The invention relates to a filter device having a filter housing defining a main axis, in which at least one filter element may be replaceably accommodated, and which has a housing pot surrounding the respective filter element and a housing head removably attachable thereto, in which at least one fluid passage provided for the discharge flow of filtrate is formed, and having a valve device associated with said fluid passage, which includes a closing body which, in a closed position, blocks the discharge flow of filtrate and in a release position facilitates the discharge flow, and having a locking device, which includes a blocking member which, in the locking position, locks the closing body of the valve device in the closed position, wherein the blocking member may be moved out of the locking position into an inoperative unlocking position by means of a control element provided on the particular filter element which, when the filter element is situated in the functional position in the housing pot, mechanically impacts the blocking member when the housing head is attached to the housing pot.
Filter devices of this type are widely used for filtration of a wide variety of technical fluids, for example, for hydraulic fluids, cooling lubricants, fuels, lubricating oils and the like. Since operational disruptions or malfunctions as well of such filter devices may result in the damage to or the destruction of systems downstream, which may cause economic damage, great importance is attached to the operational reliability of the particular filter device. For this reason, continuous efforts are made in the industry, which aim at improving the operating characteristics and the avoidance of potential trouble sources. The maintenance work periodically carried out during the operation of the filter devices constitutes a potential trouble source, which has potentially serious consequences. It is well known that filter elements, following certain periods of operation, when sensor devices detect a rise in differential pressure that signals a corresponding contaminant load in the filter element, must be removed as worn and replaced by a new filter element.
In order to avoid operating errors in connection with such a filter element replacement, a filter device of the aforementioned type is already known from the document WO 2006/012031 A1, in which it is ensured that the device is inoperable if, through an oversight, no filter element is installed in its functional position within the filter housing. The known solution in this case provides a valve device, the closing body of which, in a closed position, blocks the discharge flow of filtrate from the filter housing, and which is fixed in the closed position by means of a locking device. To release the closing body and, therefore, to unblock the discharge path of the filtrate, the locking device may be moved from the locking position into an inoperative unlocking position. In order to effect unlocking, a control element is provided on the filter element to be installed in the filter housing, which acts to mechanically unblock the locking device during the course of the installation procedure. This ensures that the discharge flow of filtrate is possible only with a filter element that is installed in the functional position. In the event the device is put into operation when the filter element is inadvertently not installed, the closing body of the valve device remains locked in the closed position, so that the pressure sensor device detects a corresponding rise in pressure to then signal a maintenance error.
The valve device and the locking device in the known solution are provided on a disk, which extends in a plane in the housing head perpendicular to the main axis. An elevation in the form of a cylindrical sleeve is provided concentrically to the main axis on the upper side of the disk facing away from the housing pot is, the upper open end of which forms the flow-through opening for filtrate, which flows from the inner filtrate chamber of an associated filter element via a connecting piece situated at the end cap thereof, which, in the installed functional position of the filter element, extends into the sleeve body. The closing body of the valve device is a round valve plate which, in the closed position, forms, as a valve seat, a seal at the edge of the flow-through opening of the sleeve body when acted upon by a pretension spring, and blocks the exit flow of filtrate.
The locking device, as shown in FIGS. 10 and 15 of WO 2006/012031 A1, includes two blocking members, each in the form of a slide member, which may be moved in a radial direction toward one another and away from one another on the disk by means of slide tracks, and which are arranged diametrically opposite one another on both sides of the sleeve body. Each slide member includes a radially, inward projecting locking part which, in the radially, inwardly slid locking position, overlaps, and thereby locks, the valve plate situated in the closed position. In addition, each slide member includes an actuating part extending below the flow-through opening into the sleeve body which, at its free end, forms a control surface extending diagonally to the main axis. Both slide members are pretensioned by a spring assembly into the locking position close to one another. In order to move the locking device into the unlocking position, i.e., to move the slide members radially apart in the slide tracks, projecting tabs with cam surfaces on the ends thereof are provided as control parts on an axially projecting connecting piece on the end cap of each filter element to be installed which, in the functional position, protrudes into the sleeve body of the disk, the angular surfaces of which rest as cam surfaces against the actuating part of the slide members when the tabs in the sleeve body move axially during the course of installation, wherein the cam surfaces on the tabs push the control surfaces on the actuating part of the slide members radially outward, in order to disengage the locking parts of the slide members from the valve plate.
The known solution has definite disadvantages. When converting the axial movement to the radial movements of the slide members occurring against the spring force, as these take place as a result of the interaction of the cam surface on the end cap of the filter element with the control surfaces of the slide members, high actuating forces are required, which result in correspondingly high local surface pressures, making it necessary to construct slide member guides that are complex in design in order to keep the friction forces that result from the lateral forces occurring during the interaction of the cam surfaces with the control surfaces on the slide members within limits. This also makes it necessary to minimize the spring force which pre-tensions the slide members in the locking position. Thus, on the whole, the operational reliability of the valve and locking device of the known solution leaves room for improvement.
A further disadvantage are the sealing problems existing between the slide member guides and the filtrate-guiding sleeve body, because the actuating parts of the slide members extend out of the slide member guides into the sleeve body. Another disadvantage is that the selection of material for relevant functional elements is limited due to the high material stresses. Thus, given the mechanical stress of the tabs functioning as control parts, it is necessary to utilize special materials, such as metals or special high-strength plastics. The same applies to the slide members and slide member guides and to the associated disk in the filter head.
Based on this prior art, the stated object of the invention is to provide a filter device which, while simple and cost-efficient in design, is distinguished by high operational reliability.
According to the characterizing portion of claim 1, this object is achieved according to the invention in the case of a filter device of the aforementioned type, in that the blocking member of the locking device is mounted for such that it can be axially displaced along the main axis in the housing head for moving between the locking position and the unlocking position, and can be moved into the unlocking position through contact with the control element of the filter element while the housing head is being attached. In this way, the blocking member may be moved by the control element of the filter element directly into the unlocking position during the axial relative movement taking place on the housing head when the housing head is being attached, so that the connecting elements, which in the known solution convert the axial relative movement into the control movement of the slide members provided as blocking members extending perpendicular thereto, are eliminated. In the invention, this results in a significant reduction in the required design complexity. The absence of the lateral forces which, in the known solution, arise due to the redirection of movement, also results in a significant reduction in frictional forces and, therefore, the actuating force that must be applied. The resulting minimal material stress allows cost-effective materials, such as plastic materials, to be used for the functional elements in question.
In advantageous exemplary embodiments, the blocking member is pre-tensioned in the locking position, preferably by a spring assembly. In view of the favorable friction conditions, it is possible to select a pre-tensioning force of relatively low intensity for a reliable operation, which also minimizes the need for actuating force.
When using filter elements which include a cap, at least on one end, the control element is advantageously provided on the end cap, which is situated on the end of the filter element facing the housing head.
In particularly advantageous exemplary embodiments, the control element may include a control part projecting axially, the end of which comes into contact with the blocking member as the housing head is being attached, and moves the blocking member from the locking position into the unlocking position.
In this case, the arrangement may be particularly advantageously achieved, in that the end cap with the control element includes a central connecting piece which, when the housing head is attached to the housing pot, establishes a fluid connection from the inner filtrate chamber of the filter element to the valve device via a receiving ring situated on the housing head, which surrounds a flow-through opening.
In filter elements having such an end cap forming a connecting piece, the control element of the end cap may include control elements in the form of axially projecting tabs, which are formed by wall sections of the connecting piece spaced apart from one another, and which reach through associated passages in the receiving ring as the housing head is being attached, and come into contact with the blocking member to move it into the unlocking position. As a result, the connecting piece forming the fluid connection to the housing head simultaneously assumes the control function for the locking device.
In particularly advantageous exemplary embodiments, the arrangement may be achieved, such that the projecting tabs of the control element are distributed on the periphery of the connecting piece in a pattern characteristic for the specification of the particular filter element, wherein the passages in the receiving ring are formed in a corresponding pattern. In this way, the device provides not only a safeguard against operational start-up when a filter element is missing, but as an additional advantage, a safeguard as well against operating with a filter element that is unsuitable for the intended purpose, because the housing head may be attached and the locking device actuated only if a filter element is present which has tabs that project in the proper pattern.
The edge of the flow-through opening of the receiving ring may advantageously form the seat for the closing body of the valve device designed as a round valve plate, wherein the valve plate may be guided such that it can move axially, and is pre-tensioned in the closed position against the receiving ring.
The blocking member mounted in an axially displaceable manner in the filter head may include an annular body having a radially projecting flange section, which lies over the passages in the receiving ring provided for access by the tabs, and which abuts the receiving ring in the locking position. In this way, the tabs guided into the passages come into direct contact with the annular body when their free ends exit the passages, in order to move the annular body against the pre-tensioning force. At the same time, the annular ring forms the end stop, which secures the annular body against the biasing force in the locked position.
In particularly advantageous exemplary embodiments, the annular body of the blocking member interacts with the valve plate via a spring assembly.
In this case, the arrangement may be particularly advantageously achieved, in that the spring assembly includes a number of resilient fingers, which are anchored at one end to the receiving ring in a distributed arrangement on the periphery of the flow-through opening, and the free ends of which extend beyond the peripheral area of the valve plate when the blocking member is in the unlocking position, wherein the annular body of the blocking member has a conical control surface on its inner periphery, which rests against the resilient fingers when the blocking member is moved into the locking position, and moves the free ends of the fingers radially inwardly into a position overlapping the edge of the valve plate situated in the closed position. A flexible compensating element is thus formed as a result of the resilient fingers, which bridges a corresponding radial intermediate space between the periphery of the valve plate and the inner periphery of the annular body of the actuator. This eliminates the need for a narrow tolerance of the functional elements of the locking device and valve device.
The subject matter of the invention is also a filter element, which is provided, in particular, for use in a filter device according to one of claims 1 through 12, and which includes the features of claim 13.
The invention is explained in detail below with reference to an exemplary embodiment depicted in the drawings, in which:
The exemplary embodiment depicted in the figures has a largely plain cylindrical filter housing with a housing pot 1 and a housing head 3, which may be removably attached via screw connection to the housing pot 1. In the attached state shown in
Within the pot 1, a filter element 15 may be accommodated, which includes a filter material 17 forming a hollow cylinder in the manner typical for such filter devices, which consists of a filter mat, which is preferably multi-layered and/or folded in a pleated manner. In an equally typical manner, one end cap each is situated on each end of the filter material 17, of which the lower end cap in
The upper end cap 21, as is most clearly seen from
The middle section of the flat disk portion 33 of the end cap 21 includes an opening 37 for forming a fluid connection between the inner filter chamber 25 of the filter element 15 and a discharge flow chamber 39 formed in the housing head 3, from which the filtrate exits via a discharge flow connection not depicted. To establish this fluid connection, the end cap 21 includes a connecting piece 41, which concentrically surrounds the opening 37 and projects axially out of the flat disk portion 33. As shown in
The receiving ring 45 includes a central flow-through opening 51, which may be sealed by the valve device serving as the discharge valve. The valve device has a closing body in the form of a round valve plate 53, which in the closed position shown in
The annular body 59 constitutes the actual functional part of the blocking member 57, and includes for this purpose a control surface 71 on its inner circumference in the form of a conical surface, which expands the inner diameter of the annular body 59 downward, i.e., in the direction toward the receiving ring 45. The control surface 71 is provided for interacting with a spring assembly, which is formed from a ring of resilient fingers 73, which forms the actual locking elements, of which, for the sake of clarity only one is depicted in the drawing, although multiple resilient fingers 73 are arranged next to the edge of the flow-through opening 51 of the receiving ring 45.
One end 75 of the resilient fingers 73 is anchored in slot-like recesses 77 (
This state can only be achieved if, in the case of a filter element 15 situated in the functional position in the housing pot 1, the housing head 3 is attached and, as a result, a control element situated on the end cap 21 of the filter element 15 guides the blocking member 57 into the unlocking position. The control parts of the control element provided for this purpose are tabs 81 projecting axially on the connecting piece 41, which, are formed on the connecting piece 41 distributed in a pattern with gaps 83 situated between them. Suitable passages 85 are formed in the receiving ring 45 of the head 3, into which the tabs 81 enter when the housing head 3 is attached to the pot 1. The annular body 59 of the blocking member 57 includes a radially projecting flange section 87, which extends over the passages 85 of the receiving ring 45 in such a way that the ends of the tabs 81 come into contact with the flange section 87, to then shift the blocking member 57 against the force of the locking spring 69 into the unlocking position as the head 3 is attached.
When the housing head 3 is attached to the housing pot 1, without a filter element 15 situated in the functional position, the valve plate 53 remains locked in the locking position, so that the discharge valve is closed. An erroneous operational start-up would result in generating a pressure signal as an error alarm. During a proper operational start-up, the tabs 81 of the end cap 21 come into contact with the flange section 87 of the annular body and move the blocking member 57 into the unlocking position. Once the control surface 71 on the annular body 59 releases the ends of the resilient fingers 73, the resilient fingers 73 spring into the position shown in
If, for carrying out a filter element replacement, the filter device is taken out of operation, the valve plate 53 returns to the locking position when the operating fluid pressure drops. Upon removal of the housing head 3, the tabs 81 exiting the passages 85 of the receiving ring 45 release the blocking member 57, so that the latter, under the influence of the locking spring 69, returns to the locking position, in which the control surface 71 of the annular body 59 shifts the resilient fingers 73 onto the valve plate 53 and locks the discharge valve in the locking position.
The functional parts interacting with the locking device, valve device and control element on the filter element 15 may be cost-effectively manufactured as plastic parts by injection molding. Due to the minimal actuation forces which form for the immediate actuation by axial movement of the movable parts provided by the invention, it is possible to utilize cost-effective materials. In addition, by varying the physical design of the control element on the filter element 15, and in addition, the complementary design of the passages 85 in the receiving ring, it may be ensured that the device can only be started up using the proper filter element in each case.
Number | Date | Country | Kind |
---|---|---|---|
10 2014 000 490.2 | Jan 2014 | DE | national |