This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2004-177443, filed on Jun. 15, 2004, the entire contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates to a filter control apparatus and a filter system, which have a resonator.
2. Related Art
Recently, market of information terminals using radio transmission such as cellular phones and wireless LANs has been growing, and services using radio transmission has been sophisticated. It is predicted that wireless LAN systems which transmit data wirelessly at high speed between computers will be rapidly widespread in the near future. The wireless LAN systems generally use a high frequency having gigahertz band.
Architectures of receivers used for the wireless LAN systems can be categorized into a heterodyne type and a direct conversion type. Most of the wireless LAN systems adopt either of the two architectures. Both of the two architectures use a band selection filter (band-pass filter) capable of passing only a specific frequency band in the high frequency.
Hereinafter, the band means a specific frequency band allocated to user based on a certain communication standard. The specific frequency band includes multiple narrower channel bands allocated to each user. After a specific frequency band is selected, a down-conversion mixer converts the frequency into an intermediate frequency or a base band. And then a channel selection filter or a digital filter extracts generally only a signal with a channel band allocated to each user.
Instead of conventional receiver which extract a desirable frequency by two steps as described above, the present inventor researches a possibility of a frequency variable channel filter which can directly extract a desirable channel band at radio frequency by only one step. If such a tunable filter capable of selecting channels is realized, signal processing at the intermediate frequency band or the base band are largely reduced, thereby downsizing a receiver and reducing cost.
In order to realize the tunable filter mentioned above, a method in which a bias voltage is applied to a thin film piezoelectric resonator made of a ferroelectric material to obtain variable frequencies has been disclosed in Japanese Patent Laid-Open No. 2003-168955.
As the other approach, there is a method using a frequency variable filter having a FBAR (Film Bulk Acoustic Resonator) and a variable capacitor. This filter has one resonance unit in which a first variable capacitor is connected in parallel to the FBAR and a second variable capacitor is connected in series to the FBAR. The filter has the resonance units connected in series and parallel in a ladder shape. When capacitances of the first and second variable capacitors are adjusted to proper values, it is possible to obtain a desirable passband property of the filter.
However, capacitances of the variable capacitors necessary to obtain the appropriate passband of the filter cannot be necessarily expressed by a simple function of a center frequency. It is necessary to control capacitances of the first and second variable capacitors independently to each other.
As the other problem, a junction capacitance of semiconductors or a variable MEMS capacitor may be used for this purpose. In each case, however, the capacitance may fluctuate on variations of fabrication conditions. Since the FBAR or as SAW (Surface Acoustic Wave) may be used for the resonator, the frequency property slightly changes according to temperature. This is called as a temperature drift.
In order to solve the above-described problem, an object of the present invention is to provide a filter control apparatus and a filter system capable of adjusting a center frequency and a transmission band width of a frequency variable filter with high accuracy.
According to one aspect of the present invention, a filter control apparatus which controls a frequency variable filter capable of changing a center frequency and a transmission band width by controlling a capacitance of at least a portion of a plurality of voltage variable capacitors connected in series and parallel to resonators, comprising:
Furthermore, according to one aspect of the present invention, a filter system, comprising:
Furthermore, according to one aspect of the present invention, a filter system, comprising:
FIGS. 4(a), 4(b) and 4(c) are a waveform diagram showing input and output voltage waveforms of the frequency variable filter 1.
Hereafter, a filter control apparatus and a filter system according to the present invention will be described more specifically with reference to the drawings.
An insertion loss is minimized in vicinity of the center frequency, the phase becomes zero at the center frequency, the phase gets ahead at frequencies lower than the center frequency, and the phase gets behind at frequencies higher than the center frequency.
The phases of the input voltage waveform and the output voltage waveform coincide with each other at the center frequency 1.950 GHz. The phase of the output voltage waveform OUT is slightly later than that of the input voltage waveform IN at the frequency 1.949 GHz. The phase of the output voltage waveform OUT is slightly faster than that of the input voltage waveform IN at the frequency 1.951 GHz.
According to these results, it is possible to grasp how much the center frequency deviates to which direction, by detecting a phase difference between the signal waveforms before and after passing the frequency variable filter 1 in
As apparent from the results of
According to the phase properties in
As described above, the frequency variable filter 1 in
The signal inputted to the phase comparator 8 in
The charge pump 9 in
The loop filter 10 has the capacitor C3 and a resistor R1. The capacitor C3 accumulates the electric charge supplied from the charge pump 9 so that the output voltage does not change sharply. The output voltage of the loop filter 10 is fedback to the frequency variable filter 1 as a feedback voltage. The capacitance of the variable capacitor C1 in the frequency variable filter 1 is controlled by the feedback voltage.
In this way, the circuit in
If the phase of the oscillation frequency in the local oscillator 4 is locked by using a temperature-compensated crystal oscillator and a PLL (Phase Locked Loop) circuit not shown to compensate temperature fluctuation, it is possible to consequently keep the center frequency and the frequency band of the frequency variable filter 1 constant against temperature fluctuation.
After the phase locked loop attained a constant state, the first and second switches 2 and 3 are switched, and a signal for communication can be passed through the frequency variable filter 1. In this time, by opening the switches in the charge pump 9, it is possible to adopt a circuit configuration which holds the electric charge accumulated in the capacitor in the loop filter 10. Therefore, even after the feedback control by the PLL circuit is finished, a voltage at both ends of the capacitor C3, i.e. the control voltage of the capacitor C1 can be held to substantially a constant value for a certain time. Subsequently, the first and second switches 2 and 3 are sometimes turned over to adjust the capacitance of the variable capacitor C1 in the frequency variable filter 1. Therefore, it is possible to reduce deviation of the center frequency and the transmission band width.
As describe above, according to the first embodiment, the capacitance of the variable capacitor C1 in the frequency variable filter 1 is controlled by the phase locked loop. Therefore, it is possible to control the center frequency and the transmission band width of the frequency variable filter 1 at high accuracy.
A second embodiment changes how to control the frequency variable filter 1 after and before an oscillator loop for generating a reference signal is stabilized.
The oscillation control circuit 21 has a local oscillator 4 composed of a voltage control oscillator, a phase shifter 5, a divider 7, a lock detector 24, a phase comparator 25, a charge pump 26 and a loop filter 26. Hereinafter, a control system including the divider 6 which controls the center frequency and the bandwidth of the frequency variable filter 1, the phase comparator 8, the charge pump 9 and the loop filter 10 is called as a filter loop, and a control system including the oscillation control circuit 21 is called as an oscillator loop.
The filter loop has a coarse adjustment voltage generator 28 which conducts coarse adjustment of the frequency variable filter 1, and a adjustment switch 29 which switches whether to conduct coarse adjustment or fine adjustment of the frequency variable filter 1, in addition to the configurations of
The phase comparator 25 in the oscillator loop detects a phase difference between a divisional signal of the reference signal outputted from the local oscillator 4 and a reference clock signal φ. The reference clock signal φ is generated by a temperature-compensated crystal oscillator not shown. The crystal oscillator has extremely high frequency accuracy, and high temperature stability of the frequency. Error information obtained by the phase comparator 25 is fedback to the local oscillator 4 via the charge pump 26 and the loop filter 27. Therefore, it is possible to obtain high stable and high accurate oscillation frequency in the local oscillator 4.
According to the present embodiment, a partial circuit block in the filter loop and the oscillator loop, i.e. the phase shifter 5 and the divider 7 are shared with the filter loop and the oscillator loop. Therefore, it is possible to downsize the circuit volume, compared with the case of individually providing the phase shifters and the dividers in the filter loop and the oscillator loop.
When the feedback control using the oscillator loop is completed, and the phase of the oscillation frequency of the local oscillator 4 is locked, a lockup signal is detected, and the filter loop starts the feedback control. The frequency error which could not control by the coarse adjustment is reduced, and it is possible to conduct a high accurate control.
By the above operational timing, it is possible to conduct the coarse adjustment of the filter loop in advance until the oscillator loop is stabilized. Therefore, it is possible to largely shorten a time when the center frequency of the frequency variable filter 1 attain a desirable value.
As described above, the second embodiment has the filter loop and the oscillator loop. Until operation of the oscillator loop is stabilized, the filter loop conducts the coarse adjustment by using the frequency variable filter 1, and the filter loop conducts the fine adjustment of the frequency variable filter 1 after the operation of the oscillator loop is stabilized. Therefore, it is possible to control the center frequency and the transmission band width of the frequency variable filter 1 at short time and high accuracy. Since the filter loop and the oscillator loop shares at least a portion of the circuit components, it is possible to downsize the circuit volume.
A third embodiment uses the control voltage outputted from the loop filter in both of the filter loop and the oscillator loop.
The phase property of the frequency variable filter 1 in the voltage control oscillator of
If the phase difference of the input and the output of the amplifier 31 is, for example, zero, and a voltage gain is enough large, this circuit oscillates at a frequency in which the phase difference property of the frequency variable filter 1 is zero, i.e. at a center frequency of the transmission band in the frequency variable filter 1. It is assumed that a desirable oscillation frequency is 1.95 GHz. When the capacitance of the variable capacitor C1 connected in parallel to the resonator 20 in the frequency variable filter 1 is a proper value, the center frequency of the filter is 1.95 GHz, and the oscillator oscillates at a desirable frequency.
However, when the variable capacitor C1 is 10% larger than the desirable value, the frequency that the phase is zero becomes slightly smaller than 1.95 GHz, as shown in
The PLL circuit in
The receiver circuit in
On the other hand, the reference signal generated by the voltage control oscillator 41 is inputted to the other input terminal of the mixer 47 as the local oscillation signal (LO). Therefore, a frequency of a high frequency signal is converted into the base band signal or intermediate signal.
According to the third embodiment, the same control voltage generated by the loop filter 10 is applied to the frequency variable filter 1 and the frequency variable filter 30 in the voltage control oscillator. Therefore, it is possible to coincide the oscillation frequency of the voltage control oscillator 41 with the center frequency of the passband of the frequency variable filter 1.
As described above, according to the third embodiment, it is possible to control the frequency variable filter 1 based on the control voltage generated by the oscillator loop. It is unnecessary to separately provide the filter loop. Accordingly, compared with the second embodiment, it is possible to simplify the circuit configuration. The third embodiment does not need any switch for controlling the center frequency of the frequency variable filter 1, which is inevitable in the second embodiment. The third embodiment can always filter the communication signal at optimal state. Furthermore, in the third embodiment, the output signal of the temperature-compensated crystal oscillator not shown is used as the reference signal. As a result, temperature drift of the oscillation frequency of the voltage control oscillator 41 and temperature drift of the center frequency of the frequency variable filter 1 can be compensated at the same time.
Number | Date | Country | Kind |
---|---|---|---|
2004-177443 | Jun 2004 | JP | national |