The technology of the disclosure relates generally to electronic filtering circuits, and more particularly to filter circuits with acoustic wave resonators.
Electronic filter circuits perform signal processing functions in communications systems, such as removal of undesired frequency components or enhancement of desired frequency components from communications signals. Increasing mobile devices in communications systems demands filter circuits having reduced sizes and stringent filtering responses. For filter circuits with acoustic wave resonators, filter performance is strongly related to the filter topology, that is, the way the resonators are arranged along the filter configuration. Even more stringent filtering requirements are foreseen for future communications systems.
Filter circuit structures based on bulk acoustic wave (BAW) or surface acoustic wave (SAW) resonators are classified as ladder configurations, lattice configurations, and acoustically coupled resonators. A ladder filter configuration consists of arranging BAW or SAW resonators following a well-known ladder topology. In a bandpass filter performance, series resonators define an upper band of the filter, whereas shunt resonators define a lower band. Constraints of the ladder configuration are the achievable bandwidth, strongly related to the coupling coefficient of the piezoelectric material, and the predefined position of the transmission zeros.
A lattice filter configuration consists of cascading single stages of a lattice bridge circuit formed by four BAW or SAW resonators. The lattice configuration is suitable for balanced networks. In contrast with the ladder filter configuration, a filter bandwidth (e.g., the upper and/or lower band of the filter) of the lattice filter configuration does not depend on the coupling coefficient of the resonator or the position of transmission zeros. Instead, filter response can be synthesized by the balance degree of each single stage of the lattice filter configuration. For instance, when a perfect balance exists (e.g., when all resonators in the stage have the same intrinsic capacitance) the filter response does not exhibit any transmission zero.
A coupled resonator filter configuration consists of a filter topology on which individual acoustic wave resonators (BAW or SAW) are acoustically coupled. In BAW resonators, the coupled resonator configuration requires additional layers to create the acoustic coupling and to stack a piezoelectric layer for each resonator. Coupled resonator filters are readily available in SAW technology.
Therefore, a filter configuration with improved performance and capability to provide filter responses not currently achievable with existing filter configurations can accelerate the implementation of future communication systems and ensure the steady use of BAW and SAW technology as the preferred technology in portable devices.
Exemplary aspects of the present disclosure relate to filter circuits having acoustic wave resonators in a transversal configuration. In the transversal configuration, the acoustic wave resonators are arranged transverse to an input and output port (e.g., a first circuit node and a second circuit node) of the filter circuit. As such, all the acoustic wave resonators of the filter circuit are electrically connected to the input port and electrically connected to the output port. In the transversal configuration, the filter circuit can be designed for any transfer function without being restricted to a coupling coefficient of a piezoelectric material used in the acoustic wave resonators. In this regard, the filter circuit can achieve very wideband filter responses, multiband responses, and/or responses with arbitrary position of transmission zeros. The filter circuit having the transversal configuration can also be designed for complex transmission zeros for phase equalization.
Filter circuits according to the present disclosure can implement the transversal filter configuration with conventional acoustic wave resonator topologies, including surface acoustic wave (SAW) resonators and bulk acoustic wave (BAW) resonators. The individual BAW and/or SAW resonators can be arranged to create a frequency-selective filter response. The selection of resonator topology can affect the filter size, electrical performance, and design procedure.
Filter circuits having acoustic wave resonators in a transversal configuration can additionally have a reduced number of connecting points as compared with other filter configurations. This may in turn enable an achievable degree of miniaturization, allow for the use of very few external components to provide trimming, and provide tunable capabilities to the filtering structure. A synthesis procedure used to obtain filter configurations according to aspects disclosed herein allows several transversal configurations with a single response. Selection of the most convenient topology can then be decided according to manufacturing concerns, areas of the resonators, resonant frequencies, and/or nonlinear performance. Moreover, the transversal configuration allows a direct synthesis of a filter circuit from a mathematical description of a polynomial transfer function.
In an exemplary aspect, a filter circuit is provided. The filter circuit includes a first circuit port and a second circuit port. A first filter branch is connected between the first circuit port and the second circuit port and comprises a first acoustic wave resonator transverse to the first circuit port and the second circuit port. A second filter branch is connected between the first circuit port and the second circuit port and comprises a second acoustic wave resonator transverse to the first circuit port and the second circuit port. The second filter branch has a phase shift from the first filter branch.
In another exemplary aspect, a filter circuit is provided. The filter circuit includes a first circuit port and a first filter branch connected between the first circuit port and a first differential node. The first filter branch comprises a first plurality of parallel acoustic wave resonators. The filter circuit also includes a second filter branch connected between the first circuit port and a second differential node. The second filter branch comprises at least one acoustic wave resonator.
Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element is referred to as being “connected” to another element, it can be directly connected to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” to another element, there are no intervening elements present. Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Exemplary aspects of the present disclosure relate to filter circuits having acoustic wave resonators in a transversal configuration. In a transversal configuration, the acoustic wave resonators are arranged transverse to an input and output port (e.g., a first circuit node and a second circuit node) of the filter circuit. As such, all the acoustic wave resonators of the filter circuit are electrically connected to the input port and electrically connected to the output port. In the transversal configuration, the filter circuit can be designed for any transfer function without being restricted to a coupling coefficient of a piezoelectric material used in the acoustic wave resonators. In this regard, the filter circuit can achieve very wideband filter responses, multiband responses, and/or responses with arbitrary position of transmission zeros. The filter circuit having the transversal configuration can also be designed for complex transmission zeros for phase equalization.
Filter circuits according to the present disclosure can implement the transversal filter configuration with conventional acoustic wave resonator topologies, including surface acoustic wave (SAW) resonators and bulk acoustic wave (BAW) resonators. The individual BAW and/or SAW resonators can be arranged to create a frequency-selective filter response. The selection of resonator topology can affect the filter size, electrical performance, and design procedure.
Filter circuits having acoustic wave resonators in a transversal configuration can additionally have a reduced number of connecting points as compared with other filter configurations. This may in turn enable an achievable degree of miniaturization, allow for the use of very few external components to provide trimming, and provide tunable capabilities to the filtering structure. The synthesis procedure used to obtain filter configurations according to aspects disclosed herein allows several transversal configurations with a single response. Selection of the most convenient topology can then be decided according to manufacturing concerns, areas of the resonators, resonant frequencies, and/or nonlinear performance. Moreover, the transversal configuration allows a direct synthesis of a filter circuit from a mathematical description of a polynomial transfer function.
The filter circuit 12 of
In this regard, the filter circuit 12 can be designed by a synthesis procedure which begins with proposing a mathematical description of a desired response of the filter circuit 12 based on known characteristic polynomials. The characteristic polynomials are used to obtain a two-port admittance Y-parameters matrix (e.g., with the two ports being the first circuit port 16 and the second circuit port 18). Partial polynomial expansion can be applied to the rational functions defining the terms of the two-port Y matrix. The expansion results in a new two-port Y matrix where each term can be expressed as a summation of first order rational functions. Each first order rational matrix corresponds to a conventional resonator 14(1)-14(6) with a single pole and without a zero. Thus the values of the resonant frequency and impedance of each conventional resonator 14(1)-14(6) are set by the synthesis procedure, and defined by the respective series inductance 22 and the capacitance 24 of the conventional resonators 14(1)-14(6). The response of the filter circuit 12 (e.g., both in-band and out-of-band response), including transmission zeros, is created by the contribution of signals through each conventional resonator 14(1)-14(6).
This synthesis procedure, implemented through the transversal configuration of the conventional resonators 14(1)-14(6) can be applied to any type of filter response. For example, a filter circuit 12 with the transversal configuration can achieve very wideband responses, multiband responses, responses with arbitrary position of the transmission zeros, and responses with complex transmission zeros for phase equalization requirements. This facilitates using acoustic wave filters based on transversal configurations in many applications and novel system architectures, such as further depicted in
The filter circuit 26 of
The acoustic wave resonators 28(1)-28(N) can be any appropriate acoustic wave resonator, such as SAW or BAW resonators. The parameters of the acoustic wave resonators 28(1)-28(N), such as impedance and resonant frequency, are defined by a respective series inductance 36 and a capacitance 38, for each acoustic wave resonator 28(1)-28(N). Thus, the respective series inductance 36 and the capacitance 38 of each acoustic wave resonator 28(1)-28(N) can be selected according to a desired frequency response for the filter circuit 26 and the synthesis procedure described with respect to
Each acoustic wave resonator 28(1)-28(N) can be defined through the BVD-equivalent circuit depicted in
As indicated in
Referring to
Additional capacitance might be added in the filter circuit 26 of
For example, the first filter branch 44 can be connected to a first differential node 54(1) and the second filter branch 46 can be connected to a corresponding, second differential node 54(2). The balun circuit 52 can be connected between the differential nodes 54(1), 54(2) and the second circuit port 32, converting between a balanced signal (e.g., at the differential nodes 54(1), 54(2)) and an unbalanced signal (e.g., at the second circuit port 32). In an exemplary aspect, the first shunt inductance 42(1) is connected to the first circuit port 30, while the second shunt inductance 42(2) is connected to the first differential node 54(1) and a third shunt inductance 42(3) is connected to the second differential node 54(2).
The transversal configuration of the filter circuit 26 can also provide a differential output (or differential input), as indicated in
In other examples, each of the exemplary filter circuits 26 of
Referring to
An additional benefit of aspects of the transversal configuration of the filter circuit 26 disclosed herein is that any acoustic wave resonator 28(1)-28(N) can be accessed by the same pins (e.g., the first circuit port 30 and the second circuit port 32 or the first circuit port 30 and the first and second differential nodes 54(1), 54(2)). This may facilitate miniaturization of the final packaging of the filter circuit 26 and/or other components with which the filter circuit 26 may be packaged.
As described above, the proposed transversal configuration of the filter circuit 26 of
With the flexibility provided by the transversal configuration in the filter circuit 26 of
Illustrative examples of the type of responses achievable with the filter circuit 26 of
In the example illustrated in
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
This application claims the benefit of provisional patent application Ser. No. 62/516,725, filed Jun. 8, 2017, the disclosure of which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3731230 | Cerny, Jr. | May 1973 | A |
3875533 | Irwin et al. | Apr 1975 | A |
4442434 | Baekgaard | Apr 1984 | A |
4577168 | Hartmann | Mar 1986 | A |
5291159 | Vale | Mar 1994 | A |
6067391 | Land | May 2000 | A |
6670866 | Ellaet et al. | Dec 2003 | B2 |
6714099 | Hikita et al. | Mar 2004 | B2 |
6720844 | Lakin | Apr 2004 | B1 |
6927649 | Metzger et al. | Aug 2005 | B2 |
6927651 | Larson, III et al. | Aug 2005 | B2 |
6975183 | Aigner et al. | Dec 2005 | B2 |
7057478 | Korden et al. | Jun 2006 | B2 |
7173504 | Larson, III et al. | Feb 2007 | B2 |
7239067 | Komuro et al. | Jul 2007 | B2 |
7321183 | Ebuchi et al. | Jan 2008 | B2 |
7342351 | Kubo et al. | Mar 2008 | B2 |
7391285 | Larson, III et al. | Jun 2008 | B2 |
7436269 | Wang et al. | Oct 2008 | B2 |
7804374 | Brown et al. | Sep 2010 | B1 |
7825749 | Thalhammer et al. | Nov 2010 | B2 |
7855618 | Frank et al. | Dec 2010 | B2 |
7889024 | Bradley et al. | Feb 2011 | B2 |
7898493 | Rojas et al. | Mar 2011 | B1 |
7956705 | Meister et al. | Jun 2011 | B2 |
7973620 | Shirakawa et al. | Jul 2011 | B2 |
8248185 | Choy et al. | Aug 2012 | B2 |
8508315 | Jamneala et al. | Aug 2013 | B2 |
8575820 | Shirakawa et al. | Nov 2013 | B2 |
8576024 | Erb et al. | Nov 2013 | B2 |
8923794 | Aigner | Dec 2014 | B2 |
8981627 | Sakuma et al. | Mar 2015 | B2 |
8991022 | Satoh et al. | Mar 2015 | B2 |
9054671 | Adkisson et al. | Jun 2015 | B2 |
9054674 | Inoue et al. | Jun 2015 | B2 |
9197189 | Miyake | Nov 2015 | B2 |
9243316 | Larson, III et al. | Jan 2016 | B2 |
9484883 | Nishizawa et al. | Nov 2016 | B2 |
9698756 | Khlat et al. | Jul 2017 | B2 |
9837984 | Khlat et al. | Dec 2017 | B2 |
9847769 | Khlat et al. | Dec 2017 | B2 |
9887686 | Kuwahara | Feb 2018 | B2 |
9929716 | Lee et al. | Mar 2018 | B2 |
10009001 | Jiang et al. | Jun 2018 | B2 |
10141644 | Khlat et al. | Nov 2018 | B2 |
20020109564 | Tsai et al. | Aug 2002 | A1 |
20050093648 | Inoue | May 2005 | A1 |
20050206476 | Ella et al. | Sep 2005 | A1 |
20060091978 | Wang et al. | May 2006 | A1 |
20080007369 | Barber et al. | Jan 2008 | A1 |
20080297278 | Handtmann et al. | Dec 2008 | A1 |
20090096549 | Thalhammer et al. | Apr 2009 | A1 |
20090096550 | Handtmann et al. | Apr 2009 | A1 |
20100277237 | Sinha et al. | Nov 2010 | A1 |
20110115334 | Konishi et al. | May 2011 | A1 |
20110121689 | Grannen et al. | May 2011 | A1 |
20110210787 | Lee et al. | Sep 2011 | A1 |
20120007696 | Pang et al. | Jan 2012 | A1 |
20120187799 | Nakahashi | Jul 2012 | A1 |
20120313725 | Ueda et al. | Dec 2012 | A1 |
20130033150 | Bardong et al. | Feb 2013 | A1 |
20130113576 | Inoue et al. | May 2013 | A1 |
20130193808 | Feng et al. | Aug 2013 | A1 |
20140132117 | Larson, III | May 2014 | A1 |
20140145557 | Tanaka | May 2014 | A1 |
20140167565 | Iwamoto | Jun 2014 | A1 |
20150222246 | Nosaka | Aug 2015 | A1 |
20150280100 | Burak et al. | Oct 2015 | A1 |
20150369153 | Tsunooka et al. | Dec 2015 | A1 |
20160028364 | Takeuchi | Jan 2016 | A1 |
20160056789 | Otsubo et al. | Feb 2016 | A1 |
20160191012 | Khlat et al. | Jun 2016 | A1 |
20160191014 | Khlat et al. | Jun 2016 | A1 |
20160191016 | Khlat et al. | Jun 2016 | A1 |
20160261235 | Ortiz | Sep 2016 | A1 |
20160268998 | Xu et al. | Sep 2016 | A1 |
20160308576 | Khlat et al. | Oct 2016 | A1 |
20160359468 | Taniguchi et al. | Dec 2016 | A1 |
20170093369 | Khlat et al. | Mar 2017 | A1 |
20170093370 | Khlat et al. | Mar 2017 | A1 |
20170141757 | Schmidhammer | May 2017 | A1 |
20170201233 | Khlat | Jul 2017 | A1 |
20170301992 | Khlat et al. | Oct 2017 | A1 |
20170324159 | Khlat | Nov 2017 | A1 |
20170338795 | Nakagawa et al. | Nov 2017 | A1 |
20180013402 | Kirkpatrick et al. | Jan 2018 | A1 |
20180041191 | Park | Feb 2018 | A1 |
20180076793 | Khlat et al. | Mar 2018 | A1 |
20180076794 | Khlat et al. | Mar 2018 | A1 |
20180109236 | Konoma | Apr 2018 | A1 |
20180109237 | Wasilik et al. | Apr 2018 | A1 |
20180145658 | Saji | May 2018 | A1 |
20180219530 | Khlat et al. | Aug 2018 | A1 |
20180241418 | Takamine et al. | Aug 2018 | A1 |
20190140618 | Takamine | May 2019 | A1 |
20190199320 | Morita et al. | Jun 2019 | A1 |
20190207583 | Miura et al. | Jul 2019 | A1 |
20190222197 | Khlat et al. | Jul 2019 | A1 |
20190288664 | Saji | Sep 2019 | A1 |
20190305752 | Sadhu et al. | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
2012257050 | Dec 2012 | JP |
Entry |
---|
Non-Final Office Action for U.S. Appl. No. 15/697,658, dated May 1, 2019, 13 pages. |
Larson, John, et al., “Characterization of Reversed c-axis AIN Thin Films,” International Ultrasonics Symposium Proceedings, 2010, IEEE, pp. 1054-1059. |
Notice of Allowance for U.S. Appl. No. 15/727,117, dated Mar. 13, 2019, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 15/586,374, dated Feb. 26, 2019, 16 pages. |
Notice of Allowance for U.S. Appl. No. 15/720,706, dated Mar. 15, 2019, 9 pages. |
Notice of Allowance for U.S. Appl. No. 15/586,374, dated Oct. 4, 2019, 7 pages. |
Notice of Allowance for U.S. Appl. No. 15/644,922, dated Oct. 21, 2019, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 15/883,933, dated Oct. 25, 2019, 19 pages. |
Final Office Action for U.S. Appl. No. 15/697,658, dated Oct. 22, 2019, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 14/757,587, dated Sep. 13, 2016, 12 pages. |
Notice of Allowance for U.S. Appl. No. 14/757,587, dated Mar. 9, 2017, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 15/004,084, dated Jun. 12, 2017, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 14/757,651, dated Jun. 9, 2017, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 15/275,957, dated Jun. 14, 2017, 9 pages. |
Ex Parte Quayle Action for U.S. Appl. No. 15/347,452, dated Jun. 15, 2017, 7 pages. |
Final Office Action for U.S. Appl. No. 15/275,957, dated Jan. 2, 2018, 7 pages. |
Author Unknown, “SAW Filters—SAW Resonators: Surface Acoustic Wave SAW Components,” Product Specification, 2010, Token Electronics Industry Co., Ltd., 37 pages. |
Fattinger, Gernot et al., “Miniaturization of BAW Devices and the Impact of Wafer Level Packaging Technology,” Joint UFFC, EFTF and PFM Symposium, Jul. 21-25, 2013, Prague, Czech Republic, IEEE, pp. 228-231. |
Kwa, Tom, “Wafer-Level Packaged Accelerometer With Solderable SMT Terminals,” IEEE Sensors, Oct. 22-25, 2006, Daegu, South Korea, IEEE, pp. 1361-1364. |
Lakin, K. M., “Coupled Resonator Filters,” 2002 IEEE Ultrasonics Symposium, Oct. 8-11, 2002, Munich, Germany, 8 pages. |
López, Edén Corrales, “Analysis and Design of Bulk Acoustic Wave Filters Based on Acoustically Coupled Resonators,” PhD Thesis, Department of Telecommunications and Systems Engineering, Autonomous University of Barcelona, May 2011, 202 pages. |
Potter, Bob R. et al., “Embedded Inductors Incorporated in the Design of SAW Module SMT Packaging,” Proceedings of the 2002 Ultrasonics Symposium, Oct. 8-11, 2002, IEEE, pp. 397-400. |
Schneider, Robert, “High-Q AIN Contour Mode Resonators with Unattached, Voltage-Actuated Electrodes,” Thesis, Technical Report No. UCB/EECS-2015-247, Dec. 17, 2015, Electrical Engineering and Computer Sciences, University of California at Berkeley, http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-247.html, Robert Anthony Schneider, 222 pages. |
Shirakawa, A. A., et al., “Bulk Acoustic Wave-Coupled Resonator Filters: Concept, Design, and Application,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 21, No. 5, Sep. 2011, 9 pages. |
Corrales, Eden, et al., “Design of Three-Pole Bulk Acoustic Wave Coupled Resonator Filters,” 38th European Microwave Conference, Oct. 2008, Amsterdam, Netherlands, EuMA, pp. 357-360. |
De Paco, Pedro, et al., “Equivalent Circuit Modeling of Coupled Resonator Filters,” Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 55, Issue 9, Sep. 2008, IEEE, pp. 2030-2037. |
Lakin, K. M., “Bulk Acoustic Wave Coupled Resonator Filters,” International Frequency Control Symposium, 2002, IEEE, pp. 8-14. |
Shirakawa, A. A., et al., “Bulk Acoustic Wave Coupled Resonator Filters Synthesis Methodology,” European Microwave Conference, Oct. 4-6, 2005, Paris, France, IEEE, 4 pages. |
Tosic, Dejan, et al., “Symbolic analysis of immitance inverters,” 14th Telecommunications Forum, Nov. 21-23, 2006, Belgrade, Serbia, pp. 584-487. |
Non-Final Office Action for U.S. Appl. No. 14/757,651, dated May 8, 2018, 8 pages. |
Notice of Allowance for U.S. Appl. No. 15/347,428, dated Jul. 12, 2018, 9 pages. |
Notice of Allowance for U.S. Appl. No. 15/490,381, dated May 23, 2018, 8 pages. |
Final Office Action for U.S. Appl. No. 14/757,651, dated Sep. 19, 2018, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 15/701,759, dated Oct. 4, 2018, 10 pages. |
Capilla, Jose et al., “High-Acoustic-Impedence Tantalum Oxide Layers for Insulating Acoustic Reflectors,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 59, No. 3, Mar. 2012, IEEE, pp. 366-372. |
Fattinger, Gernot et al., ““Single-to-balanced Filters for Mobile Phones using Coupled Resonator BAW Technology,”” 2004 IEEE International Ultrasonics, Ferroelectrics,and Frequency Control Joint 50th Anniversary Conference, Aug. 23-27, 2004, IEEE, pp. 416-419. |
Lakin, K. M. et al., “High Performance Stacked Crystal Filters for GPS and Wide Bandwidth Applications,” 2001 IEEE Ultrasonics Symposium, Oct. 7-10, 2001, IEEE, pp. 833-838. |
Roy, Ambarish et al., “Spurious Modes Suppression in Stacked Crystal Filter,” 2010 IEEE Long Island Systems, Applications and Technology Conference, May 7, 2010, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 16/290,175, dated Apr. 14, 2020, 29 pages. |
Final Office Action for U.S. Appl. No. 15/883,933, dated Oct. 23, 2020, 15 pages. |
Final Office Action for U.S. Appl. No. 16/290,175, dated Sep. 17, 2020, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20180358947 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
62516725 | Jun 2017 | US |