The invention relates to a filter device comprising at least one filter element which can be held in a filter housing which can be connected to carry fluid by way of fluid connections to a fluid means, especially in the form of a hydraulic tank, by a connection system and which can be detachably fastened to the fluid means by a fastening means.
Filter devices of the aforementioned type are readily available on the market in a plurality of designs and versions. They are used among other purposes to filter dirt in fluids, such as hydraulic oil, out of these fluids. Hydraulic oil is fouled during installation and when the respective hydraulic system is started up, and in addition to this initial fouling, fouling during operation can occur, for example by penetration of dirt at the hydraulic tank due to inadequate tank ventilation, pipe penetrations, piston rod seals, and the like. To the extent fouling within the fluid stored in the hydraulic tank occurs in hydraulic systems of machines such as earth moving machines, excavators or the like, it can be advantageous to implement filtration directly in the region of the hydraulic tank, for example by installing the filter device directly in the tank, the hydraulic oil which is removed from the tank contents being delivered to filter out dirt directly to a filter element which is held in the filter housing, and the fluid which has been cleaned in this way then returning again to the tank contents by way of the filter housing. In these solutions, the filter device cleans only the contents of the tank. But solutions are also conceivable in which the filter device delivers the correspondingly filtered and cleaned fluid to the hydraulic circuit of the machine, in order from there to return to the tank the fluid which is fouled also with solid particles in the pertinent circulation in the hydraulic circuit.
In the solutions in which the filter device filters only the contents of the tank by fluid being removed from the tank, filtered and then returned again to the tank contents, it can be advantageous, when the filter element has to be changed, to block off the contents of the fluid means, especially in the form of a hydraulic tank, relative to the filter housing. In this process the filter housing with the used filter element can be completely dismounted from the fluid means, specifically the tank, and replaced by a filter housing with a fresh filter element without the need to interrupt operation of the respective hydraulic system.
In the known solutions, tedious and time-consuming measures must be carried out in conjunction with changing the filter housing,. Thus, the pipes which belong to the connection system must be separated from one another and sealed tight in a complicated process. There is also the danger that larger amounts of fluid will escape from the filter housing and/or fluid means as a type of leaking oil flow when the filter housing is being dismounted; this leads to environmental pollution problems. Moreover, the actuation of the fastening means by the operator when removing and re-attaching the filter device to the fluid means must be done carefully to ensure trouble-free operation of the pertinent fluid system.
On the basis of this prior art, the object of the invention is to make available a filter device in which the measures to be carried out to change the filter element can be performed especially easily and safely, so that trouble-free operation of the pertinent fluid means is ensured. As claimed in the invention, this object is achieved by a filter device with the features specified in claim 1 in its entirety.
In that, as specified in the characterizing part of claim 1, a bayonet catch is provided as the fastening means, by means of which the filter housing can be detachably fastened to the fluid means, and in that, by rotary motion of the filter housing when the bayonet catch is being locked and released, a blocking element can be controlled which blocks and clears the pertinent fluid connection, the filter can be changed with a maximum of safety and especially simply and easily. This is achieved in that blocking and clearing of the fluid connection take place automatically when the filter housing is being mounted and dismounted; this in turn takes place in an especially simple and easy manner by releasing and locking the bayonet catch.
Based on use of a bayonet catch as the fastening means and of the automatic blocking of the fluid connections when the bayonet catch is released, all the actuation processes in conjunction with replacing a used filter element can be carried out in a few seconds, since the filter housing which contains the used filter element can be removed as a whole from the fluid means by releasing the bayonet catch without separate measures being necessary at the fluid connections of the fluid means. Likewise the attachment of a filter housing containing an unused filter element is effected in a correspondingly short period of time by locking the bayonet catch, because the fluid connections are automatically cleared by the locking process.
In embodiments which are characterized by an especially simple and compact design, the blocking element is a rotary disk valve which is pivoted on the fluid means. In this configuration the rotary motions which take place when the bayonet catch is actuated can be converted especially easily into the corresponding rotational-control motions of the rotary disk valve.
In especially advantageous embodiments, the filter housing has one valve each pretensioned into the closing position both at the inlet opening through which the fluid enters the dirty side of the filter housing and also at the outlet opening for filtered fluid. By means of protruding control lugs which are provided on the fluid connections of the fluid means the spring-loaded blocking bodies of these valves can be moved automatically against the closing force into the open position, when the filter housing is mounted on the fluid means (specifically the tank). Since in these embodiments when the filter housing is removed from the fluid means the openings of the filter housing are automatically blocked without having to take precautions against unintentional escape of fluid from the filter housing, it can be moved to another location in order to have the filter element changed elsewhere, and then additional maintenance actions can still be undertaken.
Other advantageous embodiments of the filter device as claimed in the invention are the subject matter of the other dependent claims.
The invention will be detailed below using one exemplary embodiment as shown in the drawings.
FIGS. 1 to 4 show a fluid means in the form of a hydraulic tank 1 with a separate tank compartment 3 which is built into it and which can be connected to the remaining tank contents simply by way of the fluid connections 5 and 7, but otherwise is sealed relative to the remaining tank contents. The fluid connections 5 and 7 are located on the bottom-side termination of the tank compartment 3 which is formed by a flat connecting plate 9. The connecting plate 9 forms the carrier for the filter housing 11 of the filter device as claimed in the invention which can be attached to the plate by means of a detachable fastening device. For the filter housing 11 which is in the operating position and which is attached to the connecting plate 9 the fluid connection 5 forms the inlet for supply of the fluid to be cleaned to the dirty side in the interior of the filter housing 11, while the outflow of cleaned fluid after it has passed through the filter element 13 in the filter housing takes place through the fluid connection 7.
As
When the filter housing 11 is turned out of the operating position shown in
Thus, the filter housing 11, when it is dismounted from the connecting plate 9, is secured against escape of fluid, so that the filter housing 11, without the danger of environmental pollution by escaping leaking fluid, can be safely transported for replacement of the filter element or other maintenance. When a filter housing 11 containing an unused filter element 13 is moved onto the connecting plate 9 so that the bayonet ribs 19 enter the bayonet guide of the bayonet ring 17 through the recesses 21, the connecting sleeves 37, 39 of the rotary disk valve 33 penetrate the inlet opening 41 and the outlet opening 43 of the valve housing so that the projecting control lugs 47 unblock the blocking bodies 49 of the valves 51 and 53. If then the filter housing 11 is turned 90° for locking of the bayonet catch, the rotary disk valve 33 reaches the rotary position shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2004 014 149.5 | Mar 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/02215 | 3/3/2005 | WO | 9/19/2006 |