This application claims priority to Taiwan Application Serial Number 108116285, filed May 10, 2019, which is herein incorporated by reference in its entirety.
The embodiments of the present disclosure relate to a filter apparatus, and more particularly, to a filter apparatus with a speed-controllable spiral flow field.
Filter materials are commonly used in the industry to filter liquids to obtain desired filtrates, in which the filter materials have different porosities to filter particles of different sizes.
A traditional filtration method is to let liquid pass through a filter material, and use inner and outer filter cores with different porosities to grasp large-sized particles and let desired small-sized particles or clean liquid pass, to achieve a filtration effect. A direction of a feed flow and a direction of a filtrate flow are both approximately a radial direction of the filter material, such that a portion of large-sized particles will be caught in the outer layer of the filter material, but another portion of large-sized particles will flow towards the inner layer of the filter material due to a feed pressure. Thus, it is easy to push the large-sized particles into an interior of the filter material due to the pressure difference caused by clogging of small pores in the inner layer of the filter material, and then the large-sized particles flow out together with the clean filtrate or the filtrate containing the desired small-sized particles, resulting in a decrease in a life cycle of the filter material or inefficient filtration.
Therefore, there is a need to provide a filter apparatus that can increase filtration efficiency and extend the life cycle of the filter material.
An object of the disclosure is to provide a filter apparatus that can increase filtration efficiency and extend a life cycle of the filter material.
According to the object of the present disclosure, a filter apparatus is provided, which includes a filter unit and a conveying unit. The filter unit is configured to filter a liquid to-be-filtered, and the liquid to-be-filtered enters the filter unit in a first tangent-line direction of the filter unit. The conveying unit extracts a liquid to-be-conveyed from a periphery of the filter unit to output a conveyed liquid, and the conveyed liquid enters the filter unit in a second tangent-line direction of the filter unit.
In some embodiments, the first tangent-line direction and/or the second tangent-line direction include a direction deflected from a tangential direction corresponding to the first tangent-line direction or the second tangent-line direction with an angular range, and the angular range is ±20 degrees.
In some embodiments, the liquid to-be-filtered enters the filter unit further in a third tangent-line direction.
In some embodiments, the conveyed liquid enters the filter unit further in a fourth tangent-line direction.
In some embodiments, the liquid to-be-filtered enters the filter unit via a first position of the filter unit, and the conveyed liquid enters the filter unit via a second position of the filter unit, in which the first position is disposed diagonally with the second position.
In some embodiments, the conveying unit controls a flow rate of the conveyed liquid based on a flow rate of the liquid to-be-conveyed.
In some embodiments, the conveying unit controls the flow rate of the conveyed liquid based on a pressure of the liquid to-be-conveyed.
In some embodiments, the conveying unit controls the flow rate of the conveyed liquid based on particle parameter(s) of the liquid to-be-conveyed.
In some embodiments, a flow rate of the liquid to-be-filtered entering the filter unit match with the flow rate of the conveyed liquid.
In some embodiments, the filter apparatus further includes a casing, the filter unit is disposed in the casing, the casing includes an input portion and a return portion, the liquid to-be-filtered enters the filter unit through the input portion, and the conveyed liquid enters the filter unit through the return portion.
In order to make the above features and advantages of the present disclosure more apparent, the following embodiments are described in detail with reference to the accompanying drawings.
Aspects of the disclosure are better understood from the following detailed description when read with the accompanying figures. To be noted, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features can be arbitrarily increased or decreased for clarity of discussion.
The embodiments of the present disclosure are discussed in detail below. However, it will be appreciated that the embodiments provide many applicable concepts that can be implemented in various specific contents. The embodiments discussed and disclosed are for illustrative purposes only and are not intended to limit the scope of the present disclosure. In addition, the terms “first”, “second”, and the like, as used herein, are not intended to mean a sequence or order, and are merely used to distinguish elements or operations described in the same technical terms.
Referring to
Referring to
How the liquid to-be-filtered enters the filter unit 11 is not limited herein, and the liquid to-be-filtered may be, for example, guided by a casing or a hose, or pressure delivered by a pressure motor, and the like. In the embodiment, the liquid to-be-filtered enters the filter unit 11 in the first tangent-line direction D1. The definition of the first tangent-line direction D1 will be described below. The liquid to-be-filtered enters the filter unit 11 via a first position P1 of the filter unit 11, and the first tangent-line direction D1 is related to the first position P1 of the filter unit 11. In other words, after the first position P1 is selected, the first tangent-line direction D1 is determined to be a tangent-line direction of the first position P1. Herein, according to the industry practice, the first position P1 does not refer to one single point, but refers to a range, and for example, the range is defined as that the range has a width or length smaller than or equal to ½ of a radius of the filter unit 11.
In addition, due to the above definition of the first position P1, manufacturing errors or other reasons, the first tangent-line direction D1 of the embodiment is not specifically directed to the tangential direction of the first position P1, but substantially may have some margin in three-axis directions (X-axis, Y-axis, and Z-axis). The tangential direction herein is, for example, a direction perpendicular to a line connecting a center point of the first position P1 to a center of the filter unit 11. For example, in an embodiment of the present disclosure, the first tangent-line direction D1 substantially includes a direction deflected from the tangential direction corresponding to the first tangent-line direction with an angular range, and the angular range may be ±20 degrees (as shown in
In addition, as shown in
Referring to
In addition, as shown in
Furthermore, as shown in
The conveying unit 12 of the embodiment can control a flow rate of the conveyed liquid as needed or applied, for example, based on the flow rate, pressure or particle parameter of the liquid to-be-conveyed. Some embodied aspects are exemplified for illustration.
As shown in
As shown in
As shown in
Additionally, in some applications, the conveying unit 12 may be configured to match the flow rate of the conveyed liquid and the flow rate of the liquid to-be-filtered entering the filter unit. For example, in one mode, when the flow rate of the liquid to-be-filtered entering the filter unit is too slow, the conveying unit 12 can increase the flow rate of the conveyed liquid; and in another mode, when the flow rate of the liquid to-be-filtered entering the filter unit increases, the conveying unit 12 can correspondingly increase the flow rate of the conveyed liquid. Moreover, in some applications, the conveying unit 12 may provide a cleaning mode. For example, when the detected flow rate of the liquid to-be-filtered or the liquid to-be-conveyed is too slow, this represents the filter unit 11 has a blockage situation, and the conveying unit 12 can thus increase the flow rate of the conveyed liquid for a period of time to form a high-speed spiral flow field to clean the filter unit 11 and eliminate a back pressure condition. In addition to the above situations, the high-speed spiral flow field may be applied to other situations while needed. Furthermore, in a mode, when the flow rate of the liquid to-be-conveyed is decreased, the flow rate of the liquid to-be-filtered entering the filter unit 11 and the flow rate of the conveyed liquid can be simultaneously increased.
As shown in
Referring to
Referring to FIG.6 and
As shown in
In the embodiment, as shown in
The above embodiments are merely illustrative and are not intended to limit the present disclosure. In other embodiments, the casing 13 may have various variations, for example, the input portion 132 and the return portions 133 are not protruded from the casing 13 but formed by the openings of the casing portion 131 and delivery ducts. Alternatively, in another embodiment, the conveying unit 12 is disposed outside the casing 13 and connected to the casing 13 by one or more ducts, such that a size of the casing 13 is reduced.
In summary, the present disclosure provides a filter apparatus that enters the liquid to-be-filtered to the filter unit in the first tangent-line direction of the filter unit, and enters the conveyed liquid outputted by the conveying unit to the filter unit in the second tangent-line direction of the filter unit, thereby forming a spiral flow field. This spiral flow field may be controlled by the conveying unit to reach a high speed spiral flow field. Therefore, the present disclosure can greatly reduce probability that large size particles block the inner-layer filter core, thereby enhancing a filtration effect and extending a life cycle of the filter unit.
In addition, the flow rate of the conveyed liquid is not affected by porosity of the filter unit, and is controlled by the conveying unit, such that a high-speed and effective spiral flow field is provided, thereby expanding a scope of application and enhancing product competitiveness. For example, the filter apparatus of the present disclosure may be applied to a large size filter unit, a filter unit with a multi-layered filter core, or a specific operation mode that may be performed by a high-speed spiral flow field.
The features of several embodiments are outlined above, so those skilled in the art can understand the aspects of the present disclosure. Those skilled in the art will appreciate that the present disclosure can be readily utilized as a basis for designing or modifying other processes and structures, thereby achieving the same objectives and/or achieving the same advantages as the embodiments described herein. Those skilled in the art should also understand that these equivalent constructions do not depart from the spirit and scope of the present disclosure, and they can make various changes, substitutions and alterations without departing from the spirit and scope of this disclosure.
Number | Date | Country | Kind |
---|---|---|---|
108116285 | May 2019 | TW | national |