The present invention relates to a filter element for purifying exhaust gases of an internal combustion engine. Filter elements of this type are used, for example, as soot filters for diesel engines.
The filter elements are often made of a ceramic material and have a plurality of inlet channels and outlet channels running parallel to each other.
Filter elements made of ceramic materials are manufactured by extrusion. This means that the blank of the filter element is a prismatic body having a plurality of channels running parallel to each other. The channels of a blank are initially open at both ends.
For the exhaust gas to be purified to flow through the walls of the filter, one group of channels is closed at the downstream end of the filter element, while another group of the channels is closed at the upstream end of the filter element. Two groups of channels are thus formed, namely the so-called inlet channels, which are closed at their downstream ends, and the so-called outlet channels, which are closed at the upstream ends of the filter element.
A flow connection exists between the inlet channels and the outlet channels only through the porous walls of the filter element, so that the exhaust gas of the filter element may only flow through by flowing from the inlet channels through the walls of the filter element into the outlet channels.
In order to ensure an optimally effective operation of the filter element, a most uniform temperature distribution possible over the cross-section of the filter element during the operation of the internal combustion engine is strived after.
An object of the present invention is to provide a filter element for a soot filter and a soot filter in which the temperature distribution over the cross-section of the filter element and consequently the operational behavior of the soot filter equipped with the filter element according to the present invention are improved and its service life is extended.
This object may be achieved according to the present invention in, for example, a filter element for filtering diesel exhaust particulates, in particular for filtering exhaust gases of a diesel engine, having a longitudinal axis running parallel to the main direction of flow of the exhaust gas, having a plurality of inlet channels running parallel to the longitudinal axis and a plurality of outlet channels running parallel to the longitudinal axis, the inlet channels starting at an inlet face of the filter element and being closed at an outlet face of the filter element, and the outlet channels being closed at the inlet face and ending at the outlet face, in that the channels situated outside on the filter element have a greater cross-section area than the centrally situated channels.
The channels outside on the filter element having the large cross-section areas offer a lower flow resistance to the inflowing exhaust gas, so that, compared to a conventional filter element having the same size channel cross section, a larger proportion of the exhaust gases to be filtered is filtered on the periphery of the filter element. The temperatures on the periphery of the filter element are thus increased due to the increased flow rate of exhaust gases and thus overall more uniform temperatures over the entire cross section of the filter element are achieved. The exhaust gas flow through the center of the filter element is reduced to the same degree, which results in a reduction of the temperatures prevailing inside the filter element.
The temperature distribution within the filter element according to the present invention may be further improved by the channels of the filter element situated farthest outside being closed at both ends. This means that no exhaust gas flows through these channels, but there is air inside these channels, which is used for thermal insulation. This strongly reduces the heat transfer of part of the filter element to the environment and, consequently, the temperature drop at the periphery of the filter element. This results in a further improved temperature distribution and shorter warm-up time of the filter element according to the present invention,
In another advantageous embodiment of the present invention it is provided that the radial walls between two adjacent channels be offset with respect to each other. The filter element according to the present invention thus becomes more flexible in the radial direction and the thermal stresses in the radial direction are reduced. This improves the resistance of the filter element according to the present invention against rapid temperature changes which otherwise could possibly result in cracks and thus in failure of the filter element.
In an advantageous embodiment of the present invention, the cross-section area of the channels increases monotonously with increasing distance to the longitudinal axis of the filter element. This means that the temperature distribution within the filter element may be influenced in broad limits via the functional relationship between the distance of the channel to the center of the filter element and its cross-section area.
From the manufacturing point of view, it may, however, also be advantageous if the cross-section area of the channels increases in one or more stages with increasing distance to the longitudinal axis of the filter element.
If the cross-section area of the inlet channels is greater than the cross-section area of the adjacent outlet channels, the capacity of the filter element for deposition of diesel particulates is increased without a considerable increase in the exhaust gas counterpressure.
It has also been found advantageous if the filter element is rotationally symmetrical or centrally symmetrical with respect to its longitudinal axis.
It has also been found advantageous if the upstream area of the (inlet) channels has a non-planar design, so that it has a slope locally which is different from that of a plane in which the entire wall is situated. The upstream area is thus greater compared with conventional filter devices. As a result, a larger quantity of particles may deposit there without an inadmissible increase in the pressure drop occurring during the flow through the filter wall. In turn, as a result, the filter element according to the present invention has to be regenerated less frequently, which reduces the fuel quantity required for regeneration overall. The fuel consumption may thus be reduced without increasing the overall dimensions of the filter device. The increase in the area available for deposition of the particles is caused at least essentially by the non-planar design of the surface. The non-planar surface thus results in no or at least not excessive additional manufacturing costs.
The above-mentioned advantages may also be achieved using a soot filter having a filter element, a housing, a feed line, and an outlet line, a diffusor connecting the feed line to the housing and a cone connecting the housing to the outlet line, by using a filter element according to the present invention.
Further advantages and advantageous example embodiments of the present invention are presented in the figures and are described in detail below. All features shown in the figures described below may be used in the present invention either individually or in any combination.
The flow passes through soot filter 1 in the direction of arrows 11. Housing 7 is connected to a cone 13 and an outlet line 15. Filter element 9 is gas-tightly connected to the housing, so that the exhaust gas (not depicted) entering through feed line 3 must flow through filter element 9.
Filter element 9 has an inlet face 17 and an outlet face 19. A plurality of channels extending from inlet face 17 to outlet face 19 pass through filter element 19.
For the exhaust gas to be forced to flow through the walls (having no reference numeral) of filter element 9, inlet channels 21 are open at inlet face 17 and closed at outlet face 19. So-called outlet channels 23 are closed at inlet face 17 and open at outlet face 19. The closures of inlet channels 21 and outlet channels 23 are shown in
The pattern shown in a partial section in
The exemplary embodiment shown in
It is obvious, however, that channels 21 and 23 pass through the entire cross-section area of filter element 9. A functional description of inlet channels 21 and outlet channels 23 was given in connection with
From
Due to their larger cross-section area, outer inlet channels 21 and outlet channels 23 have a lower flow resistance than inlet channels 21 and outlet channels 23 situated further inside, so that a higher flow rate of exhaust gas is established at outer inlet channels 21 and outlet channels 23. As a result, the edge areas of filter element 9 are also heated more intensely by the incoming exhaust gas, so that the temperature in the outer area of filter element 9 is raised due to channels 21 and 23 having increased cross sections. This also means, for the same heat energy supplied by the incoming exhaust gas, that the temperature inside the filter element, i.e., in the immediate vicinity of longitudinal axis 25, is reduced and thus the risk of local overheating inside filter element 9 is reduced.
In the diagram of
As an alternative, it would also be possible, as
In the exemplary embodiment according to
Since air is a poor heat conductor, the jacket of blind channels 27 on the periphery of filter element 9 acts as heat insulation, so that the heat transfer outward is reduced by blind channels 27. It also causes a rise in temperature in the outer area of filter element 9, so that the desired homogenization of temperatures over the entire cross section of the filter element is further improved.
The arrangement according to the present invention of different inlet channels 21, outlet channels 23, and/or blind channels 27 on the periphery of filter element 9 is not limited to cylindrical filter elements 9, but may also be applicable to filter element 9 having a square or rectangular cross section.
The shape of the cross-section area of inlet channels 21, outlet channels 23, and blind channels 27, which in the depicted example corresponds to a rectangle in first approximation, is also not a precondition for a filter element according to the present invention. For example, hexagonal, cross-shaped, or other shapes of cross-section areas are also possible.
In another specific embodiment of the present invention, the filter walls, i.e., the walls of the filter channels, may be structured. In particular the upstream surfaces of the inlet channels are, for example, provided with wave-type elevations. In other words: The slope of the surface is different from the slope of the plane in which the entire wall is situated only in one direction, while in a direction perpendicular thereto it corresponds to the slope of the plane in which the entire wall is situated, even in the non-planar areas. The wave-type design makes it possible to increase the effective filtering area and thus to improve the filter characteristics, in particular to reduce an exhaust gas counterpressure resulting from the operation of the motor vehicle. The filter substrate is manufactured during the manufacturing process, for example in an extrusion process, in such a way that the radial and/or concentric channel walls have a wavy structure.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 044 764 | Sep 2005 | DE | national |
10 2006 035 053 | Jul 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/066289 | 9/12/2006 | WO | 00 | 11/4/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/033921 | 3/29/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3436192 | Karlsson | Apr 1969 | A |
3853485 | Hogan | Dec 1974 | A |
3963504 | Lundsager | Jun 1976 | A |
4276071 | Outland | Jun 1981 | A |
4364761 | Berg et al. | Dec 1982 | A |
5108685 | Kragle | Apr 1992 | A |
5593646 | Koshiba et al. | Jan 1997 | A |
5641332 | Faber et al. | Jun 1997 | A |
5866230 | Maus | Feb 1999 | A |
6391421 | Bruck et al. | May 2002 | B1 |
6444006 | Haberkamp et al. | Sep 2002 | B1 |
6544310 | Badeau et al. | Apr 2003 | B2 |
6582490 | Miller et al. | Jun 2003 | B2 |
7056365 | Ichikawa et al. | Jun 2006 | B2 |
7238217 | Cutler et al. | Jul 2007 | B2 |
7244284 | Miwa et al. | Jul 2007 | B2 |
7247184 | Frost | Jul 2007 | B2 |
7429285 | Kuki et al. | Sep 2008 | B2 |
7575793 | Aniolek et al. | Aug 2009 | B2 |
7655195 | Ichikawa et al. | Feb 2010 | B1 |
7967887 | Yonushonis et al. | Jun 2011 | B1 |
20050066639 | Frost | Mar 2005 | A1 |
Number | Date | Country |
---|---|---|
0900922 | Mar 1999 | EP |
1260683 | Nov 2002 | EP |
5-118211 | May 1993 | JP |
5-321633 | Dec 1993 | JP |
6-23215 | Feb 1994 | JP |
7-19026 | Jan 1995 | JP |
9-313849 | Dec 1997 | JP |
2001-334114 | Dec 2001 | JP |
2002-355511 | Dec 2002 | JP |
2003-514180 | Apr 2003 | JP |
2003-126629 | May 2003 | JP |
WO 0134281 | May 2001 | WO |
WO 0210562 | Feb 2002 | WO |
WO 2005002709 | Jan 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20100037573 A1 | Feb 2010 | US |