Mar 2009 | A1 |
20090076449 | Geis et al. | Mar 2009 | A1 |
20090076508 | Weinans et al. | Mar 2009 | A1 |
20090081276 | Aisberg et al. | Mar 2009 | A1 |
20090081278 | DeGraaff et al. | Mar 2009 | A1 |
20090092654 | de Juan, Jr. et al. | Apr 2009 | A1 |
20090118817 | Sandhu et al. | May 2009 | A1 |
20090130167 | Shelton et al. | May 2009 | A1 |
20090143851 | Paul, Jr. | Jun 2009 | A1 |
20090192474 | Wei et al. | Jul 2009 | A1 |
20090192609 | Klabunde et al. | Jul 2009 | A1 |
20090198197 | Bischoff et al. | Aug 2009 | A1 |
20090227948 | Chen et al. | Sep 2009 | A1 |
20090233045 | Slama et al. | Sep 2009 | A1 |
20090234453 | Steinberg | Sep 2009 | A1 |
20090289395 | Chou | Nov 2009 | A1 |
20100004729 | Chew et al. | Jan 2010 | A1 |
20100028390 | Cleary et al. | Feb 2010 | A1 |
20100028402 | Dobrovolskaia et al. | Feb 2010 | A1 |
20100070015 | Schneider et al. | Mar 2010 | A1 |
20100211153 | Cook et al. | Aug 2010 | A1 |
20100222826 | Bojarski et al. | Sep 2010 | A1 |
20100228333 | Drasier et al. | Sep 2010 | A1 |
20100233238 | Tenney et al. | Sep 2010 | A1 |
20100241214 | Holzer et al. | Sep 2010 | A1 |
20100247600 | Xia et al. | Sep 2010 | A1 |
20100249783 | Trieu | Sep 2010 | A1 |
20110144688 | Reiss et al. | Jun 2011 | A1 |
20110244047 | Asari | Oct 2011 | A1 |
20110268781 | Cleek et al. | Nov 2011 | A1 |
20110282362 | Bojarski et al. | Nov 2011 | A1 |
20120010636 | Boey et al. | Jan 2012 | A1 |
20120016388 | Houard et al. | Jan 2012 | A1 |
20120027833 | Zilberman | Feb 2012 | A1 |
20130129807 | Devore | May 2013 | A1 |
20130289621 | Fulmer et al. | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
2004202878 | Dec 2005 | AU |
1206353 | Jan 1999 | CN |
1638743 | Jul 2005 | CN |
101402736 | Apr 2009 | CN |
101437571 | May 2009 | CN |
101912663 | Dec 2010 | CN |
102958557 | Mar 2013 | CN |
3939363 | Jun 1991 | DE |
0013638 | Jul 1980 | EP |
0323800 | Jul 1989 | EP |
0371819 | Jun 1990 | EP |
523926 | Jan 1993 | EP |
0539751 | May 1993 | EP |
0578998 | Jan 1994 | EP |
604697 | Jul 1994 | EP |
737703 | Oct 1996 | EP |
1216717 | Jun 2002 | EP |
1294323 | Mar 2003 | EP |
1482996 | Sep 2003 | EP |
1374817 | Jan 2004 | EP |
1395303 | Mar 2004 | EP |
1463463 | Oct 2004 | EP |
1272131 | Mar 2006 | EP |
1812090 | May 2006 | EP |
1820463 | Aug 2007 | EP |
1913903 | Apr 2008 | EP |
2052700 | Apr 2009 | EP |
2080603 | Jul 2009 | EP |
1181333 | Jun 1959 | FR |
1183333 | Jul 1959 | FR |
7-44936 | Apr 1988 | JP |
02-121652 | May 1990 | JP |
3-85179 | Apr 1991 | JP |
04-221538 | Aug 1992 | JP |
07-313586 | May 1994 | JP |
0744936 | May 1995 | JP |
08-024347 | Jan 1996 | JP |
09-201330 | Jan 1996 | JP |
2003-527193 | Mar 1996 | JP |
08-224297 | Sep 1996 | JP |
09-173364 | Jul 1997 | JP |
2011-216178 | Aug 1999 | JP |
2002-058741 | Feb 2002 | JP |
2003-527193 | Sep 2003 | JP |
2008-531699 | Aug 2008 | JP |
2008-224297 | Sep 2008 | JP |
2008-535700 | Sep 2008 | JP |
2009-240783 | Mar 2009 | JP |
2009-511196 | Mar 2009 | JP |
2013-005984 | Jan 2013 | JP |
2234419 | Aug 2004 | RU |
2300792 | Jun 2007 | RU |
77539 | Oct 2008 | RU |
683207 | Mar 1985 | SU |
WO 1998051240 | Nov 1998 | WO |
WO 1999051171 | Oct 1999 | WO |
WO 1999062416 | Dec 1999 | WO |
WO 2000012147 | Mar 2000 | WO |
WO 2001012107 | Feb 2001 | WO |
WO 200132100 | May 2001 | WO |
WO 200170135 | Sep 2001 | WO |
WO 2001076514 | Oct 2001 | WO |
WO 2001097721 | Dec 2001 | WO |
0251463 | Jul 2002 | WO |
WO 2003022165 | Mar 2003 | WO |
WO 2003059213 | Jul 2003 | WO |
WO 2004010854 | Feb 2004 | WO |
WO 2005009499 | Feb 2005 | WO |
2005049105 | Jun 2005 | WO |
WO 2006023261 | Mar 2006 | WO |
WO 2006050106 | May 2006 | WO |
WO 2007047420 | Apr 2007 | WO |
WO 2007053022 | May 2007 | WO |
WO 2007092417 | Aug 2007 | WO |
WO 2008121816 | Oct 2008 | WO |
WO 2010135440 | Nov 2010 | WO |
2013013172 | Jan 2013 | WO |
Entry |
---|
U.S. Appl. No. 60/726,808, filed Oct. 13, 2005, Kerr et al. |
Second Office Action for Chinese Application No. 200680037881.8 dated Dec. 23, 2011. |
Bailey, “A Meta-Analysis of Extended-Interval Dosing Versus Multiple Daily Dosing of Aminoglycosides”, Clinical Infectious Diseases, May 1997, 24, 786-795. |
Darouiche, “Treatment of Infections Associated with Surgical Implants”, The New England Journal of Medicine, Apr. 2004, 350(14), 1422-1429. |
Lucke et al., “Gentamicin Coating of Metallic Implants Reduces Implant-Related Osteomyelitis in Rats”, Bone, May 2003, 32, 521-531. |
Mingeot-Leclercq et al., “Aminoglycosides: Nephrotoxicity”, Antimicrobial Agents and Chemotherapy, May 1999, 43(5), 1003-1012. |
Pineros-Fernandez et al.,“CAPROSYN, Another Major Advance in Synthetic Monofilament Absorbable Suture”, Journal of Long-Term Effects of Medical Implants, 2004, 14(5), 359-368. |
Trampuz et al., “Diagnosis and Treatment of Infections Associated with Fracture-Fixation Devices”, Injury, May 2006, 37, Suppl 2, S59-S66. |
Final Office Action for Japanese Patent Application No. 2008-535700 dated May 24, 2012. |
Office Action dated Oct. 18, 2011 for Japanese Patent Application No. 2008-535700. |
International Search Report for Application No. PCT/US2006/40038, dated Sep. 25, 2007, 5 pages. |
Written Opinion of the International Searching Authority for Application No. PCT/US2006/40038, dated Sep. 25, 2007, 6 pages. |
European Patent Application o. 04750971.6, Communication dated Jun. 12, 2008, 5 pages. |
International Application Serial No. PCT/US06/40038, International Preliminary Report on Patentability dated Sep. 3, 2008, 7 pages. |
Kaneko et al., “Synthesis and Swelling—deswelling kinetics of poly(N-isopropylacrylamide) hydrogels grafted with LCST modulated polymers”, Journal of Biomaterials Science, Polymer Edition, 10(11), 1079-1091, 1999. |
Stile et al., “Synthesis and Characterization of Injectable Poly(N-isopropylacrylamide)-Based Hydrogels That Support Tissue Formation in Vitro”, Macromolecules, 32, (1999), 7370-7379. |
Japanese Application No. 2002-506661, Notice of the Reason for the Rejection dated Feb. 27, 2008, (w/ English Translation) 7 pages. |
Japanese Application No. 2002-506661, Official Notice of Reason for the Final Rejection dated Jul. 11, 2008, (w/ English Translation), 4 pages. |
Aviv et al., “Gentamicin-Loaded Bioresorbable Films for Prevention of Bacterial Infections Associated with Orthopedic Implants”, Journal of Biomedical Materials Research Part 1, Mar. 2007, 10 pages. |
Gosau et al., “Release of Gentamicin Sulphate From Biodegradable PLGA-Implants Produced by Hot Melt Extrusion”, Pharmazie, 2010, 6 pages. |
International Patent Application No. PCT/US2012/071708: International Search Report and Written Opinion dated Jun. 5, 2013, 22 pages. |
Machine Translation of DE 3939363 A1, Jun. 1991, 9 pages. |
Von Plocki et al., “Biodegradable Sleeves for Metal Implants to Prevent Implant-Associated Infection: An Experimental In Vivo Study in Sheep”, Vet Surg., Apr. 2012, 41(3), 410-421, Epub Jan. 12, 2012. |
Zhang et al., Biodegradable Controlled Antibiotic Release Devices for Osteomyelitis: Optimization of Release Properties, Journal of Pharmacy and Pharmacology, Sep. 1994, vol. 46, Issue 9. |
Pandey et al., Characterization of In-vitro Release of Gentamicin from Biodegradable Polymer Thin Films Microstructure-Function Relationship by Confocal Raman Microscopy, Apr. 2015, Journal of Biomedical Materials Research. |
Fredenberg et al., The mechanisms of drug release in polyl(lactic-co-glycolic acid)-based delivery systems—A review, Aug. 2011, International Journal of Pharmaceutics, vol. 415, Issues 1-2, pp. 34-52. |
Huang et al., On the Importance and mechanisms of burst release in matrix-controlled drug delivery systems, Jun. 2001, Journal of Controlled Release, vol. 73, Issues 2-3, pp. 121-136. |
Schmidt et al., Antibiotic in vivo/in vitro release, histocompatibility and biodegradation of gentamicin implants based on lactic acid polymers and copolymers, Nov. 1995, Journal of Controlled Release, vol. 37, Issues 1-2, pp. 83-84. |
Dorta et al., Potential applications of PLGA film-implants in modulating in vitro drugs release, Nov. 2002, International Journal of Pharmaceutics, vol. 248, Issues 1-2, pp. 149-156. |
Gupta et al., Cefoperazone sodium impregnated polycaprolactone composite implant for osteomyelitis, Indian J. Pharm Sci, Jul.-Aug. 2009, 71(4) 377-381. |
Louis et al., “Resorbable Mesh as a Containment System in Reconstruction of the Atrophic Mandible Fracture”, J Oral Maxillofac Surg, 62, pp. 719-723, Jun. 2004. |
Number | Date | Country | |
---|---|---|---|
20160287527 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
61580679 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13727682 | Dec 2012 | US |
Child | 15177687 | US |