The present disclosure relates to fluid filters and particularly filters of the type utilized for filtering waste water from a closed system such as a fire suppression sprinkler system or fire hydrants. Such systems are required to be drained and/or flushed periodically to remove sediments and rust to insure proper operation of the system when the need arises.
Under current environmental regulations, wastewater drained from the aforesaid type fluid systems is required to be filtered of contaminants prior to discharge in drainage systems, for example a storm drain. Therefore, it has been required to provide a filtration unit attachable to the source of fluid, such as wastewater, to be drained at the location of connection to the system. Thus, it has been desired to provide a suitable filtration unit capable of being transported to the site. It has further been desired to have a filtration unit in which the filtering media can readily be replaced upon the media becoming saturated with contaminants and unable to provide the desired filtering action.
Heretofore, filtration units of the type intended for portable use with replacement filtering elements have been somewhat complex and difficult to replenish with filtering media capable of providing the desired high degree of filtration. Furthermore, existing wastewater filtration units intended for transporting to a site or for installation in a stationary closed system have been of significant bulk or volume and weight as to render the usage thereof rather cumbersome and, in some applications, requiring more than one operator.
Thus, it has been desired to provide a way or means of readily and easily replacing the filter media in a closed fluid filtration system to provide adequate filtering thereby enabling discharge of the fluid into a storm drain or other open body of liquid.
The filter cartridge of the present disclosure employs a tubular sleeve formed of monofilament polyethylene woven mesh filled with particulate or granular polymer which may be in shredded form with the opposite ends of the sleeve closed and fused to retain the particulate or granular material therein. The cartridge is then in a form to be inserted in a housing having a fluid inlet near a proximal end of the cartridge and a fluid outlet proximate the distal end of the cartridge.
The particulate or granular polymer material may be coated with an organosilane antimicrobial agent. In one disclosed version, the monofilament woven mesh sleeve is woven of monofilament of about 0.254 mm thickness with a tensile strength per ASTM D-2265 of about 7.5 pounds; and, the sleeve may have a tubular wall thickness of about 0.635 mm. The monofilament may have a specific gravity of about 1.38. The particulate or granular polymer material may have a specific gravity in the range of about 0.27 to 0.40.
One exemplary version of the disclosed method includes cutting a monofilament polyethylene woven mesh sleeve having a tubular configuration to a desired length, closing and banding one end of the sleeve and fusing the banded end. The sleeve in the disclosed exemplary version has a nominal outside diameter (O.D.) of about 78 mm and is cut to a length of about 610 mm. The pocket formed by the closed end of the sleeve is then filled with the particulate or granular polymer material; and, the remaining open end is gathered, closed, fused and then folded over and banded to form a loop in the end thereof to facilitate removal of the cartridge thus formed from a filtration system housing.
Referring to
In the present practice, it has been found satisfactory to utilize monofilament polyethylene terephthalate material for the woven mesh sleeve having a monofilament thickness of about 0.254 mm with a specific gravity of about 1.38 and a tensile strength per ASTM D-2265 of about 7.5 pounds. Referring to
Referring to
The particulate or granular polymer material is obtainable from AbTech Industries Inc., 4110 North Scottsdale Road, Suite 235, Scottsdale, Ariz. 85251, and is sold under the trade name SMART SPONGE® PLUS under Manufacturer's identification ACX-10-N-PLUS. In the present practice, it has been found satisfactory to coat the particulate polymer material with an organosilane antimicrobial agent chemically and permanently bound to the polymer surface for reducing coliform bacteria. However, it will be understood that other suitable particulate or granular polymer material may be employed in the cartridge of the present disclosure if desired.
Referring to
Referring to
Subsequently, the end 26 is folded over upon itself to form a loop 20 and the end is banded by clamp band 28 as shown in
The present disclosure describes a filter cartridge formed of monofilament woven polyethylene mesh sleeve with the ends closed and banded to contain within the sleeve particulate or granular polymer material which may be coated with an organosilane antimicrobial agent. The cartridge is adapted for insertion in a filter housing having an inlet near one end of the tubular cartridge sleeve and an outlet proximate the opposite end of the sleeve cartridge. The method includes closing, banding and fusing one end of a length of tubular woven mesh sleeve, filling the pocket formed thereby with particulate polymer material and closing, fusing and folding over the opposite end and banding the end to form a loop for facilitating removal of the cartridge from a filter housing. The cartridge is configured to closely fit the internal cavity of the chosen housing such that flow from the inlet into the cavity does not bypass the cartridge to the outlet.
The exemplary embodiment has been described with reference to the exemplary disclosed embodiment. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the exemplary embodiment be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
This application is related to co-pending application of Mark Anthony Quintel, Derek Ronald Thelen, Christopher Scott Rau and Richard Jacobs, application Ser. No. ______, filed ______, entitled “FLUID FILTRATION SYSTEM AND METHOD OF MAKING SAME,” assigned to the assignee of the present application and filed concurrently herewith.