1. Field of the Invention
This invention generally relates to a filter device, and more specifically, to a bandpass filter device.
2. Description of Related Art
A bandpass filter is a device that passes frequencies within a certain range and attenuates frequencies outside that range to an extremely low level; namely, an ideal bandpass filter would have a completely flat passband with no gain/attenuation throughout and would completely attenuate all frequencies outside the passband.
In practice, no bandpass filter is ideal in that the filter does not attenuate all frequencies outside the desired frequency range completely. In particular, there is a region just on each side of the intended passband where frequencies are attenuated, but not entirely rejected.
A dual mode filter is a filter design, wherein two coexisting modes of the same ring resonator or disk resonator are coupled with each other. This kind of filter has the characteristics of high Q-factor as well as linear phase and flat group delay. Therefore, this kind of filter has been widely used in satellite applications that demand high performance.
a shows the structures of several conventional dual mode filters. As shown in the figure, a perturbation unit 13 is attached to an otherwise symmetrical surface or symmetrical axes of a ring resonator 11 or square resonator 12 or 12′. Also, an input port 141 and an output port 142 are orthogonal to each other. The perturbation unit 13 is for enabling energy generated by the two modes to couple with each other. In the meantime, the coupling coefficient can be controlled by adjusting the perturbation unit 13 or the angles of the input and output ports.
Since a dual mode filter has a symmetrical structure, the circuit analysis complexity can be simplified by separately applying analytic techniques for the odd mode and even mode. Referring to
In the aforesaid equivalent circuits, Zl and Zp are impedances of the resonator and the perturbation unit, respectively, while θl and θp are the electrical lengths of the resonator and the perturbation unit, respectively. Such a dual mode filter is capable of generating both odd mode and even mode signals, wherein both kinds of signals are affected by the aforesaid impedances and the electrical lengths. In other words, the center frequency of such a dual mode filter is determined by the length of the resonator.
In terms of the frequency response of specific signal selectivity, the circuit area of a dual mode filter is notably larger than the circuit area of other kinds of filters, thereby occupying a considerable circuit layout area. Accordingly, it has become a highly urgent issue to designers in the filter industry to devise a way to provide a dual mode filter design corresponding to a frequency response of specific signal selectivity that has a smaller layout area.
In view of the disadvantages of the prior art mentioned above, it is a primary objective of the present invention to provide a filter device that is capable of reducing the area and length of the dual mode filter significantly by selecting specific element sizes and applying ground capacitors.
To achieve the aforementioned and other objectives, a filter device provided according to the present invention has odd mode resonant frequency and even mode resonant frequency; the filter device has at least: a substrate; a metallic rectangular ring mounted on a surface of the substrate, wherein the perimeter is shorter than or equal to the wavelength corresponding to the mean of the odd mode resonant frequency and the even mode resonant frequency; a signal couple-in/couple-out module including a signal couple-in portion and a signal couple-out portion mounted on a surface of the substrate; and a metallic ground plane having a metallic surface parallel to the plane enclosed by the metallic rectangular ring.
To achieve the aforementioned and other objectives, another filter device having odd mode resonant frequency and even mode resonant frequency is provided according to the present invention; the filter device consists of at least: a metallic rectangular ring, wherein the perimeter of the metallic rectangular ring is shorter than or equal to the wavelength corresponding to the mean of the odd mode resonant frequency and the even mode resonant frequency; a metallic ground plane that has a metallic surface, wherein the metallic surface is parallel to a plane enclosed by the metallic rectangular ring; and a signal couple-in/couple-out module has a signal couple-in portion and a signal couple-out portion, wherein neither the signal couple-in portion nor the signal couple-out portion are in contact with the metallic rectangular ring, but rather coupling gaps exist between the signal couple-in portion and the metallic rectangular ring as well as between the signal couple-out portion and the metallic rectangular ring.
To achieve the aforementioned and other objectives, a further filter device is provided according to the present invention, which has odd mode resonant frequency and even mode resonant frequency; the filter device includes at least: a metallic rectangular ring, wherein the perimeter of the metallic rectangular ring is shorter than or equal to the wavelength corresponding to the mean of the odd mode resonant frequency and the even mode resonant frequency; a metallic ground plane that has metallic surface, wherein the metallic surface is parallel to a plane enclosed by the metallic rectangular ring; a ground capacitor module, which is connected to the metallic rectangular ring; and a signal couple-in/couple-out module, which consists of a signal couple-in portion and a signal couple-out portion, also neither the signal couple-in portion nor the signal couple-out portion are in contact with the metallic rectangular ring, but rather coupling gaps exist between the signal couple-in portion and the metallic rectangular ring as well as between the signal couple-out portion and the metallic rectangular ring.
In summary, the filter device of the present invention is characterized by applying a metallic rectangular ring, which has a perimeter that is shorter than or equal to the wavelength corresponding to the mean of the odd mode resonant frequency and the even mode resonant frequency, thereby allowing the filter device, in the situation of specific bandpass frequency, to reduce its perimeter to about half of the perimeter of conventional annular rectangular ring filter. In addition, the locations of transmission zeros can be changed by adjusting the length/width ratio of the metallic rectangular ring. Furthermore, the frequency response of the filter signal can be reduced by disposing a ground capacitor module on the metallic rectangular ring; therefore, in the situation of frequencies within a specific passband, the design of the present invention is capable of significantly reducing the area of the dual mode filter.
When the filter has a higher center frequency, meaning the wavelength is shorter, the side length of the metallic rectangular ring will become too short and considerably close to the manufacturable minimum size. A reverse approach in this situation is to add in a ground inductor module by means of grounded open- or short-circuited transmission line stubs to increase side length, thereby providing an easier means of fabricating the metallic rectangular ring.
The present invention can be more fully understood by reading the following detailed description of the preferred embodiments, with reference made to the accompanying drawings, wherein:
a is the structure of a conventional dual mode filters;
b is an equivalent bisected circuit diagram for odd-mode excitation;
c is an equivalent bisected circuit diagram for even-mode excitation;
a is an electrical structure of the first embodiment of the filter device of the present invention;
b is an electrical structure of the filter device, wherein the metal rectangular ring and the signal couple-in/couple-out module are in the same plane;
c is an electrical structure of the filer device, wherein the metal rectangular ring and the signal couple-in/couple-out module are not in the same plane;
d is an odd-mode equivalent circuit of the filter device of the present invention;
e is an even-mode equivalent circuit of the filter device of the present invention;
a is a structure of the second embodiment of the filter device of the present invention;
b is the frequency response of the second embodiment of the filter device of the present invention;
c is the structure of the third embodiment of the filter device of the present invention;
d is the frequency response of the third embodiment of the filter device of the present invention;
a is the structure of the fourth embodiment of the filter device of the present invention;
b is the frequency response of the fourth embodiment of the filter device of the present invention;
a is the structure of the fifth embodiment of the filter device of the present invention;
b is the frequency response of the fifth embodiment of the filter device of the present invention;
c is the structure of the sixth embodiment of the filter device of the present invention; and
d is the frequency response of the sixth embodiment of the filter device of the present invention.
The following illustrative embodiments are provided to illustrate the disclosure of the present invention, these and other advantages and effects being readily understood by those in the art after reading the disclosure of this specification. The present invention can also be performed or applied by other differing embodiments. The details of the specification may be changed on the basis of different points and applications, and numerous modifications and variations can be devised without departing from the spirit of the present invention.
Referring to
The substrate 21, the metallic rectangular ring 22, the signal couple-in/couple-out module 23, and the metallic ground plane 24 can be integratedly fabricated through, but not restricted to, the low temperature co-fire ceramic (LTCC) multilayer fabrication process. The low temperature co-fire ceramic (LTCC) multilayer fabrication process is capable of embedding elements, such as filter, equalizer, matching circuit, duplexer, and etc. into a single low temperature co-fire ceramic substrate. Furthermore, since the nature of ceramic material is considerably close to the nature of silicon material, the ceramic material employed is very compatible with the IC chip when bonding with each other, thereby providing advantages of saving space and lowering cost.
Referring now to
It should be mentioned herein, the perimeter of the metallic rectangular ring 22 can be analhyzed by dividing the metallic rectangular ring 22 into a first pair of opposite sides 221 and a second pair of opposite sides 222, wherein θ1 is the side length of each of the first pair of opposite sides 221, and θ2 is the side length of each of the second pair of opposite sides 222.
Further referring to
As shown in
Referring to
Further referring to
Referring to
Further referring to
Referring to
Further referring to
Referring to
Referring now to
As shown in
Referring to
Referring now to
As shown in
According to the disclosed techniques of the fifth and the sixth embodiments, when the filter has a higher center frequency, the wavelength is shorter, thereby causing the side length to become too short and considerably close to the manufacturable minimum size. A reverse approach in this situation is to add a ground inductor module by means of grounded open- or short-circuited transmission line stubs to increase the side length, thereby providing an easier means of fabricating the metallic rectangular ring.
In summary, the filter device of the present invention is characterized by applying a metallic rectangular ring, which has a perimeter that is shorter than or equal to the wavelength corresponding to the mean of the odd mode resonant frequency and the even mode resonant frequency, thereby allowing the filter device, in the situation of a specific bandpass frequency, to reduce its perimeter to about half the perimeter of the conventional annular rectangular ring filter. In addition, the frequency response of the filter signal can be reduced by adjusting the length/width ratio of the metallic rectangular ring, or even by coupling a ground capacitor module to the metallic rectangular ring. Therefore, in the situation of a specific bandpass frequency, the design of the present invention is capable of reducing the area of the dual mode filter greatly.
The foregoing descriptions of the detailed embodiments are only illustrated to disclose the features and functions of the present invention and are not restrictive of the scope of the present invention. It should be understood by those in the art that various modifications and variations can be made according to the spirit and principles in the disclosure of the present invention and yet still fall within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
097102788 | Jan 2008 | TW | national |