The present invention relates generally to a filter assembly, and more particularly to a filter assembly including a support member comprising composite material.
There are certain types of machines that require a clean airflow in order to operate properly and efficiently. One example of this type of machine is a gas turbine. During operation of a gas turbine, a compressor draws in air from the surrounding environment, compresses the air, and provides it to a combustion chamber. In the combustion chamber, the air is mixed with a supplied fuel that is ignited. This creates high temperature combustion gases that drive the gas turbine.
In order to increase efficiency, the air from the surrounding environment must be filtered to remove unwanted particles so that clean, filtered air is provided to the remaining portions of the gas turbine system. A plenum wall separates the clean, filtered air from the dirty, unfiltered air. Inlets are provided on the plenum wall and filter elements are mounted to surround the inlets. The air flows through the filter elements such that the unwanted particles are removed from the air.
A first aspect of the invention provides a filter assembly comprising: at least one airflow inlet; at least one tubular filter element adjacent to the at least one airflow inlet; and a support member attached to the at least one tubular filter element at a first portion and a second portion of the support member, the at least one tubular filter element circumferentially surrounding the support member, wherein the support member comprises a composite material.
A second aspect of the invention provides a system comprising: a gas turbine; and a filter assembly operably connected to the gas turbine, the filter assembly comprising: at least one airflow inlet; at least one tubular filter element adjacent to the at least one airflow inlet; and a support member attached to the at least one tubular filter element at a first portion and a second portion of the support member, the at least one tubular filter element circumferentially surrounding the support member, wherein the support member comprises a composite material.
A third aspect of the invention provides a system comprising: a gas turbine; a heat exchanger operably connected to the gas turbine; a steam turbine operably connected to the heat exchanger; and a filter assembly operably connected to the gas turbine, the filter assembly comprising: at least one airflow inlet; at least one tubular filter element adjacent to the at least one airflow inlet; and a support member attached to the at least one tubular filter element at a first portion and a second portion of the support member, the at least one tubular filter element circumferentially surrounding the support member, wherein the support member comprises a composite material.
These and other features of this invention will be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings that depict various embodiments of the invention, in which:
It is noted that the drawings of the invention are not to scale. The drawings are intended to depict only typical aspects of the invention, and therefore should not be considered as limiting the scope of the invention. In the drawings, like numbering represents like elements between the drawings.
In a filter assembly, support structures are often provided at the airflow inlet to support and guide a filter element to ensure an air-tight seal along the filter element and the plenum wall interface. This is to guarantee that dirty, unfiltered air does not bypass the filter element and contaminate the clean air. Often, this support structure takes shape as a tripod. However, conventional support structures, such as tripods, are often made of steel, which will quickly corrode over time, especially in applications where moist or humid salt-laden air is being filtered.
As indicated above, aspects of the invention provide for a filter assembly for filtering particles for a machine, such as machine 300 (
Turning to the figures,
According to an embodiment of the invention, support member 120 may comprise a composite material, which may include at least one polymer and at least one reinforcing agent. The composite material for support member 120 may comprise approximately 60% to approximately 95% polymer and approximately 5% to approximately 40% reinforcing agent. The polymer material may include any now known or later developed polymer, such as, but not limited to polypropylene, polyethylene, nylon, polyester, polyurethane, polyamides, polystyrene, polycarbonate, epoxy, or a blend of two of more of these polymers. The at least one reinforcing agent may include any now known or later developed reinforcing agent, such as, but not limited to glass fibers, carbon fibers, natural fibers, and fillers, such as calcium carbonate, talc or the like, or nanomaterials. Given that support member 120 may comprise a composite material, instead of conventional steel, the cost of support member 120 may be reduced, as well as the need for a replacement since the composite material will not corrode as quickly as steel. The weight of support member 120 may also be reduced, while increasing the lifetime of support member 120.
Composite material for support member 120 may be configured to meet all structural requirements for support member 120 of filter assembly 100. For example, composite material of support member 120 may withstand the operating temperature range of approximately −25 degrees Fahrenheit (F) to approximately 125 degrees F.
Composite material of support member 120 may also withstand the weight of dust-laden filter elements that is greater than approximately 100 pound-force (lbf). Further, since composite material of support member 120 may not corrode as quickly as steel, support member 120 will meet an expected life of at least approximately 30 years. This is an increase in lifespan as compared to a conventional steel support member, which most likely will corrode prior to 30 years, especially if placed in a location with moist or humid salt-laden air.
Referring now to
Support member 120, 220 may be formed by any now known or later developed method, including, but not limited to, injection molding, thermoforming, extrusion, reaction injection molding (RIM), structural reaction injection molding
(SRIM), or sheet molded compounds (SMC).
Turning now to
Turning to
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof
This written description uses examples to disclose the various embodiments of the present invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the various embodiments of the present invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.