The present invention contains subject matter related to Japanese Patent Application JP 2006-306430 filed in the Japan Patent Office on Nov. 13, 2006, the entire contents of which being incorporated herein by reference.
1. Field of the Invention
This invention relates to a filter circuit and a noise reduction signal production method for a noise canceling system which are applied, for example, to a headphone for allowing a user to enjoy reproduced music or the like, a headset for reducing noise and a like apparatus and a noise canceling system which uses such a filter circuit and a noise reduction signal production method as just mentioned.
2. Description of the Related Art
An active noise reduction system incorporated in a headphone is available in the related art. The noise reduction system is called also noise canceling system. Therefore, such a noise reduction system as mentioned above is hereinafter referred to as noise canceling system. Noise canceling systems which are placed in practical use at present are all implemented in the form of an analog circuit and are classified into two types including the feedback type and the feedforward type.
A noise reduction apparatus is disclosed, for example, in Japanese Patent Laid-Open No. Hei 3-214892 (hereinafter referred to as Patent Document 1). In the noise reduction apparatus of Patent Document 1, a microphone unit is provided in an acoustic tube to be attached to an ear of a user. Internal noise of the acoustic tube collected by the microphone unit is inverted in phase and emitted from an earphone set provided in the proximity of the microphone unit thereby to reduce external noise.
A noise reduction headphone is disclosed in Japanese Patent Laid-Open No. Hei 3-96199 (hereinafter referred to as Patent Document 2). In the noise reduction headphone of Patent Document 2, when it is attached to the head of a user, a second microphone is positioned between the headphone and the auditory meatus. An output of the second microphone is used to make the transmission characteristic from a first microphone, which is provided in the proximity of the ear when the headphone is attached to the head of the user and collects external sound, to the headphone same as the transmission characteristic of a path along which the external noise reaches the meatus. The noise reduction headphone thereby reduces external noise irrespective of in what manner the headphone is attached to the head of the user.
Where it is intended to form noise canceling systems of the feedback type and the feedforward type, which are composed of analog circuits in the related art, from digital circuits, if it is tried to use a sigma-delta (Σ·Δ) type analog/digital converter (hereinafter referred to simply as ADC) or a digital/analog converter (hereinafter referred to simply as DAC), then they give rise to a problem that they exhibit significant digital delay and fails in achievement of sufficient noise reduction. Although an ADC or a DAC of the sequential conversion type which can perform high speed conversion is available even in a current situation, they are actually designed for military or business applications and are expensive. Therefore, it is difficult to adopt them in a noise reduction system to be incorporated in consumer appliances.
However, “digitalization formation” of a noise canceling system or active noise reduction system for a headphone or a like apparatus has a merit that it enhances the performance in use as viewed from the user in that a system which allows automatic selection among a plurality of modes or manual selection among such modes by the user can be configured. In addition, also as regards the reproduction quality, a high sound quality performance can be anticipated by adopting digital equalization by which fine control can be achieved.
Therefore, it is demanded to provide a filter circuit, a noise reduction signal production method and a noise canceling system by which the influence of digital delay, which is a principal cause of failure in achievement of sufficient noise reduction by existing digital processing, is suppressed to achieve reduction of noise appropriately while such merits by digitalized formation as described are maintained.
According to an embodiment of the present invention, there is provided a filter circuit for producing a noise reduction signal for reducing a noise signal collected by a microphone, including a digital section including an analog/digital conversion section configured to convert the noise signal into a digital noise signal, a digital filter section configured to produce a digital noise reduction signal based on the digital noise signal, and a digital/analog conversion section configured to convert the digital noise reduction signal into an analog noise reduction signal, an analog path connected in parallel to the digital section and configured to output the noise signal as it is or after processed by an analog filter, and a synthesis section configured to synthesize the analog noise reduction signal outputted from the digital/analog conversion section of the digital section and the analog signal outputted from the analog path to produce a noise reduction signal to be used for noise reduction.
The filter circuit is used with a noise canceling system. In the circuit, the analog path configured to output the noise signal as it is or after processed by an analog filter is connected in parallel to the digital section which includes the analog/digital conversion section, digital filter section and digital/analog conversion section. The analog noise reduction signal produced by the digital section and the analog signal outputted from the analog path are synthesized by the synthesis section to produce a noise reduction signal to be used for noise reduction.
Consequently, the noise reduction signal formed by the digital section and the analog signal from the analog path, that is, the noise reduction signal formed by the analog path, compensate for each other in terms of the frequency band in which noise reduction is possible and the noise reduction level. Consequently, the frequency band and the noise reproduction level can be assured sufficiently. Further, merits by digitalized formation by provision of the digital section, that is, setting or selection of a plurality of modes and implementation of a digital equalization function and so forth, can be anticipated, and the use performance as viewed from the user can be enhanced.
According to another embodiment of the present invention, there is provided a noise canceling system of the feedback type, including a microphone disposed inside a housing to be attached to an ear portion of a user and configured to collect a noise signal leaking into the inside of the housing, a filter circuit configured to form a noise reduction signal for reducing noise from the noise signal collected by the microphone, an amplification section configured to amplify the noise reduction signal formed by the filter circuit, and a driver configured to emit sound into the housing based on the noise reduction signal from the amplification section, the filter circuit including a digital section which in turn includes an analog/digital conversion section configured to receive supply of the noise signal collected by the microphone and convert the noise signal into a digital signal, a digital filter section configured to receive supply of the digital noise signal from the analog/digital conversion section and form a noise reduction signal from the digital noise signal, and a digital/analog conversion section configured to receive supply of the noise reduction signal from the digital filter section and convert the noise reduction signal into an analog signal, the filter circuit further including an analog path connected in parallel to the digital section and configured to output the noise signal collected by the microphone as it is or after processed by an analog filter, and a synthesis section configured to synthesize the noise reduction signal in the form of an analog signal outputted from the digital/analog conversion section of the digital section and the analog signal from the analog path to produce a noise reduction signal to be used for noise reduction.
In the noise canceling system, a noise reproduction signal is produced from a noise signal collected by the microphone provided inside the housing to be attached to the ear portion of a user. The noise canceling system includes the digital section and the analog path connected in parallel to the filter circuit which produces the noise reduction signal.
Consequently, the noise reduction signal formed by the digital section and the analog signal from the analog path, that is, the noise reduction signal formed by the analog path, compensate for each other in terms of the frequency band in which noise reduction is possible and the noise reduction level. Consequently, the frequency band and the noise reproduction level can be assured sufficiently. Also merits by digitalized formation by provision of the digital section can be enjoyed.
The noise canceling system may further include a sound quality adjustment section configured to receive supply of a sound signal of an object of reproduction and perform sound quality adjustment based on the sound signal, a reproduction sound amplification section configured to receive supply of the sound signal having the adjusted sound quality from the sound quality adjustment section and amplify the received sound signal, and a reproduction driver configured to receive supply of the sound signal amplified by the reproduction sound amplification section and emit sound into the inside of the housing in response to the sound signal.
In the noise canceling system, the noise canceling system of the feedback type which includes the filter circuit which in turn includes the digital section and the analog path connected in parallel and the system which includes the sound quality adjustment section, reproduction sound amplification section and reproduction driver which process input sound from the outside can function simultaneously.
With the noise canceling system, while noise is reduced effectively, a sound signal from the outside can be reproduced so as to be enjoyed by the user. In this instance, merits provided by digitalized formation of the filter circuit as well as merits of enhancement of the sound quality by the function of the sound quality adjustment section can be enjoyed.
Or, the noise canceling system may further include a noise canceling system section of the feedforward type which in turn includes a second microphone provided outside the housing to be attached to the ear portion of the user and configured to collect a noise signal from a noise source, a second filter circuit configured to form a second noise reduction signal for reducing noise from the noise signal collected by the second microphone, a second amplification section configured to amplify the second noise reduction signal formed by the second filter circuit, and a second driver configured to emit sound into the housing based on the second noise reduction signal from the second amplification section.
The noise canceling system is implemented as a noise canceling system which can simultaneously use both of a noise canceling system of the feedback type wherein the digital second and the analog path are connected in parallel and a noise canceling system of the feedforward type. Consequently, reduction of noise can be achieved with a higher degree of quality. Further, with the noise canceling system of the feedback type, also merits provided by digitalized formation of the filter circuit can be enjoyed.
In this instance, the noise canceling system may further include an input sound reproduction processing section including a sound quality adjustment section configured to receive supply of a sound signal of an object of reproduction and perform sound quality adjustment based on the sound signal, a reproduction sound amplification section configured to receive supply of the sound signal having the adjusted sound quality from the sound quality adjustment section and amplify the received sound signal, and a reproduction driver configured to receive supply of the sound signal amplified by the reproduction sound amplification section and emit sound into the inside of the housing in response to the sound signal, and a changeover section configured to selectively render the noise canceling system section of the feedforward type and the input sound reproduction processing section operative.
In the noise canceling system, it can be selectively set whether or not the noise canceling system of the feedforward type should be rendered operative or the input sound reproduction processing section for processing input sound should be rendered operative together with the noise canceling system of the feedback type which has the filter circuit which includes the digital section and the analog path connected in parallel.
With the noise canceling system, if the noise canceling system of the feedforward type is selectively rendered operative, then noise reduction of a high degree of quality can be performed thereby to form a no-sound state of a high degree of quality. On the other hand, if the input sound reproduction processing section is selectively rendered operative, then sound of an inputted reproduction object can be reproduced so as to be enjoyed by the user while noise is suppressed by the noise canceling system of the feedback type. Further, whichever one of the noise canceling system of the feedforward type and the input sound reproduction processing section is rendered operative, merits provided by digitalized formation of the filter circuit of the noise canceling system of the feedback type can be enjoyed.
In summary, with the filter circuit and the noise canceling system, the noise reduction signal formed by the digital section and the analog signal from the analog path, that is, the noise reduction signal formed by the analog path, compensate for each other in terms of the frequency band in which noise reduction is possible and the noise reduction level. Consequently, the frequency band and the noise reproduction level can be assured sufficiently.
Further, merits by digitalized formation by provision of the digital section, that is, setting or selection of a plurality of modes and implementation of a digital equalization function and so forth, can be anticipated, and the use performance as viewed from the user can be enhanced.
The above and other features and advantages of the present invention will become apparent from the following description and the appended claims, taken in conjunction with the accompanying drawings in which like parts or elements denoted by like reference symbols.
A system which actively reduces external noise, that is, a noise canceling system, begins to be popularized in headphones and earphones. Almost all noise canceling systems placed on the market are formed from analog circuits and roughly classified into the feedback type and the feedforward type in terms of the noise canceling technique.
Before a preferred embodiment of the present invention is described, examples of a configuration and operation principle of a noise canceling system of the feedback type and examples of a configuration and operation principle of a noise canceling system of the feedforward type are described with reference to
First, a noise canceling system of the feedback type is described.
Where the feedback system is applied, generally a microphone 111 is positioned inside a headphone housing (housing section) HP as seen in
The noise canceling system of the feedback type is described more particularly with reference to
The characters A, D, M and −β described in blocks shown in
Referring to
At this time, the sound pressure P coming to the ear of the user in
Generally, since the absolute value of the product of the transfer functions in a noise canceling system of the feedback type is higher than 1 (1<<ADHMβ), the stability of the system according to the expression (2) of
An “open loop” produced when a loop relating to the noise N is cut at one place (−ADHMβ) in
Where this open loop is selected as an object, from the stability decision of Nyquist, two conditions of (1) that, when the phase passes a point of 0 degree, the gain must be lower than 0 dB (0 decibel) and (2) that, when the gain is higher than 0 dB, the phase must not include a point of 0 degree.
If any of the conditions (1) and (2) above is not satisfied, then positive feedback is applied to the loop, resulting in oscillation (howling) of the loop. In
In particular, the axis of abscissa in
Now, reproduction of necessary sound from the headphone in which the noise securing system of the feedback type shown in
If attention is paid to the input sound S in the expression (1) in
If it is assumed that the position of the microphone 111 is very proximate to the position of the ear, then since the character H represents the transfer function from the driver 15 to the microphone (ear) 111 and the characters A and D represent the transfer functions of the power amplifier 14 and the driver 15, respectively, it can be recognized that a characteristic similar to that of an ordinary headphone which does not have the noise reduction function is obtained. It is to be noted that the transfer function E of the equalizer 16 in this instance is substantially equivalent to an open loop characteristic as viewed on the frequency axis.
Now, a noise canceling system of the feedforward type is described.
In the noise canceling system of the feedforward type, a microphone 211 is basically disposed outside a headphone HP as seen in
The noise canceling system of the feedforward type is described more particularly with reference to
Also in the noise canceling system of the feedforward type shown in
Further, in
Then, if the transfer function of the FF filter circuit 22 which makes the core of the noise canceling system of the feedforward type is represented by −α, then the sound pressure or output sound P coming to the ear of the user in
Here, if ideal conditions are considered, then the transfer function F between the noise source and the cancel point can be presented by an expression (2) in
Actually, however, it is difficult to obtain a configuration of a complete filter having such transfer functions that the expression (2) illustrated in
It is to be noted that, different from that in the noise canceling system of the feedback type, the cancel point CP in the noise canceling system of the feedforward type shown in
From those, the noise canceling systems of the feedback type and the feedforward type generally have different characteristics in that, while the noise canceling system of the feedforward type is low in possibility of oscillation and hence is high in stability, it is difficult to obtain a sufficient attenuation amount whereas the noise canceling system of the feedforward type requires attention to stability of the system while a great attenuation amount can be expected.
A noise reduction headphone which uses an adaptive signal processing technique is proposed separately. In the case of a noise reduction headphone which uses the adaptive signal processing technique, a microphone is provided on both inside and outside a headphone housing. The inside microphone is used to analyze an error signal for cancellation with a filter processing component and produce and update a new adaptive filter. However, since noise outside of the headphone housing is basically processed by a digital filter and reproduced, the noise reduction headphone generally has a form of a feedforward system.
While noise canceling systems formed from analog circuits of the feedback type and the feedforward type are implemented as described above, it is demanded to form such noise canceling systems from digital circuits. Also a technique of performing noise cancellation using an adaptive signal process which exhibits no delay even where the FB filter circuit 12 or the FF filter circuit 22 is formed from a digital filter has been proposed.
However, from the problem of the stability of the system and from such problems that an increased process scale is needed, that the object of reduction is directed only to periodic noise waveforms and that a high effect cannot be achieved while a high cost is needed, it is a situation at present that a technique of forming a digital filter using an adaptive signal process to achieve noise cancellation has not been commercialized as yet.
In the following, the necessity for digitalized formation of a noise canceling system and problems involved in digitalized formation in which an adaptive signal process is not used are described particularly. Further, the invention which solves the problems is described particularly.
It is to be noted that, in the following description, for simplified description, principally an application to a noise canceling system of the feedback type which exhibits a high noise attenuation effect is described as an example. However, also with regard to a noise canceling system of the feedforward type, the necessity for and problems in digitalization exist, and the present invention can solve the problems similarly.
First, the necessity for digitalized formation of a noise canceling system is described. If the FB filter circuit 12 which is a transfer function (−β) section in the noise canceling system of the feedback type can be formed in digitalized formation, then such merits as described in (1) to (4) below can be enjoyed.
In particular, (1) a system which allows automatic selection or manual operation by a user of a plurality of modes and the use performance as viewed from the user is raised. (2) As a digital filter which allows fine control is used, control quality of a high degree of accuracy which exhibits a reduced dispersion can be achieved, resulting in increase of the noise reduction amount and the reduction frequency band.
Further, (3) since the filter shape can be changed by modification to software for an arithmetic operation processing device (digital signal processor (DSP)/central processing unit (CPU)) without changing the number of parts, alteration involved in change of the system design or device characteristics is facilitated. (4) Since the same ADC/DAC and DSP/CPU are used also for an external input such as music reproduction or telephone conversation, high sound quality reproduction can be anticipated by applying digital equalization of a high degree of accuracy also for such external input signals.
If the FB filter circuit 12 can be formed in digitalized formation in this manner, then flexible control becomes possible for various cases, and a system can be configured which can cancel noise in high quality irrespective of a user who uses the system.
However, as described hereinabove, only a system whose portion corresponding to the FB filter circuit 12 is formed from an analog circuit is placed in practical use as a noise canceling system of the feedback type. It is possible to configure the FB filter circuit 12, which is formed from an analog circuit, otherwise from a digital circuit by using an ADC, a DSP or a CPU which forms a digital filter processing mechanism (arithmetic operation processing section), a DAC and so forth.
However, the FB filter circuit 12 having a configuration of a digital circuit needs much time for processing. Therefore, the FB filter circuit 12 gives rise to delay of a signal of a processing object and fails to appropriately cancel noise. This makes a factor of obstruction to the digitalized formation. If the factor of obstruction to the digitalized formation is studied more particularly, then it is considered that the delay of a signal described above is caused principally by the delay by the ADC and the DAC inserted forwardly and backwardly of the arithmetic operation processing section (arithmetic operation processing apparatus) formed from a DSP and a CPU (hereinafter referred to as DSP/CPU) rather than by the digital filter processing mechanism (arithmetic operation processing section for producing a noise reduction signal for reducing noise) formed from a DSP/CPU.
Here, the ADC 121 is a block for converting a signal (noise signal) collected by the microphone 111 and amplified by the microphone amplifier 112 into a digital signal, that is, a digital noise signal. Meanwhile, the DSP/CPU 122 is a block which forms a noise reduction signal having a phase opposite to that of the noise signal and capable of canceling the noise signal taking the transfer functions of the associated circuit sections and the transfer functions between the driver and the cancel point and so forth into consideration. Further, the DAC 123 is a block which converts a noise reduction signal in the form of a digital signal formed by the DSP/CPU 122 into an analog signal.
If the configuration of the FB filter circuit 12 shown in
Here, the L samples of the delay amount may not necessarily be an integer because the ADC/DAC or the like may use an oversampling technique. Further, strictly the DSP/CPU sometimes have a buffering structure for one to several samples when they form an input/output stream, and also the buffer has an influence as delay of the circuit. However, in the following description, it is assumed for the simplified description that the L samples of the delay amount are an integer and the delay amount generated in the DSP/CPU is included in the delay by the ADC/DAC.
For example, as a general example, if it is assumed that the delay amount generated in the inside of each of devices of the ADC and the DAC whose sampling frequency Fs is Fs=48 kHz is 20 samples for the sampling frequency Fs, then delay of totaling 40 samples is generated by the ADC and the DAC in the FB filter circuit 12 even if arithmetic operation relating to the DSP/CPU and so forth is not performed. As a result, the delay of 40 samples is applied as a delay of the open loop to the entire system.
The delay amount involved in the FB filter circuit 12 is described more particularly using actual measurement values.
More particularly, in
This can be recognized readily if it can be understand that the delay by one sample at the sampling frequency Fs=48 kHz corresponds to a phase delay by 180 degrees (π) at the Fs/2 frequency as seen in
Meanwhile, in the noise canceling system of the feedback type, as seen also in
The transfer function from the driver to the microphone in the noise canceling system of the feedback type whose characteristics are illustrated in
If the phase characteristic of
If the block diagram or structure diagram shown in
From this, it can be recognized that, even if a preferable digital filter is designed by the DSP/CPU 122 in the FB filter circuit 12 (−β block), the frequency band within which a noise reduction effect can be obtained from the feedback configuration in this instance is limited to less than approximately 1 kHz at which the phase rotates by one rotation, and if an open loop which incorporates also the ADHM characteristic is assumed and a phase margin and a gain margin are taken into account, then the attenuation amount and the attenuation frequency band are further narrowed.
However, in such a configuration as shown in
It is to be noted that, if the phase rotation is small within an object frequency band (principally within a low frequency region) of the noise reduction, essentially the phase variation outside the frequency band has no relation (only if the gain drops). However, if the amount of the phase rotation in a high frequency region is great, then this generally has not a little influence on a low frequency region, and therefore, the present invention is directed reduction of the phase rotation over a wide frequency band in design. In this significance, it is not preferable for the noise reduction effect to be reduced significantly when compared with that where analog circuits are used in system design in exchange for the merits by the digitalized formation described hereinabove.
According to the present invention, the above-described merits achieved by digitalized formation of the FB filter circuit 12 and the FF filter circuit 22 are made the most of while it is made possible to reduce the delay in the FB filter circuit 12 and the FF filter circuit 22 to keep a high noise reduction effect.
It is to be noted that, while the present invention can be applied not only to a noise canceling system of the feedback type but also to a noise canceling system of the feedforward type, the following description is given taking a case wherein the present invention is applied to a noise canceling system of the feedback type as an example in order to simplify the description.
The FB filter circuit 12A having the configuration described above with reference to
While the FB filter circuit 12A shown in
The FB filter circuit 12B shown in
It can be interpreted that the FB filter circuit 12B shown in
Then, the FB filter circuit 12B is designed so that a signal obtained by adding an analog signal processed by the analog filter 124 after processing by the analog filter 124 shown in
Therefore, in order to use the FB filter circuit 12A shown in
Each of
Meanwhile,
As seen in
Referring to
It is to be noted that the characteristics Ha(z) and Hb(z) are defined by characteristics originally in an analog region, and also actual addition is performed in an analog mode. Here, however, in order to facilitate calculation, the Ha(z) and Hb(z) characteristics are handled in a form wherein they are discretized with the sampling frequency Fs in a digital region in
Then, if the expression (1) in
In the following, a noise canceling system to which the FB filter circuit according to the present invention is applied is described in detail taking a noise canceling system of the feedback type which uses the FB filter circuit 12B having the configuration shown in
However, even with such ADC/DAC delay characteristics as seen in
In order to make the most of the merits by digitalized formation (such as mode changeover and so forth) while the frequency band and effect of noise attenuation are expanded, the technique described above with reference to
It is to be noted that, while, also in
As can be recognized from comparison between
The characteristic (β characteristic) of the FB filter circuit 12C shown in
As can be seen from
Graphs of characteristics (ADHMβ) obtained by multiplication of the characteristics illustrated in
Then, the graph of the transfer characteristics (ADHMβ) shown in
Therefore, if the phase margin for prevention of loop oscillation is 30 degrees (the effective range of the phase is from −150 degrees to 150 degrees) as seen from the graph on the middle stage and the axis of ordinate of the gain is regarded as a relative value, then the characteristic (β characteristic) of the FB filter circuit can be actually shifted on the graph shown on the lowermost stage of
In particular, while the FB filter circuit 12C of the configuration shown in
Also in the case of the FB filter circuit 12D shown in
In each of
Also in the case of
Also in the case of
While, in the particular examples 1 and 2 described above, a digital filter section is represented by an IIR filter in order to simplify the description, the digital filter section is not limited to this. For example, an FIR (Finite Impulse Response) filter itself or a composite filter formed from both of IIR and FIR filters connected in parallel or in series may be used. In this instance, also in design of the FIR filter, in order to avoid unnecessary phase rotation as far as possible, it is preferable to design an appropriate gain and then establish a minimum phase transition type. By using a minimum phase transition type FIR filter in this manner, such phase rotation as described above can be avoided and the delay is reduced, and reduction of noise can be achieved with a higher degree of accuracy.
Further, while, in the FB filter circuits of the particular examples described hereinabove, the comparatively high sampling frequency of 96 kHz is used in order to achieve high noise reduction effects (effective frequency band and effective gain), the sampling frequency is not limited to this. Depending upon the target effect amounts, even if the sampling frequency is lowered, similar noise reduction effects can be anticipated if a noise canceling system of the feedback type which includes an FB filter circuit which includes a digital path and an analog path provided in parallel, that is, a noise canceling system of the hybrid feedback type, is used.
Now, applications of a noise canceling system which uses an FB filter circuit of the hybrid feedback type according to the present invention are described.
In the noise canceling systems of the feedback type shown in
A sound signal collected by and converted into an electric signal by the microphone 111, that is, a noise signal, is amplified by a microphone amplifier 112 and then supplied to an FB filter circuit 12F of the hybrid feedback type which has an analog path. Then, the noise signal is processed by the FB filter circuit 12F to form a noise reduction signal, which is supplied to the driver 15 through a power amplifier 14 so that sound is emitted from the driver 15 thereby to reduce the noise signal.
As seen from
In the hybrid FB filter circuit 12F of the noise canceling system shown in
The DSP/CPU 122 implements an equalizer/effect section 122a for the input sound S, a filter section 122b for producing a noise reduction signal, and a synthesis section 122c for synthesizing output signals from the equalizer/effect section 122a and the filter section 122b. It is to be noted, in
In this manner, since the hybrid FB filter circuit 12F shown in
Since the noise canceling system shown in
In this instance, the noise canceling system of the feedback type is configured such that, as shown in
In particular, the FB filter circuit 12G of the noise canceling system of the feedback type shown in
Where the noise canceling system of the feedback type is configured so as to accept supply of the digital input sound SD as seen in
As another application of the present invention, also it is a possible idea to modify the basic configuration of the noise canceling system by which a noise reduction effect is obtained such that it uses a combination of both of the feedback system and the feedforward system.
Referring to
A sound signal, that is, a noise signal, collected by a microphone 111 provided in the inside of a headphone housing HP which is attached to the user head HD is supplied to the feedback system section 1. The feedback system section 1 produces a noise reduction signal by means of an FB filter section not shown, and the produced noise reduction signal is supplied to a synthesis section 3.
Meanwhile, another sound signal, that is, another noise signal, collected by another microphone 211 provided outside the headphone housing HP which is attached to the user head HD is supplied to the feedforward system section 2. The feedforward system section 2 produces a noise reduction signal by means of an FF filter section, and the produced noise reduction signal is supplied to the synthesis section 3.
The synthesis section 3 synthesizes the noise reduction signal from the feedback system section 1 and the noise reduction signal from the feedforward system section 2 and supplies a resulting noise reduction signal to a driver 35 which includes a drive circuit 351 and a speaker 352 (
Since, different from the feedback system, the feedforward system does not basically refer to the sound pressure at a control point and includes a single representative filter fixed upon designing, some noise component may remain, at a cancel point CP2, by more than an amount estimated upon designing also within a reproduction object frequency band depending upon the position of the noise source or the difference in ear characteristic of an individual person. However, where the feedback system wherein the control point of a cancel point CP1 is referred to is used together, also the noise component which may remain after noise reduction by the feedforward system can be canceled. Consequently, increase of the noise reduction effect can be anticipated.
Referring to
It is to be noted that, in
As described hereinabove with reference to
The most significant point is that, as the configuration of the FB filter circuit shown as the FB filter circuits 12A, 12B, etc. in
Further, if the noise canceling system described hereinabove with reference to
Therefore, in the noise canceling system described hereinabove with reference to
Where a system which uses the feedback system and the feedforward system complementarily is incorporated, it may be configured as a noise canceling system of the configuration shown in
Referring to
A noise canceling filter circuit 4 is provided at a stage following the microphone amplifier 112 and the switch circuit SW1, and a power amplifier 34 and a driver 35 are provided at a stage following the noise canceling filter circuit 4. The driver 35 includes a drive circuit 351 and a speaker 352.
It is to be noted that the switch circuit SW1 provided at the following stage of the microphone amplifier 212 for the feedforward system has an input terminal a to which a sound signal, that is, a noise signal, is supplied from the microphone amplifier 212 as seen in
Further, although a more detailed description is hereinafter given, the switch circuit SW1 is switched in an interlocking relationship with another switch circuit SW2 provided in the noise canceling filter circuit 4. Then, a controller 5 performs switching control of the switch circuit SW1 and the switch circuit SW2 in response to an operation input from the user accepted through an operation section not shown. Further, the controller 5 not only performs the switching control of the switches SW1 and SW2 but also controls the components of a digital filter section 42 so that an object process can be performed.
Further, the noise canceling filter circuit 4 includes an ADC 41, a digital filter section 42, a DAC 43 and an analog filter 44. The ADC 41 includes an ADC 411 for converting a noise signal from the microphone amplifier 212 or input sound S which are analog signals from the switch circuit SW1 into a digital signal, and an ADC 412 for converting the noise signal from the microphone amplifier 212 into a digital signal.
The digital filter section 42 includes a filter circuit (hereinafter referred to as FB filter) 421 for feedback control, a switch circuit SW2, a filter circuit (hereinafter referred to as FF filter) 422 for feedforward control, an equalizer/effect section 423 (denoted as EQ/Effect in
As described hereinabove, the switch circuits SW1 and SW2 are switched in an interlocking relationship with each other by the controller 5. In particular, when the switch circuit SW1 is changed over to the input terminal a side, also the switch circuit SW2 is changed over to the input terminal a side, but when the switch circuit SW1 is changed over to the input terminal b side, also the switch circuit SW2 is changed over to the input terminal b side.
Accordingly, if the switch circuit SW1 is changed over to the input terminal a side, also the switch circuit SW2 is changed over to the input terminal a side. In this instance, a sound signal, that is, a noise signal, collected by the microphone 211 is amplified by the microphone amplifier 212 and then supplied to the ADC 411 through the switch circuit SW1. Then, the sound signal is converted into a digital signal by the ADC 411 and then supplied to the FF filter 422 through the switch circuit SW2. The FF filter 422 forms a noise reduction signal, that is, a cancel signal, for the feedforward system from the noise signal supplied thereto and supplies the noise reduction signal to the synthesis section 424.
Meanwhile, a sound signal, that is, a noise signal, collected by the microphone 111 is amplified by the microphone amplifier 112 and then supplied to the ADC 412 and the analog filter 44. The ADC 412 converts the sound signal supplied thereto into a digital signal and supplies the digital sound signal to the FB filter 421. The FB filter 421 forms a noise reduction signal, that is, a cancel signal, for the feedforward system from the noise signal supplied thereto and supplies the formed noise reduction signal to the synthesis section 424.
The synthesis section 424 synthesizes the noise reduction signal for the feedforward system from the FF filter 422 and the noise reduction signal for the feedforward system from the FB filter 421 and supplies a resulting signal to the DAC 43. The DAC 43 converts the noise reduction signal supplied thereto into an analog signal and supplies the analog noise reduction signal to the synthesis section 45.
Also an analog signal obtained by an analog filtering process by the analog filter 44 is supplied to a synthesis section 45. The synthesis section 45 thus synthesizes the noise reduction signal from the DAC 43 and the noise reduction signal after analog processing from the analog filter 44 and supplies a resulting signal to the power amplifier 34. The power amplifier 34 amplifiers the noise reduction signal supplied thereto and supplies the amplified noise reduction signal to the driver 35. Consequently, a noise cancel signal is emitted from the driver 35 so that the noise is reduced acoustically.
Where the switch circuits SW1 and SW2 are changed over to the input terminal a side in this manner, the ADC 411, FF filter 422 and DAC 43 cooperatively form an FF filter circuit, and the microphone 211, microphone amplifier 212, switch circuit SW1, ADC 411, switch circuit SW2, FF filter, synthesis section 424, DAC 43, synthesis section 45, power amplifier 34 and driver 35 cooperatively form a noise canceling system of the feedforward type.
Simultaneously, the ADC 412, FB filter 421, DAC 43 and analog filter 44 cooperatively form an FB filter circuit, and the microphone 111, microphone amplifier 112, ADC 412, FB filter 421, synthesis section 424, DAC 43, analog filter 44, synthesis section 45, power amplifier 34 and driver 35 cooperatively form a noise canceling system of the feedback type.
In this manner, where the switch circuits SW1 and SW2 are changed over to the input terminal a side, since the noise canceling system section of the feedforward type functions and also the noise canceling system section of the feedback type having a hybrid FB filter circuit which in turn has a digital path and an analog path functions, noise is suppressed satisfactorily and a no-sound state of a high degree of quality can be formed.
On the other hand, where the switch circuits SW1 and SW2 are changed over to the input terminal b side, the input sound S is supplied to the ADC 411 through the switch circuit SW1. Consequently, the input sound S is converted into a digital signal by the ADC 411 and is then supplied to the equalizer/effect section 423 through the switch circuit SW2. The input sound S is thus subjected to fine sound quality adjustment with a high degree of accuracy by the equalizer/effect section 423 and is then supplied to the synthesis section 45. The synthesis section 45 synthesizes the input sound S from the equalizer/effect section 423 with the noise reduction signal for the feedback system and outputs a resulting signal.
In this manner, where the switch circuits SW1 and SW2 are changed over to the input terminal b side, a signal formed by synthesis of the input sound S after sound quality adjustment and the noise reduction signal for the feedback system is converted into an analog signal by the DAC 43. Further, the analog signal from the DAC 43 is synthesized with a noise reduction signal after analog processing from the analog filter 44 by the synthesis section 45. Then, a signal obtained by the synthesis by the synthesis section 45 is supplied through the power amplifier 34 to the driver 35, from which sound is emitted. In this instance, sound according to the input sound whose sound quality is adjusted with a high degree of accuracy is reproduced well while noise is reduced using the noise canceling system of the feedback type so as to be heard by the user.
Thus, the noise canceling system shown in
Consequently, if the user wants a quiet environment, then the input sound S is not reproduced while the two different noise reduction mechanisms, that is, the noise canceling system of the feedback type and the noise canceling system of the feedforward type, are operated at the same time. On the other hand, when the user hears external input sound, that is, the input sound S, only the noise canceling system of the feedback type is operated. In this manner, a system can be implemented wherein the noise canceling system or systems to be operated can be changed over.
It is to be noted that, for the simplification of the system shown in
Here, variations to noise canceling systems to which the present invention can be applied are summarized. A hybrid filter circuit which includes a digital section and an analog path provided in parallel and synthesizes an output of the digital section and an output of the analog path both as analog signals to produce a noise reduction signal or canceling signal can be applied to (1) an FB filter circuit of a noise canceling system of the feedback type and (2) an FF filter circuit of a noise canceling system of the feedforward type.
In the case of a noise canceling system which includes both of a noise canceling system of the feedback type and a noise canceling system of the feedforward type, if the hybrid filter circuit according to the present invention is used as a filter circuit for one of the noise canceling systems, it is possible to use, as the filter circuit for the other noise canceling system, an existing analog filter or the hybrid filter circuit according to the present invention in which digital and analog filters are provided in parallel.
Further, not only in a noise canceling system of the feedback type which includes a hybrid FB filter circuit as described hereinabove with reference to
Similarly, not only in a noise canceling system of the feedforward type which includes a hybrid FF filter circuit, but also in a system wherein a noise canceling system of the feedback type and an input sound reproduction processing section which includes an ADC, an equalizer/effect section and so forth for processing input sound from the outside can be used switchably, it is possible to use, as the FB filter circuit of the noise canceling system of the feedback type, an existing analog filter, a digital filter, or the hybrid filter circuit according to the present invention in which digital and analog filters are provided in parallel.
Further, also where the hybrid filter circuit according to the present invention is applied to an FB filter circuit and also where it is applied to an FF filter circuit, it may have various configurations as described hereinabove in connection with the FB filter circuits 12A to 12G. In a word, it is necessary for a filter circuit to have a hybrid configuration wherein a digital section and an analog path are connected in parallel and an output of the digital section and an output of the analog path are synthesized as analog signals to produce a noise reduction signal or canceling signal.
From the foregoing, a noise canceling system of the feedback type which includes a microphone mechanism inside a headphone for reducing noise in the headphone is implemented by configuring the noise canceling system of the feedback type such that an FB filter circuit (feedback filter) which keeps stabilization of the system and determines a noise attenuation amount is formed from a parallel connection of a digital section including an ADC, a DSP/CPU section and a DAC and an analog path having an analog filter or an analog path (analog through-pass) of a through-characteristic principally in order to suppress phase rotation and outputs of the digital section and the analog path are added in an analog mode.
In this instance, the analog filter of the analog path connected in parallel to the digital section may be of a simple configuration such as that of a first-order LPF or HPF or may be of the type which does not have a frequency characteristic and can produce a signal which can be directly added in an analog mode to an output result from the digital section.
Also it is possible to use an FIR of the minimum phase shift type as some or all of filters in the digital section connected in parallel to the analog path.
Also it is possible to form a no-sound state of a high degree of quality by configuring a noise canceling system of the twin type in which a noise canceling system of the feedback type including an FB filter circuit in which the digital section and the analog path described above are connected in parallel and an analog or digital noise canceling system of the feedforward type which uses a microphone provided outside a headphone housing or such analog and digital noise canceling systems of the feedforward type connected in parallel are used simultaneously.
Also it is possible to configure a system having a control section which has a mode wherein a noise reduction system wherein outputs of both of a microphone inside the headphone housing and the microphone outside the headphone housing are inputted to an ADC such that they are digitally processed later is configured and another mode wherein one of the microphone signals from the microphones inside and outside the headphone housing is switched to an external signal (music signal, telephone conversation signal or the like) to connect the signals to the same ADC and an instruction is issued to the DSP/CPU to change the applicable program from the noise reduction program to an equalizer program.
While the present invention is described above in connection with processing of a headphone for the simplified description, it is not necessary for all components to be incorporated in the headphone body, but the present invention can be applied also where, for example, the processing mechanism is divisionally provided in a box outside the headphone body or the headphone body is combined with a different apparatus. The different apparatus here may be various types of hardware which can reproduce a sound or music signal such as, for example, a portable audio player, a telephone apparatus and a network sound communication apparatus.
Naturally, also it is possible to apply the present invention to a noise canceling system of a headset which is used to work at a place which is very noisy such as a factory or an airport for reducing the noise. Furthermore, where the present invention is applied to a portable telephone set, telephone conversation by clear sound can be anticipated also in a noisy environment. Where the present invention is applied to a portable audio player, clear music or the like can be enjoyed also in a noisy environment.
Further, in the embodiment described hereinabove, an FB filter circuit of a noise canceling system of the feedback type is configured as a hybrid noise canceling system wherein a digital section and an analog path are connected in parallel. However, it is possible to form not only an FB filter circuit but also an FF filter of a noise canceling system of the feedforward type as a hybrid nose canceling system wherein a digital section and an analog path are connected in parallel.
While a preferred embodiment of the present invention has been described using specific terms, such description is for illustrative purpose only, and it is to be understood that changes and variations may be made without departing from the spirit or scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2006-306430 | Nov 2006 | JP | national |