Embodiments of the present invention generally concern water filtration systems for pitchers and other fluid containers. More particularly, embodiments of the invention relate to an interchangeable core cover configured to be used with a filter core of a filter assembly.
This section provides background information related to the present disclosure which is not necessarily prior art.
Water filtration has become common in homes, offices and other places to produce cleaner and better tasting water. Accordingly, water containers such as pitchers have been equipped with filtration systems. In some instances, these filtration systems may employ a filter core around which a piece of a filter medium is wrapped and secured. The filter core can include various openings that allow unfiltered water to enter the interior of the filter core by passing through the filter medium. The filtered water can then exit through an open end of the filter core.
Although filter assemblies such as that just described have proven useful in some circumstances, certain problems nonetheless remain. For example, the filter core is typically configured with an outlet of fixed diameter that is sized for a particular flow rate, or range of flow rates, based upon the filter medium, or filter media, employed in the associated filter assembly. This can be problematic from a variety of perspectives.
For example, a manufacturer would be required to produce an array of different filter cores, each having a particular outlet diameter matched to the particular filter medium, or media, expected to be used with that filter core. This is an inefficient approach to manufacturing inasmuch as it would require tool and/or process changes to manufacture filter cores having different outlet sizes.
A related concern is that careful attention must be paid during the manufacturing process to ensure that a filter core of the appropriate outlet diameter is correctly matched to the filter medium or filter media that is to be used with that filter core. For example, a filter core with relatively small outlet diameter, and a correspondingly low flow rate, may not provide a satisfactory consumer experience. As another example, a filter core with relatively large outlet diameter, and a correspondingly high flow rate, may not enable adequate contact time between the fluid and the filtration medium/media, thus limiting the effectiveness of the filter assembly.
Further, a filter core configuration with a fixed diameter can be problematic for the consumer as well. For example, even if the consumer is willing to exchange a degree of filtration effectiveness for a relatively higher flow rate, the fixed diameter of the filter core may prevent such a tradeoff, resulting in dissatisfaction on the part of the consumer. Likewise, even if the consumer is willing to accept a reduced flow rate in exchange for a relative improvement in filtration performance, the fixed diameter of the filter core may prevent such a tradeoff, again resulting in dissatisfaction on the part of the consumer.
In light of problems such as those noted above, it would be useful to provide a filter core that is not limited to a fixed flow rate, or range of flow rates. As well, it would useful to provide a filter core having a flow rate, or range of flow rates, that corresponds to the type of filter medium/media with which the filter core is employed. Finally, it would be useful to provide a filter core that can be readily configured to provide any one of a number of desired flow rates.
One or more embodiments within the scope of the invention may be effective in overcoming one or more of the disadvantages in the art. One example embodiment is directed to a core cover configured to pass a particular flow rate or range of flow rates when employed in a filter assembly. As such, the core cover implements a flow regulation function, among others.
Core covers according to embodiments of the invention can each be configured to pass a particular flow rate or range of flow rates. Notwithstanding any differences in the respective flow rates they are configured to pass however, each of the core covers has a common interface configuration that enables them to be used interchangeably in the same filter core, or filter cores of the same configuration. Thus, the flow rate associated with a particular filter core can be easily customized, such as during manufacturing for example, by simply selecting a core cover with the desired flow rate. The core cover can be simple in construction and may, in some cases, take the form of a unitary, single-piece structure.
In at least some embodiments, the core cover remains permanently engaged with the filter core once installed in the filter core. In other embodiments, the core cover is releasably engageable with the filter core such that an existing core cover in a filter core can be removed and replaced with another filter core.
The core cover can include indicia that are perceptible by the senses of a user. The indicia may directly indicate or reference, for example, any one or more of the flow rate or range of flow rates the core cover is configured to pass, and/or the type(s) of filter medium/media for which the core cover is suited. As well, the indicia can take any form perceptible by one or more senses of a user, examples of which include colors, numbers, letters, shapes, and symbols. Thus, some indicia, such as raised letters or numbers for example, can be both seen and felt by a user, while other indicia, such as color for example, are only visually perceptible. In any case, the scope of the invention is not limited to the use of any particular indicator or indicia however.
Finally, some embodiments of the core cover can be used in connection with a filter assembly including a filter core about which a filter medium is wrapped two or more times. In one particular embodiment, the filter medium is a laminate that includes a layer of activated carbon fiber (ACF) media positioned between two layers of non-woven material. Still other embodiments of the core cover are used in connection with a filter assembly including a filter core or filter cartridge that contains a filter medium such as ion exchange resin (IER) which may be combined in some cases with activated carbon granules.
The foregoing examples are provided solely by way of example and is not intended to limit the scope of the invention in any way. Consistently, various other embodiments of filter assemblies, and associated filter media and core covers, within the scope of the invention are disclosed herein.
In order to describe the manner in which at least some aspects of this disclosure can be obtained, a more particular description will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only example embodiments of the invention and are not therefore to be considered to be limiting of its scope, embodiments of the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings, in which:
Reference will now be made in detail to aspects of various embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings. While described in conjunction with these embodiments, it will be understood that they are not intended to limit the disclosure to these embodiments.
In general, embodiments of the invention can be employed in connection with devices, such as filter assemblies and fluid containers, where there is a need to filter fluid as, and/or before, the fluid is dispensed from the container. In one particular example, embodiments of the invention can be used in conjunction with a pitcher, although the scope of the invention is not limited to this example environment and extends, more generally, to any environment where such embodiments can be usefully employed. For example, embodiments of the invention can be employed with any water, or other fluid, container, examples of which include, but are not limited to, bottles, carafes, and jugs.
A. Example Filter Assembly
Directing attention now to
As best shown in
With continued reference to
With particular attention now to
B. Example Core Cover
With continued attention to
As shown in
With continued reference to
Directing attention now to
As further indicated in
In particular, the complementary structure 406 can take the form of an annular ring disposed about the exterior of the core cover 400 and extending outwardly in a radial direction from the core cover 400 side surface 408. When in the form of an annular ring at least, the complementary structure 406 is configured and arranged to slip past the complementary structure(s) 210, which may be in the form of protrusions as discussed above, as the core cover 400 is inserted into the recess 206.
In their undeformed dispositions, the complementary structures 210 and 406 may collectively form an interference fit. For example, the outside diameter of the complementary structure 406, when in the form of an annular ring for example, may be relatively larger than the inside diameter of the complementary structure 210, when in the form of protrusions for example. As such, the core cover 400 cannot be fully inserted into the recess 206 unless the core cover 400 is deformed to some degree. Accordingly, at least some embodiments of the core cover 400 are configured to elastically deform to the extent necessary to enable full insertion of the core cover 400 into the recess 206.
In at least some embodiments, this functionality is achieved by way of a cantilever configuration defined by the inner wall 410 and outer wall 412 of the core cover 400. In particular, because the bottom end of the outer wall 412 is unconstrained, it is movable to some extent in a radial direction. Correspondingly, the radial position of the complementary structure 406, which is positioned on the outer wall 412, can be changed, such as when the core cover 400 is inserted into the recess 206. Thus, an insertion force F (see
If there is a need to ensure that the core cover 400 remains permanently in the recess 206, one or both of the complementary structures 210 and 406 can be modified to increase the extent to which those structures interfere with each other. On the other hand, if there is a need to be able to remove the core cover 400 from the recess 206, the interference fit between the complementary structures 210 and 406 can be implemented accordingly.
While the example of
It will be appreciated from the foregoing discussion that the complementary structures disclosed herein are but a few examples of structural implementations of a means for engaging, permanently or releasably depending on the embodiment, the core cover 400 and the filter core 200. Accordingly, any other structure(s) of comparable functionality could alternatively be employed.
With reference now to
C. Flow Control
With continued reference to
While the example fluid passageway 404 is indicated in the figures as being generally cylindrical in shape, and thus having a relatively constant diameter, the scope of the invention is not so limited. Thus, for example, the fluid passageway 404 can have a conical type of configuration in which the diameter increases, or decreases, from the first end of the fluid passageway 404 to the second end of the fluid passageway 404.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application is a continuation of U.S. application Ser. No. 15/756,768 filed on Mar. 1, 2018, now U.S. Pat. No. 10,391,427, which claims the benefit and priority of International Application No. PCT/IB2016/001479, filed on Sep. 27, 2016, which claims the benefit of U.S. Provisional Application No. 62/235,304, filed on Sep. 30, 2015. This application is also related to the following United States patent applications: (1.) U.S. application Ser. No. 15/756,713 filed on Mar. 1, 2018, which claims the benefit and priority of International Application No. PCT/IB2016/001472, filed on Sep. 27, 2016, which claims the benefit of U.S. Provisional Application No. 62/235,289, filed on Sep. 30, 2015; (2.) U.S. application Ser. No. 15/756,747 filed on Mar. 1, 2018, now U.S. Pat. No. 10,765,973, which claims the benefit and priority of International Application No. PCT/IB2016/001495, filed on Sep. 27, 2016, which claims the benefit of U.S. Provisional Application No. 62/235,295, filed on Sep. 30, 2015; and (3.) U.S. application Ser. No. 15/756,809 filed on Mar. 1, 2018, now U.S. Pat. No. 10,343,931, which claims the benefit and priority of International Application No. PCT/IB2016/001474 filed on Sep. 27, 2016, which claims the benefit of U.S. Provisional Application No. 62/235,321 filed on Sep. 30, 2015. The entire disclosures of each of the above applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
313320 | Goodale | Mar 1885 | A |
619569 | Hewel | Feb 1899 | A |
1074168 | A Feinstein | Sep 1913 | A |
2689048 | Powers | Sep 1954 | A |
3016984 | Getzin | Jan 1962 | A |
3497069 | Lindenthal et al. | Feb 1970 | A |
3535852 | Hirs | Oct 1970 | A |
3554377 | Miller | Jan 1971 | A |
3662780 | Marsh | May 1972 | A |
4066551 | Stern | Jan 1978 | A |
4096742 | Musolf et al. | Jun 1978 | A |
4121727 | Robbins | Oct 1978 | A |
4154688 | Pall | May 1979 | A |
4259096 | Nakamura et al. | Mar 1981 | A |
4605499 | Wise | Aug 1986 | A |
4696742 | Shimazaki | Sep 1987 | A |
4764274 | Miller | Aug 1988 | A |
4921600 | Meissner | May 1990 | A |
4948499 | Peranio | Aug 1990 | A |
4983288 | Karbachsch et al. | Jan 1991 | A |
5061367 | Hatch et al. | Oct 1991 | A |
5076922 | DeAre | Dec 1991 | A |
5106501 | Yang et al. | Apr 1992 | A |
5122270 | Ruger et al. | Jun 1992 | A |
5202183 | Hosako et al. | Apr 1993 | A |
5225078 | Polasky et al. | Jul 1993 | A |
5595659 | Huang et al. | Jan 1997 | A |
5609759 | Nohren, Jr. et al. | Mar 1997 | A |
5674391 | Nohren, Jr. | Oct 1997 | A |
5681463 | Shimizu et al. | Oct 1997 | A |
5736045 | Bies et al. | Apr 1998 | A |
5770073 | Bach | Jun 1998 | A |
5897779 | Wisted et al. | Apr 1999 | A |
5904854 | Shmidt et al. | May 1999 | A |
5919365 | Collette | Jul 1999 | A |
5980743 | Bairischer | Nov 1999 | A |
6004460 | Palmer et al. | Dec 1999 | A |
6161710 | Dieringer et al. | Dec 2000 | A |
6189436 | Brooks | Feb 2001 | B1 |
6193886 | Nohren, Jr. | Feb 2001 | B1 |
6200471 | Nohren, Jr. | Mar 2001 | B1 |
6368506 | Gebert et al. | Apr 2002 | B1 |
6383381 | O'Flynn et al. | May 2002 | B1 |
6435209 | Heil | Aug 2002 | B1 |
6565743 | Poirier et al. | May 2003 | B1 |
6569329 | Nohren, Jr. | May 2003 | B1 |
6589904 | Iwasaki et al. | Jul 2003 | B1 |
6599427 | Nohren et al. | Jul 2003 | B2 |
6733669 | Crick | May 2004 | B1 |
7473362 | Nohren, Jr. | Jan 2009 | B1 |
7828969 | Eaton et al. | Nov 2010 | B2 |
8051989 | Tondreau | Nov 2011 | B1 |
8080160 | Yanou et al. | Dec 2011 | B2 |
8133525 | Skalski et al. | Mar 2012 | B2 |
8419818 | Page | Apr 2013 | B2 |
9511315 | Cur et al. | Dec 2016 | B2 |
10035713 | Dani et al. | Jul 2018 | B2 |
10125027 | Dani et al. | Nov 2018 | B2 |
10343931 | Dani et al. | Jul 2019 | B2 |
10391427 | Dani et al. | Aug 2019 | B2 |
20010035094 | Takagaki et al. | Nov 2001 | A1 |
20020020673 | Nohren et al. | Feb 2002 | A1 |
20020060176 | Mierau et al. | May 2002 | A1 |
20020066700 | Dolfel et al. | Jun 2002 | A1 |
20020083841 | Chaouachi et al. | Jul 2002 | A1 |
20020166811 | Walker et al. | Nov 2002 | A1 |
20050279768 | Chatrath | Dec 2005 | A1 |
20060144781 | Carlson et al. | Jul 2006 | A1 |
20070007296 | Guyot | Jan 2007 | A1 |
20070095758 | Bortun et al. | May 2007 | A1 |
20070221605 | Pugne | Sep 2007 | A1 |
20080128364 | Cloud et al. | Jun 2008 | A1 |
20080274312 | Schelling et al. | Nov 2008 | A1 |
20090039028 | Eaton et al. | Feb 2009 | A1 |
20090139926 | Hassebrauck | Jun 2009 | A1 |
20090184042 | Steed et al. | Jul 2009 | A1 |
20100170839 | Kohl | Jul 2010 | A1 |
20100219151 | Risheq | Sep 2010 | A1 |
20100266351 | Vogel et al. | Oct 2010 | A1 |
20100282682 | Eaton et al. | Nov 2010 | A1 |
20110079551 | Olson et al. | Apr 2011 | A1 |
20110079572 | Olson et al. | Apr 2011 | A1 |
20110247975 | Rapparini | Oct 2011 | A1 |
20110278216 | Hull et al. | Nov 2011 | A1 |
20110303589 | Kuennen et al. | Dec 2011 | A1 |
20110305801 | Beer | Dec 2011 | A1 |
20120017768 | Anson et al. | Jan 2012 | A1 |
20120055862 | Parekh et al. | Mar 2012 | A1 |
20120061312 | Busick et al. | Mar 2012 | A1 |
20120187036 | Risheq | Jul 2012 | A1 |
20120193282 | Wolf et al. | Aug 2012 | A1 |
20120214375 | Kitano et al. | Aug 2012 | A1 |
20120255890 | Cumberland | Oct 2012 | A1 |
20120267314 | Minton-Edison et al. | Oct 2012 | A1 |
20120292247 | Moon et al. | Nov 2012 | A1 |
20120298570 | Osawa et al. | Nov 2012 | A1 |
20120298614 | Nelson | Nov 2012 | A1 |
20120325735 | Dicks et al. | Dec 2012 | A1 |
20130037481 | Lalouch et al. | Feb 2013 | A1 |
20130045252 | Rawlings et al. | Feb 2013 | A1 |
20130095212 | Beer | Apr 2013 | A1 |
20130125748 | Taylor et al. | May 2013 | A1 |
20130156897 | Goldstein | Jun 2013 | A1 |
20130175228 | Utsch et al. | Jul 2013 | A1 |
20130199989 | Carter et al. | Aug 2013 | A1 |
20130233890 | Melzer | Sep 2013 | A1 |
20130319927 | Lin | Dec 2013 | A1 |
20140014566 | Mitchell | Jan 2014 | A1 |
20140151285 | Cur et al. | Jun 2014 | A1 |
20150166364 | Wiegele | Jun 2015 | A1 |
20160167980 | Dani et al. | Jun 2016 | A1 |
20160376161 | Dani et al. | Dec 2016 | A1 |
20160376162 | Dani et al. | Dec 2016 | A1 |
20160376163 | Dani et al. | Dec 2016 | A1 |
20160376164 | Dani et al. | Dec 2016 | A1 |
20160376165 | Dani et al. | Dec 2016 | A1 |
20170001880 | Dani et al. | Jan 2017 | A1 |
20180250615 | Dani et al. | Sep 2018 | A1 |
20180264222 | Dantanarayana | Sep 2018 | A1 |
20180264382 | Dani et al. | Sep 2018 | A1 |
20180265374 | Dani et al. | Sep 2018 | A1 |
20180311600 | Dani et al. | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
2051056 | Mar 1992 | CA |
2559637 | Mar 2007 | CA |
2874153 | Jun 2015 | CA |
2933185 | Jun 2015 | CA |
0402661 | Dec 1990 | EP |
0617951 | Oct 1994 | EP |
2268680 | Jan 1994 | GB |
2280596 | Feb 1995 | GB |
04-126585 | Apr 1992 | JP |
657489 | Aug 1994 | JP |
9835738 | Aug 1998 | WO |
0071468 | Nov 2000 | WO |
2011145640 | Nov 2011 | WO |
2012031853 | Mar 2012 | WO |
2012150506 | Nov 2012 | WO |
2013044079 | Mar 2013 | WO |
2013088260 | Jun 2013 | WO |
2014089207 | Jun 2014 | WO |
2015073144 | May 2015 | WO |
2015094741 | Jun 2015 | WO |
2017055914 | Apr 2017 | WO |
2017055916 | Apr 2017 | WO |
2017055918 | Apr 2017 | WO |
2017056915 | Apr 2017 | WO |
Entry |
---|
Activated Carbon Fiber & Activated Carbon Felt by HP Materials Solutions, Inc. (Possible NPL) No publication date available. |
Australian Office Action dated Dec. 20, 2018 in corresponding/related Australian Application No. 2014366927. |
Australian Office Action dated Feb. 22, 2018 in corresponding/related Australian Application No. 2014366927. |
Australian Office Action dated Jun. 22, 2018 in corresponding/related Australian Application No. 2014366926. |
Australian Office Action dated Mar. 8, 2018 in corresponding/related Australian Application No. 2014366937. |
Australian Office Action dated May 25, 2018 in corresponding/related Australian Application No. 2014366492. |
CamelBak: “CamelBak Relay Water Pitcher,” published Jan. 22, 2014, p. 1, XP054977371. Retrieved from Internet: URL: https://www.youtube.com/watch?v=01TdZCF8AqY [retrieved on May 18, 2017]. |
Hutton, I.M. 2007, Handbook of Nonwoven Filter Media (1st ed.), pp. 96-99. |
International Preliminary Report on Patentability dated Apr. 3, 2018 in corresponding/related International Application No. PCT/IB2016/001472. |
International Preliminary Report on Patentability dated Apr. 3, 2018 in corresponding/related International Application No. PCT/IB2016/001474. |
International Preliminary Report on Patentability dated Apr. 3, 2018 in corresponding/related International Application No. PCT/IB2016/001479. |
International Preliminary Report on Patentability dated Apr. 3, 2018 in corresponding/related International Application No. PCT/IB2016/001495. |
International Search Report and Written Opinion dated Feb. 6, 2017 in corresponding/related International Application No. PCT/IB2016/001472. |
International Search Report and Written Opinion dated Jan. 26, 2017 in corresponding/related International Application No. PCT/IB2016/001474. |
International Search Report and Written Opinion dated Jan. 27, 2017 in corresponding/related International Application No. PCT/IB2016/001479. |
International Search Report and Written Opinion dated Jan. 27, 2017 in corresponding/related International Application No. PCT/IB2016/001495. |
NPL-1 ( “Activated Carbon Filter Bags”, Filterek) Date: Jun. 4, 2012. |
Office Action dated Mar. 4, 2019 in corresponding/related Australian Application No. 2014366937. |
Oxford Dictionary Definition—coextensive, 2017, 1 page. |
Oxford Dictionary Definition—immediately, 2017, 1 page. |
Supplementary European Search Report EP 14870910.8, dated Jun. 8, 2017. |
Supplementary European Search Report EP 14871227.6, dated Jun. 8, 2017. |
Supplementary European Search Report EP 14871467.8, dated Jun. 8, 2017. |
Supplementary European Search Report EP 14871701.0 dated Jun. 8, 2017. |
Supplementary European Search Report EP 14871914.9, dated Jun. 13, 2017. |
Supplementary European Search Report EP 14872175.6, dated Jun. 8, 2017. |
U.S. Appl. No. 14/569,397, U.S. Pat. No. 10,035,713, Dec. 12, 2014, Dani et al. |
U.S. Appl. No. 15/038,982, U.S. Pat. No. 10,125,027, May 24, 2016, Dani et al. |
U.S. Appl. No. 15/039,002, U.S. Pat. No. 10,351,442, May 24, 2016, Dani et al. |
U.S. Appl. No. 15/756,768, U.S. Pat. No. 10,343,931, Mar. 1, 2018, Dani et al. |
U.S. Appl. No. 15/756,809, U.S. Pat. No. 10,391,427, Mar. 1, 2018, Dani et al. |
U.S. Appl. No. 15/984,113, 2018/0265374, May 18, 2018, Dani et al. |
U.S. Appl. No. 15/039,012, 2016/0376165, May 24, 2016, Dani et al. |
U.S. Appl. No. 14/132,134, 2015/0166364, Dec. 18, 2013, Wiegele. |
U.S. Appl. No. 15/038,996, 2016/0376161, May 24, 2016, Dani et al. |
U.S. Appl. No. 15/038,998, 2016/0376162, May 24, 2016, Dani et al. |
U.S. Appl. No. 15/039,008, 2016/0376164, May 24, 2016, Dani et al. |
U.S. Appl. No. 15/756,713, 2018/0311600, Mar. 1, 2018, Dani et al. |
U.S. Appl. No. 15/756,747, 2018/0250615, Mar. 1, 2018, Dani et al. |
U.S. Appl. No. 16/250,316, filed Jan. 17, 2019, Wiegele. |
U.S. Appl. No. 16/503,100, filed Jul. 3, 2019, Dani et al. |
Number | Date | Country | |
---|---|---|---|
20190374880 A1 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
62235304 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15756768 | US | |
Child | 16550541 | US |