The present solution relates generally to a filter element for use in a filter disc for filtering liquid containing particles, wherein a plurality of filter elements are arranged on a rotor shaft in a manner allowing liquid communication between the inside of the filter elements and the inside of the rotor shaft.
Filtering of liquids, such as wastewater, can for example be conducted with rotary disc filters comprising one or more filter discs. When filtering is to take place from the inside out, the rotor shaft has a hollow core and liquid to be filtered is fed to the inside of the rotor shaft. The filter element and the rotor shaft have openings through which the liquid to be filtered is fed to the inside of a filter element. The filtering takes place from the inside of the filter element and out though a filter cloth. Particles in the liquid are separated on the inside of the filter cloth. During rotation, when emerging out of the water, each filter elements could be cleaned by a water jet spraying the filter cloth. Particles cleaned from the filter cloth fall into the rotary shaft and onto a sludge collector, the particles are then carried out of the system together with rest of the waste flow.
The filter disc comprises a plurality of filter elements attached to a rotor shaft creating the disc. The rotor shaft is usually capable of carrying a plurality of such disc filters and is for example a hollow drum that can host liquid. During operation, the rotor shaft carrying the filter discs is rotated and the filter discs are during part of the revolution immersed in liquid.
Filter discs comprising filter elements allowing fluid connection through passages between adjacent filter elements have drawbacks, especially when filtering particles. Passages in the edge structures do not only allow for liquid to pass between adjacent filter elements when the filter disc rotates, particles are also transferred between the filter elements via the passages. The result of this is less efficient separation of particles. In addition, particles that pass between filter elements degrade and are torn into smaller parts making them more difficult to clean off the filter cloth at a later stage.
In prior art solutions with smaller passages exist that would prevent particles from passing between filter elements. However, the passages have an important function to allow liquid to flow between the filter elements and reducing the size of the passages would not be beneficial. Smaller passages would increase backflow from the filter elements to the rotary shaft effectively increasing the amount of liquid that needs to be filtered when liquid is filtered multiple times.
Thus, it would be beneficial to reduce the number of particles that are transferred through the passages between filter elements without increasing the amount of backflow from the filter elements into the rotary shaft.
An object of the present solution is to minimize the transportation of particles between filter elements in a disc filter.
Another object of the present solution is to substantially maintain the passage area between filter elements in a disc filter.
Another object of the present solution is to decrease degradation of particles during filtration in a disc filter to maintain the particles as large as possible.
Yet another object of the present solution is to increase efficiency of filtration in a disc filter.
Thus, the solution relates to a filter element for use in a filter disc, wherein a plurality of filter elements are arranged on a rotor shaft in a manner allowing liquid communication between the inside of the filter elements and the inside of the rotor shaft. The filter element has at least one passage in an edge structure for liquid communication between the inside of adjacent filter elements when the filter elements are assembled forming a filter disc. The passage has one or more elevated retention edges extending along at least one edge of the passage.
It is one advantage with the filter element that the passages have one or more elevated retention edges. The elevated retention edges direct particles inside the filter element towards the rotor shaft during rotation, thus reducing the number of particles being transferred between adjacent filter elements. The elevated retention edges are arranged at a distance from the filter cloth to allow particles to slide between the filter cloth and the elevated retention edge/edges.
According to one embodiment an elevated retention edge extends on two side of one or more passages at the edge structure of a filter element.
According to one embodiment an edge structure has two elevated retention edges that extends along the entire length of the edge structure.
According to one embodiment of the filter element the elevated retention edge extends inwards towards the inside of the filter element.
It is one advantage with the present solution that the elevated retention edge extends inwards towards the inside of the filter element to maintain particles within the filter element during rotation. When the filter element is rotated through the surface and out of the liquid the particles slides down on the side of the elevated retention edges and into the space between the elevated retention edges and the filter cloth down through openings at the shaft to the sludge collector instead of passing into the next filter element.
According to one embodiment of the filter element the elevated retention edge extends into the inside of the filter element in the rotation direction of the filter disc. It is an advantage with the present solution that in one embodiment the elevated retention edge extends in the rotation direction of the filter disc.
According to one embodiment of the filter element the elevated retention edge is tilted inwards towards the passage. It is one advantage that more space is provided for particles to slide outside of the elevated retention edge, i.e. between the filter cloth and the elevated retention edge, when the elevated retention edge is tilted inwards towards the passage. Another advantage is that the passage area is substantially maintained.
According to one embodiment of the filter element the elevated retention edge is a separate insert adapted to fit in the passage. It is an advantage with a separate insert that elevated retention edges can be retrofitted to filter elements.
According to one embodiment of the filter element the elevated retention edge comprises openings to reduce liquid disturbance. According to one embodiment the elevated retention edge is made of a mesh, net, or similar material allowing liquid to pass through while retaining particles.
According to one aspect of an insert for a passage in a filter element the elevated retention edge is part of the insert and the insert is a separate part being adapted to fit in the passage of a filter element.
According to one embodiment the insert further comprise attachment means for securing the insert in the passage.
The invention is now described, by way of example, with reference to the accompanying drawings, in which:
In the following, a detailed description of the different embodiments of the solution is disclosed under reference to the accompanying drawings. All examples herein should be seen as part of the general description and are therefore possible to combine in any way of general terms. Individual features of the various embodiments and aspects may be combined or exchanged unless such combination or exchange is clearly contradictory to the overall function of the filter disc and/or filter elements.
Briefly described the solution relates to a filter element for use in a filter disc. A plurality of filter elements is arranged on a rotor shaft in a manner allowing liquid communication between the inside of the filter elements and the inside of the rotor shaft. The filter elements are further adapted to allow liquid communication between adjacent filter elements via passages in edge structures of said filter elements. The passages have elevated retention edges to reduce the number of particles that passes through the passages.
The filter elements 2 can be fastened in different ways to the rotor shaft 3, for example in one embodiment via a long bolt fastened into a threaded opening 20 in the shaft. In one embodiment a fastening means 18, such as a nut or bolt, is further arranged in the opposite end of the long bolt to secure the filter element 2.
According to another embodiment multiple bolts are used to attach each filter element 2. According to some embodiments a gasket is arranged between the filter element 2 and the rotor shaft 3.
With reference to
The embodiment as shown in
Number | Date | Country | Kind |
---|---|---|---|
1950945-4 | Aug 2019 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/SE2020/050795 | 8/17/2020 | WO | 00 |