This invention relates to a filter element for a transcatheter embolic protection device.
The invention is particularly concerned with filter elements for transcatheter embolic protection devices of the type described in our WO-A-9923976. One type of such embolic filter essentially comprises a filter body mounted on an associated collapsible support frame which can be collapsed against the guidewire by means of a catheter for deployment of the filter through a patient's vascular system. Upon retraction of the catheter the support frame and filter body expand outwardly from the guidewire across a blood vessel within which the filter is positioned to filter blood flowing through the blood vessel.
One problem with the filter device is that there is a guidewire tip on the distal end which is required for guiding the filter into a desired position. The guidewire tip needs to be relatively long to provide a smooth tip transition. However, the guidewire distal tip may interfere with the optimal placement of the filter element.
The present invention is directed towards overcoming this problem.
According to the invention there is provide a medical guidewire assembly comprising:
a guidewire having a flexible tip at a distal end of the guidewire;
a medical device mounted near the distal end of the guidewire proximally of the tip, the medical device being movable relative to the tip for adjustment of the amount of the tip extending distally of the medical device;
and means to limit the movement of the medical device relative to the tip.
In a preferred embodiment of the invention the means to limit the movement of the medical device comprise one or more stiff limiting elements.
Preferably at least one limiting element is provided on the guidewire. The limiting element may be fixedly mounted to the guidewire. Alternatively, the limiting element is slidably mounted on the guidewire. In this case preferably the assembly includes stop means to limit slidable movement of the limiting element relative to the guidewire. The stop means to limit slidable movement of the limiting element preferably comprises a pair of stops spaced axially apart along the guidewire. The stops may be provided by abutment surfaces formed in the guidewire.
In a preferred embodiment of the invention at least one limiting element is mounted to the medical device. Preferably the limiting element is mounted to the medical device at the proximal end of the medical device. In one arrangement the limiting element is mounted intermediate proximal and distal ends of the medical device.
In one embodiment of the invention at least one limiting element is stiff relative to the guidewire.
Alternatively or additionally at least one limiting element is compliant relative to the guidewire.
Preferably the medical device and the tip are slidable relative to each other. Ideally, the medical device has a receiver slot for reception of at least portion of the tip. In one embodiment of the invention the tip is fully retractable within the receiver slot.
In a particularly preferred embodiment of the invention the medical device is a collapsible embolic filter mounted on a tubular sleeve which is slidably mounted on the guidewire adjacent the distal end of the guidewire, the sleeve having a bore through which the guidewire passes, said bore forming a receiver slot for reception of the flexible tip of the guidewire which is at least partially retractable within the bore of the sleeve.
Preferably the tip is fully retractable within the bore of the sleeve.
In one embodiment a guidewire limiting element is mounted to the guidewire proximal of the embolic filter and a filter limiting element is mounted to the filter within the bore of the sleeve, the guidewire being movable relative to the filter between the first and second limiting elements. In this case preferably the guidewire has an abutment which is engagable with the filter limiting element when the guidewire tip is retracted. In one embodiment the abutment is provided by a shoulder of the tip.
In one arrangement the filter limiting element is provided at a proximal end of the filter.
In another arrangement the filter limiting element is provided intermediate proximal and distal ends of the filter.
In another embodiment of the invention a guidewire limiting element is mounted to the guidewire intermediate proximal and distal ends of the filter and the filter has a proximal filter limiting element and a distal filter limiting element, the guidewire limiting element being movable with the guidewire between the proximal and distal filter limiting elements.
In one case the guidewire tip is retractable proximally of the distal filter limiting element.
Preferably the guidewire limiting element is movable on the guidewire. In this case the assembly includes stop means to limit slidable movement of the guidewire limiting element relative to the guidewire. The stop means may comprise a pair of stops spaced axially apart along the guidewire. The stops may be provided by abutment surfaces formed in the guidewire. In one embodiment the guidewire has a recessed portion of reduced diameter on which the guidewire limiting element is mounted.
In another aspect the invention provides an embolic protection device comprising:
a collapsible filter element mounted on a filter carrier for delivery through a vascular system of a patient;
the filter element being movable between a collapsed stored position against the filter carrier for movement through the vascular system, and an expanded position for occluding a blood vessel such that blood passing through the blood vessel is delivered through the filter element;
the filter element comprising a collapsible filter body having an inlet end and an outlet end;
the inlet end of the filter body having one or more inlet openings sized to allow blood and embolic material enter the filter body; the outlet end of the filter body having a plurality of outlet openings sized to allow through passage of blood but to retain undesired embolic material within the filter body;
the collapsible filter element being slidably mounted on the filter carrier for axial movement of the filter element along the filter carrier; and
means to limit the movement of the filter element relative to the filter carrier, the means being arranged to allow a distal end of the filter carrier to be substantially retracted into the filter element.
In one embodiment of the invention the means to limit the movement of the filter element comprise one or more limiting elements.
At least one limiting element is preferably provided on the filter carrier.
The limiting element may be fixedly mounted on the filter carrier.
Alternatively the limiting element is slidably mounted on the filter carrier. In this case the device preferably includes stop means to limit the movement of the limiting element relative to the filter carrier. The means to limit the movement of the limiting element may comprise a pair of stops spaced axially apart along the filter carrier. The stops may be provided by abutment surfaces formed on the filter carrier.
In a preferred embodiment of the invention at least one limiting element is mounted to the filter element. The limiting element may be mounted to the filter element intermediate the proximal and distal ends of the filter element.
In a further embodiment of the invention the filter element is mounted on a guidewire such that the guidewire has freedom to rotate and/or move axially independently of the filter. More preferably the wire has complete freedom to rotate independently of the filter and has limited axial movement. The limit of axial movement is determined by stops mounted on or connected to the wire. Ideally the wire can move 100 mm in the axial direction independent of the filter. More ideally the wire can move less than 50 mm independently of the filter. This embodiment facilitates the maintenance of filter position during the exchange of catheters and permits the steering of the wire independent of the filter.
In one embodiment of the invention at least one limiting element is stiff relative to the filter carrier. Alternatively or additionally at least one limiting element is compliant relative to the filter carrier.
The limiting element may be mounted to the filter element at the proximal end of the filter element.
In a particularly preferred embodiment of the invention the filter carrier is a guidewire. Preferably the distal end of the guidewire includes a guiding tip which may be substantially retracted into the filter element.
The invention also provides a method for positioning a medical device in a body lumen comprising the steps of:
providing a medical guidewire assembly of the invention;
advancing the assembly into a body lumen with the guidewire tip extending distally of the medical device to a first location;
moving the medical device relative to the tip to advance the medical device to a second location which is distally advanced from the first location.
The invention will be more clearly understood by the following description of some of the embodiments thereof, given by way of example only, with reference to the accompanying drawings, in which:
Referring to
The sleeve 104 is slidable on the guidewire 101 between a pair of spaced-apart end stops, namely an inner stop 106 and an outer stop which in this case is formed by a spring tip 107 at the distal end 103 of the guidewire 101.
The filter 105 comprises a filter body 110 mounted over a collapsible support frame 111. The filter body 110 is mounted to the sleeve 104 at each end, the body 110 being rigidly attached to a proximal end 112 of the sleeve 104 and the body 110 being attached to a collar 115 which is slidable along a distal end 114 of the sleeve 104. Thus the distal end of the body 110 is longitudinally slidable along the sleeve 104. The support frame 111 is also fixed at the proximal end 112 of the sleeve 104. A distal end 116 of the support frame 111 is not attached to the sleeve 104 and is thus also free to move longitudinally along the sleeve 104 to facilitate collapsing the support frame 111 against the sleeve 104. The support frame 111 is such that it is naturally expanded as shown in the drawings and can be collapsed inwardly against the sleeve 104 for loading in a catheter 118 or the like.
The filter body 105 has large proximal inlet openings 117 and small distal outlet openings 119. The proximal inlet openings 117 allow blood and embolic material to enter the filter body, while, the distal outlet openings 119 allow through passage of blood but retain undesired embolic material within the filter body.
An olive guide 120 is mounted at a distal end of the sleeve 104 and has a cylindrical central portion 121 with tapered ends 122, 123. The distal end 122 may be an arrowhead configuration for smooth transition between the catheter and olive surfaces. The support frame 111 is shaped to provide a circumferential groove 125 in the filter body 110. If the filter is too large for a vessel, the body may crease and this groove 125 ensures any crease does not propagate along the filter.
Enlarged openings are provided at a proximal end of the filter body 110 to allow ingress of blood and embolic material into an interior of the body 110.
In use, the filter 105 is mounted in a collapsed state within a distal end of the catheter 118 and delivered to a deployment site. When the filter is correctly positioned the catheter 118 is retracted allowing the support frame 111 to expand expanding the filter body 110 across the vessel in which the filter is mounted. Blood and emboli can enter the enlarged openings at a proximal end of the filter body 110. The blood will pass through the filter body, however, the openings or pores in the filter body are sized so as to retain the embolic material. After use, a retrieval catheter 18 is delivered along the guidewire 101 and slid over the filter 105 engaging the proximal inlet end 112 first to close the openings and then gradually collapsing the filter body against the sleeve 104 as the catheter 118 advances over the filter 105. Once the filter 105 is fully loaded in the catheter 118, it can then be withdrawn.
It will be noted that a proximal end of the filter is fixed and a distal end of the filter is longitudinally movable along the sleeve to facilitate collapsing of the filter body.
Further, the catheter engages the proximal end of the filter body first thus closing the filter body inlet and preventing escape of embolic material from the filter body as the filter body is being collapsed.
The outer filter body 110 is preferably of a resilient biocompatible elastomeric material. The material may be a polyurethane based material. There are a series of commercially available polyurethane materials that may be suitable. These are typically based on polyether or polycarbonate or silicone macroglycols together with diisocyanate and a diol or diamine or alkanolamine or water chain extender. Examples of these are described in EP-A-461,375 and U.S. Pat. No. 5,621,065. In addition, polyurethane elastomers manufactured from polycarbonate polyols as described in U.S. Pat. No. 5,254,622 (Szycher) are also suitable.
The filter material may also be a biostable polycarbonate urethane article an example of which may be prepared by reaction of an isocyanate, a chain extender and a polycarbonate copolymer polyol of alkyl carbonates. This material is described in our WO-A-9924084. The filter material may be manufactured from a block and cut into a desired shape. However the filter is preferably formed by dipping a rod of desired geometry into a solution of the material which coats the rod. The rod is then dissolved. The final geometry of the filter may be determined in the dipping step or the final geometry may be achieved in a finishing operation. Typically the finishing operations involve processes such as mechanical machining operations, laser machining or chemical machining.
The filter body is of hollow construction and is formed as described above by dipping a rod in a solution of polymeric material to coat the rod. The rod is then dissolved, leaving a hollow body polymeric material. The rod may be of an acrylic material which is dissolved by a suitable solvent such as acetone.
The polymeric body thus formed is machined to the shape illustrated in
The inlet holes 117 are provided in the proximal portion 210 which allow the blood and embolic material to flow into the filter body. In this case the proximal portion 210 is of generally conical shape to maximize the hole size.
The intermediate portion 215 is also hollow and in this case is of generally cylindrical construction. This is important in ensuring more than simple point contact with the surrounding blood vessel. The cylindrical structure allows the filter body to come into soft contact with the blood vessel to avoid damaging the vessel wall.
The intermediate portion 215 is provided with a radial stiffening means, in this case in the form of a radial strengthening ring or rim 220. The ring 220 provides localized stiffening of the filter body without stiffening the material in contact with the vessel. Such an arrangement provides appropriate structural strength so that line apposition of the filter body to the vessel wall is achieved. It is expected that other geometries of stiffening means will achieve a similar result.
The tubular intermediate portion 215 is also important in maintaining the stability of the filter body in situ to retain captured emboli and to ensure that flow around the filter is minimized. For optimum stability we have found that the ratio of the axial length of the intermediate portion 215 of the filter body to the diameter of the intermediate portion 215 is preferably at least 0.5 and ideally greater than 1.0.
The collapsible support frame 111 has four foldable arms 290 which are collapsed for deployment and upon release extend outwardly to expand the filter body 110.
The support frame 111 can be manufactured from a range of metallic or polymeric components such as a shape memory alloy like nitinol or a shape memory polymer or a shaped stainless steel or metal with similar properties that will recover from the deformation sufficiently to initiate opening of the filter body 110.
The support frame may be formed as illustrated in
To load the filter the sub assembly of the support frame and filter body is pulled back into the catheter 118 to engage the distal stop 107. The support arms 290 are hinged inwardly and the distal collar 293 moves forward along the tubular sleeve 104. As the support arms 290 enter the catheter 118 the filter body 110 stretches as the filter body collar 115 slides along the tubular sleeve 104 proximal to the olive 120. On deployment, the catheter 118 is retracted proximally along the guidewire 101 initially bringing the collapsed filter assembly with it until it engages the proximal stop 106. The catheter sleeve then begins to pull off the filter, freeing the support arms 290 to initiate opening of the filter body to oppose the vessel wall.
For retrieval, a retrieval catheter is introduced by sliding it over the guidewire 101 until it is positioned at the proximal end of the filter body and support frame. Pulling the guidewire 101 will initially engage the distal stop 107 with the filter element and begin to pull it into the retrieval catheter. The initial travel into the delivery catheter acts to close the proximal openings of the filter element, thus entrapping the embolic load. As the filter continues to be pulled back the filter body and the support frame are enveloped in the retrieval catheter. The collapsed filter may then be removed from the patient.
Referring to
The guidewire 30 is slidable between a proximal guidewire limiting element 35 on the guidewire 30 and a filter limiting element 37 provided at a proximal end of the filter 31. A stop defined by a shoulder 36 of the tip 32 is engagable against the limiting element 37.
The proximal limiting element 35 and the filter limiting element 37 are of a relatively stiff material, such that upon engagement of the filter 31 with the proximal limiting element 35, or the shoulder 36 with the filter limiting element 37, the limiting elements 35, 37 do not deform. In this way the movement of the filter 31 relative to the guidewire tip 32 is accurately controlled.
One or both of the limiting elements 35, 37 may be of a compliant material. This feature will assist in ensuring that the flexibility of the filter is not affected by the limiting elements.
Referring to
Referring to
Referring to
The filter may be placed over or beyond the distal guidewire tip. Thus, the invention facilitates the optimal placement of a filter device in the limited vasculature space available.
Other medical devices may be advanced over the guidewire to approach the filter from the proximal direction without obstruction. Such devices may be for use in performing angioplasty procedures, stenting and the like. Ready access is also provided to perform emergency procedures such as snaring of a medical device or part, and lysis for treatment of a blood clot.
It will be appreciated that while the invention has been described in relation to an embolic protection device it may also be applied to medial guidewire assemblies for placement of other medical devices.
The invention is not limited to the embodiments hereinbefore described which may be varied in both construction and detail.
Number | Date | Country | Kind |
---|---|---|---|
970789 | Nov 1997 | IE | national |
980267 | Apr 1998 | IE | national |
PCT/IE99/00039 | May 1999 | IE | national |
This application is a continuation application of U.S. application Ser. No. 12/339,375, filed Dec. 19, 2008, now allowed, which is a divisional application of U.S. application Ser. No. 10/189,375, filed Jul. 3, 2002, now U.S. Pat. No. 7,491,216, which is a continuation of U.S. application Ser. No. 09/986,060, filed Nov. 7, 2001, now abandoned, which is a continuation of PCT/IE00/00057, filed May 8, 2000, and which is a continuation-in-part of U.S. application Ser. No. 09/188,472, filed Nov. 9, 1998, now U.S. Pat. No. 6,336,934. In addition, PCT/IE00/00057 claims priority of PCT/IE99/00039, filed May 7, 1999, and U.S. application Ser. No. 09/188,472, now U.S. Pat. No. 6,336,934, claims priority of Irish Patent Application No. 98/0267 filed Apr. 8, 1998, and Irish Patent Application No. 97/0789 filed Nov. 7, 1997. The contents of each of the above-listed applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2854983 | Baskin | Oct 1958 | A |
2943626 | Dormia | Jul 1960 | A |
3334629 | Cohn | Sep 1967 | A |
3435824 | Gamponia | Apr 1969 | A |
3540431 | Mebin-Uddin | Nov 1970 | A |
3692029 | Adair | Sep 1972 | A |
3730185 | Cook et al. | May 1973 | A |
3952747 | Kimmell, Jr. | Apr 1976 | A |
4295464 | Shihata | Oct 1981 | A |
4404971 | LeVeen et al. | Sep 1983 | A |
4423725 | Baran et al. | Jan 1984 | A |
4425908 | Simon | Jan 1984 | A |
4425909 | Rieser | Jan 1984 | A |
4445892 | Hussein et al. | May 1984 | A |
4493711 | Chin et al. | Jan 1985 | A |
4512762 | Spears | Apr 1985 | A |
4585000 | Hershenson | Apr 1986 | A |
4586919 | Taheri | May 1986 | A |
4610662 | Weikl et al. | Sep 1986 | A |
4611594 | Grayhack et al. | Sep 1986 | A |
4619246 | Molgaard-Nielsen et al. | Oct 1986 | A |
4643184 | Mobin-Uddin | Feb 1987 | A |
4650466 | Luther | Mar 1987 | A |
4712551 | Rayhanabad | Dec 1987 | A |
4723549 | Wholey et al. | Feb 1988 | A |
4781177 | Lebigot | Nov 1988 | A |
4790812 | Hawkins, Jr. et al. | Dec 1988 | A |
4794928 | Kletschka | Jan 1989 | A |
4807626 | McGirr | Feb 1989 | A |
4817600 | Herms et al. | Apr 1989 | A |
4832055 | Palestrant | May 1989 | A |
4867156 | Stack et al. | Sep 1989 | A |
4873978 | Ginsburg | Oct 1989 | A |
4926858 | Gifford, III et al. | May 1990 | A |
4927426 | Dretler | May 1990 | A |
4957501 | Lahille et al. | Sep 1990 | A |
4969891 | Gevertz | Nov 1990 | A |
4990156 | Lefebvre | Feb 1991 | A |
5011488 | Ginsburg | Apr 1991 | A |
5026377 | Burton et al. | Jun 1991 | A |
5053008 | Bajaj | Oct 1991 | A |
5092839 | Kipperman | Mar 1992 | A |
5100423 | Fearnot | Mar 1992 | A |
5108419 | Reger et al. | Apr 1992 | A |
5122125 | Deuss | Jun 1992 | A |
5133733 | Rasmussen et al. | Jul 1992 | A |
5171233 | Amplatz et al. | Dec 1992 | A |
5178158 | De Toledo | Jan 1993 | A |
5192284 | Pleatman | Mar 1993 | A |
5192295 | Danforth et al. | Mar 1993 | A |
5254622 | Nanasawa et al. | Oct 1993 | A |
5256144 | Kraus et al. | Oct 1993 | A |
5324304 | Rasmussen | Jun 1994 | A |
5329942 | Gunther et al. | Jul 1994 | A |
5336234 | Vigil et al. | Aug 1994 | A |
5354310 | Garnic et al. | Oct 1994 | A |
5370657 | Irie | Dec 1994 | A |
5375612 | Cottenceau et al. | Dec 1994 | A |
5383887 | Nadal | Jan 1995 | A |
5387219 | Rappe | Feb 1995 | A |
5405329 | Durand | Apr 1995 | A |
5421832 | Lefebvre | Jun 1995 | A |
5454788 | Walker et al. | Oct 1995 | A |
5540707 | Ressemenn et al. | Jul 1996 | A |
5549626 | Miller et al. | Aug 1996 | A |
5593394 | Kanesaka et al. | Jan 1997 | A |
5621065 | Pudleiner et al. | Apr 1997 | A |
5658296 | Bates et al. | Aug 1997 | A |
5662671 | Barbut et al. | Sep 1997 | A |
5669933 | Simon et al. | Sep 1997 | A |
5683451 | Lenker et al. | Nov 1997 | A |
5695519 | Summers et al. | Dec 1997 | A |
5709704 | Nott et al. | Jan 1998 | A |
5720764 | Naderlinger | Feb 1998 | A |
5725519 | Penner et al. | Mar 1998 | A |
5766203 | Imran et al. | Jun 1998 | A |
5769816 | Barbut et al. | Jun 1998 | A |
5769871 | Mers Kelly et al. | Jun 1998 | A |
5779716 | Cano et al. | Jul 1998 | A |
5795322 | Boudewijn | Aug 1998 | A |
5800457 | Gelbfish | Sep 1998 | A |
5800525 | Bachinski et al. | Sep 1998 | A |
5810874 | Lefebvre | Sep 1998 | A |
5814064 | Daniel et al. | Sep 1998 | A |
5823992 | Salmon et al. | Oct 1998 | A |
5827324 | Cassell et al. | Oct 1998 | A |
5834449 | Thompson et al. | Nov 1998 | A |
5836969 | Kim et al. | Nov 1998 | A |
5843167 | Dwyer et al. | Dec 1998 | A |
5846260 | Maahs | Dec 1998 | A |
5848964 | Samuels | Dec 1998 | A |
5876367 | Kaganov et al. | Mar 1999 | A |
5879697 | Ding et al. | Mar 1999 | A |
5882329 | Pattrson et al. | Mar 1999 | A |
5895398 | Wensel et al. | Apr 1999 | A |
5895410 | Forber et al. | Apr 1999 | A |
5897567 | Ressemann et al. | Apr 1999 | A |
5902334 | Dwyer et al. | May 1999 | A |
5910154 | Tsugita et al. | Jun 1999 | A |
5911725 | Boury | Jun 1999 | A |
5911734 | Tsugita et al. | Jun 1999 | A |
5928261 | Ruiz | Jul 1999 | A |
5935139 | Bates | Aug 1999 | A |
5941869 | Patterson et al. | Aug 1999 | A |
5941896 | Kerr | Aug 1999 | A |
5947995 | Samuels | Sep 1999 | A |
5954745 | Gertler et al. | Sep 1999 | A |
5968071 | Chevillon | Oct 1999 | A |
5976172 | Homsma et al. | Nov 1999 | A |
5984947 | Smith | Nov 1999 | A |
5989281 | Barbut et al. | Nov 1999 | A |
5993469 | McKenzie et al. | Nov 1999 | A |
5997557 | Barbut et al. | Dec 1999 | A |
6001118 | Daniel et al. | Dec 1999 | A |
6007557 | Ambrisco et al. | Dec 1999 | A |
6010522 | Barbut et al. | Jan 2000 | A |
6013093 | Nott et al. | Jan 2000 | A |
6027509 | Schatz et al. | Feb 2000 | A |
6027520 | Tsugita et al. | Feb 2000 | A |
6042598 | Tsugita et al. | Mar 2000 | A |
6051014 | Jang | Apr 2000 | A |
6053832 | Saito | Apr 2000 | A |
6053932 | Daniel et al. | Apr 2000 | A |
6059814 | Ladd | May 2000 | A |
6066149 | Samson et al. | May 2000 | A |
6068645 | Tu | May 2000 | A |
6074357 | Kaganov et al. | Jun 2000 | A |
6083239 | Addis | Jul 2000 | A |
6086577 | Ken et al. | Jul 2000 | A |
6086605 | Barbut et al. | Jul 2000 | A |
6090097 | Barbut et al. | Jul 2000 | A |
6093173 | Balceta et al. | Jul 2000 | A |
6096027 | Layne | Aug 2000 | A |
6096053 | Bates | Aug 2000 | A |
6099534 | Bates et al. | Aug 2000 | A |
6099549 | Bosma et al. | Aug 2000 | A |
6123715 | Amplatz | Sep 2000 | A |
6129739 | Khosravi | Oct 2000 | A |
6132458 | Staehle et al. | Oct 2000 | A |
6142987 | Tsugita | Nov 2000 | A |
6146370 | Barbut | Nov 2000 | A |
6146404 | Kim et al. | Nov 2000 | A |
6152946 | Broome et al. | Nov 2000 | A |
6165199 | Barbut | Dec 2000 | A |
6165200 | Tsugita et al. | Dec 2000 | A |
6168579 | Tsugita | Jan 2001 | B1 |
6168604 | Cano | Jan 2001 | B1 |
6171327 | Daniel et al. | Jan 2001 | B1 |
6171328 | Addis | Jan 2001 | B1 |
6176849 | Yang et al. | Jan 2001 | B1 |
6179859 | Bates et al. | Jan 2001 | B1 |
6179861 | Khosravi et al. | Jan 2001 | B1 |
6203561 | Ramee et al. | Mar 2001 | B1 |
6206868 | Parodi | Mar 2001 | B1 |
6214026 | Lepak et al. | Apr 2001 | B1 |
6238412 | Dubrul et al. | May 2001 | B1 |
6241703 | Levin et al. | Jun 2001 | B1 |
6241746 | Bosma et al. | Jun 2001 | B1 |
6245012 | Kleshinski | Jun 2001 | B1 |
6245087 | Addis | Jun 2001 | B1 |
6245088 | Lowery | Jun 2001 | B1 |
6245089 | Daniel et al. | Jun 2001 | B1 |
6251122 | Tsukernik | Jun 2001 | B1 |
6254563 | Macoviak et al. | Jul 2001 | B1 |
6258115 | Dubrul | Jul 2001 | B1 |
6258120 | McKenzie et al. | Jul 2001 | B1 |
6264663 | Cano | Jul 2001 | B1 |
6264672 | Fisher | Jul 2001 | B1 |
6267776 | O'Connell | Jul 2001 | B1 |
6267777 | Bosma et al. | Jul 2001 | B1 |
6270513 | Tsugita et al. | Aug 2001 | B1 |
6273901 | Whitcher et al. | Aug 2001 | B1 |
6277138 | Levinson et al. | Aug 2001 | B1 |
6277139 | Levinson et al. | Aug 2001 | B1 |
6290710 | Cryer et al. | Sep 2001 | B1 |
6295989 | Connors, III | Oct 2001 | B1 |
6306163 | Fitz | Oct 2001 | B1 |
6319242 | Patterson et al. | Nov 2001 | B1 |
6325815 | Kusleika et al. | Dec 2001 | B1 |
6336934 | Gilson et al. | Jan 2002 | B1 |
6340364 | Kanesaka | Jan 2002 | B2 |
6346116 | Brooks et al. | Feb 2002 | B1 |
6348056 | Bates et al. | Feb 2002 | B1 |
6355051 | Sisskind et al. | Mar 2002 | B1 |
6361545 | Macoviak et al. | Mar 2002 | B1 |
6361546 | Khosravi | Mar 2002 | B1 |
6364895 | Greenhalgh | Apr 2002 | B1 |
6371935 | Macoviak et al. | Apr 2002 | B1 |
6371969 | Tsugita et al. | Apr 2002 | B1 |
6371970 | Khosravi et al. | Apr 2002 | B1 |
6371971 | Tsugita et al. | Apr 2002 | B1 |
6375670 | Greenhalgh | Apr 2002 | B1 |
6383206 | Gillick et al. | May 2002 | B1 |
6391044 | Yadav et al. | May 2002 | B1 |
6394978 | Boyle et al. | May 2002 | B1 |
6395014 | Macoviak et al. | May 2002 | B1 |
6395017 | Dwyer et al. | May 2002 | B1 |
6398756 | Peterson et al. | Jun 2002 | B2 |
6402771 | Palmer et al. | Jun 2002 | B1 |
6406471 | Jang et al. | Jun 2002 | B1 |
6423032 | Parodi | Jul 2002 | B2 |
6425909 | Dieck et al. | Jul 2002 | B1 |
6428489 | Jacobsen et al. | Aug 2002 | B1 |
6428559 | Johnson | Aug 2002 | B1 |
6432122 | Gilson et al. | Aug 2002 | B1 |
6436121 | Blom | Aug 2002 | B1 |
6443926 | Kletschka | Sep 2002 | B1 |
6443971 | Boylan et al. | Sep 2002 | B1 |
6443979 | Stalker et al. | Sep 2002 | B1 |
6447530 | Ostrovsky et al. | Sep 2002 | B1 |
6458139 | Palmer et al. | Oct 2002 | B1 |
6461370 | Gray et al. | Oct 2002 | B1 |
6468291 | Bates et al. | Oct 2002 | B2 |
6482222 | Bruckheimer et al. | Nov 2002 | B1 |
6485497 | Wensel et al. | Nov 2002 | B2 |
6485500 | Kokish et al. | Nov 2002 | B1 |
6485501 | Green | Nov 2002 | B1 |
6485502 | Don Michael et al. | Nov 2002 | B2 |
6494895 | Addis | Dec 2002 | B2 |
6506203 | Boyle et al. | Jan 2003 | B1 |
6506205 | Goldberg et al. | Jan 2003 | B2 |
6511492 | Rosenbluth | Jan 2003 | B1 |
6511496 | Huter et al. | Jan 2003 | B1 |
6511497 | Braun et al. | Jan 2003 | B1 |
6511503 | Burkett et al. | Jan 2003 | B1 |
6514273 | Voss et al. | Feb 2003 | B1 |
6517550 | Konya et al. | Feb 2003 | B1 |
6517559 | O'Connell | Feb 2003 | B1 |
6520978 | Blackledge et al. | Feb 2003 | B1 |
6527746 | Oslund et al. | Mar 2003 | B1 |
6530939 | Hopkins et al. | Mar 2003 | B1 |
6530940 | Fisher | Mar 2003 | B2 |
6533800 | Barbut | Mar 2003 | B1 |
6537294 | Boyle et al. | Mar 2003 | B1 |
6537295 | Petersen | Mar 2003 | B2 |
6537296 | Levinson et al. | Mar 2003 | B2 |
6537297 | Tsugita et al. | Mar 2003 | B2 |
6540722 | Boyle et al. | Apr 2003 | B1 |
6540767 | Walak et al. | Apr 2003 | B1 |
6540768 | Diaz et al. | Apr 2003 | B1 |
6544276 | Azizi | Apr 2003 | B1 |
6544279 | Hopkins et al. | Apr 2003 | B1 |
6544280 | Daniel et al. | Apr 2003 | B1 |
6547760 | Samson et al. | Apr 2003 | B1 |
6551341 | Boylan et al. | Apr 2003 | B2 |
6551342 | Shen et al. | Apr 2003 | B1 |
6558405 | McInnes | May 2003 | B1 |
6562058 | Seguin | May 2003 | B2 |
6565591 | Brady et al. | May 2003 | B2 |
6569184 | Huter | May 2003 | B2 |
6575995 | Huter et al. | Jun 2003 | B1 |
6575996 | Denison et al. | Jun 2003 | B1 |
6575997 | Palmer et al. | Jun 2003 | B1 |
6582447 | Patel et al. | Jun 2003 | B1 |
6582448 | Boyle et al. | Jun 2003 | B1 |
6585756 | Strecker | Jul 2003 | B1 |
6589263 | Hopkins et al. | Jul 2003 | B1 |
6589265 | Palmer et al. | Jul 2003 | B1 |
6592546 | Barbut et al. | Jul 2003 | B1 |
6592606 | Huter et al. | Jul 2003 | B2 |
6592616 | Stack et al. | Jul 2003 | B1 |
6596011 | Johnson et al. | Jul 2003 | B2 |
6599307 | Huter et al. | Jul 2003 | B1 |
6602269 | Wallace et al. | Aug 2003 | B2 |
6602271 | Adams et al. | Aug 2003 | B2 |
6602272 | Boylan et al. | Aug 2003 | B2 |
6605102 | Mazzocchi et al. | Aug 2003 | B1 |
6605111 | Bose et al. | Aug 2003 | B2 |
6610077 | Hancock et al. | Aug 2003 | B1 |
6616679 | Khosravi et al. | Sep 2003 | B1 |
6616680 | Thielen | Sep 2003 | B1 |
6616681 | Hanson et al. | Sep 2003 | B2 |
6616682 | Joergensen et al. | Sep 2003 | B2 |
6620148 | Tsugita et al. | Sep 2003 | B1 |
6620182 | Khosravi | Sep 2003 | B1 |
6623450 | Dutta | Sep 2003 | B1 |
6632236 | Hogendijk | Oct 2003 | B2 |
6632241 | Hancock et al. | Oct 2003 | B1 |
6635070 | Leeflang et al. | Oct 2003 | B2 |
6638294 | Palmer | Oct 2003 | B1 |
6645220 | Huter et al. | Nov 2003 | B1 |
6645223 | Boyle et al. | Nov 2003 | B2 |
6645224 | Gilson et al. | Nov 2003 | B2 |
6652480 | Imran et al. | Nov 2003 | B1 |
6652505 | Tsugita et al. | Nov 2003 | B1 |
6652554 | Wholey et al. | Nov 2003 | B1 |
6652557 | MacDonald | Nov 2003 | B1 |
6656202 | Papp et al. | Dec 2003 | B2 |
6660021 | Palmer et al. | Dec 2003 | B1 |
6663650 | Sepetka et al. | Dec 2003 | B2 |
6663651 | Krolike et al. | Dec 2003 | B2 |
6663652 | Daniel et al. | Dec 2003 | B2 |
6666882 | Bose et al. | Dec 2003 | B1 |
6669721 | Bose et al. | Dec 2003 | B1 |
6682812 | Scheckenbach et al. | Jan 2004 | B2 |
6695813 | Boyle et al. | Feb 2004 | B1 |
6726701 | Gilson et al. | Apr 2004 | B2 |
6726703 | Broome et al. | Apr 2004 | B2 |
6752819 | Brady et al. | Jun 2004 | B1 |
6773448 | Kusleika et al. | Aug 2004 | B2 |
6840950 | Stanford et al. | Jan 2005 | B2 |
6872216 | Daniel et al. | Mar 2005 | B2 |
6887256 | Gilson et al. | May 2005 | B2 |
6963760 | Piwowarski | Nov 2005 | B2 |
6964670 | Shah et al. | Nov 2005 | B1 |
7131986 | Sirhan et al. | Nov 2006 | B2 |
7172614 | Boyle et al. | Feb 2007 | B2 |
7491215 | Vale et al. | Feb 2009 | B2 |
20010000799 | Wessman et al. | May 2001 | A1 |
20010001315 | Bates et al. | May 2001 | A1 |
20010007947 | Kanesaka | Jul 2001 | A1 |
20010012951 | Bates et al. | Aug 2001 | A1 |
20010020175 | Yassour et al. | Sep 2001 | A1 |
20010025187 | Okada | Sep 2001 | A1 |
20010031982 | Peterson et al. | Oct 2001 | A1 |
20010039431 | De Vries et al. | Nov 2001 | A1 |
20010041908 | Levinson et al. | Nov 2001 | A1 |
20010044632 | Daniel et al. | Nov 2001 | A1 |
20020002384 | Gilson et al. | Jan 2002 | A1 |
20020004667 | Adams et al. | Jan 2002 | A1 |
20020022858 | Demond et al. | Feb 2002 | A1 |
20020022860 | Borillo et al. | Feb 2002 | A1 |
20020026211 | Khosravi et al. | Feb 2002 | A1 |
20020026213 | Gilson et al. | Feb 2002 | A1 |
20020032460 | Kusleika et al. | Mar 2002 | A1 |
20020045916 | Gray et al. | Apr 2002 | A1 |
20020045918 | Suon et al. | Apr 2002 | A1 |
20020049467 | Gilson et al. | Apr 2002 | A1 |
20020049468 | Streeter et al. | Apr 2002 | A1 |
20020052626 | Gilson et al. | May 2002 | A1 |
20020052638 | Zadno-Azizi | May 2002 | A1 |
20020055747 | Cano et al. | May 2002 | A1 |
20020055767 | Forde et al. | May 2002 | A1 |
20020058911 | Gilson et al. | May 2002 | A1 |
20020058963 | Vale et al. | May 2002 | A1 |
20020062133 | Gilson et al. | May 2002 | A1 |
20020062135 | Mazzocchi et al. | May 2002 | A1 |
20020065507 | Zadno-Azizi | May 2002 | A1 |
20020068954 | Foster | Jun 2002 | A1 |
20020068955 | Khosravi | Jun 2002 | A1 |
20020072730 | McGill et al. | Jun 2002 | A1 |
20020072765 | Mazzocchi et al. | Jun 2002 | A1 |
20020082525 | Oslund et al. | Jun 2002 | A1 |
20020082639 | Broome et al. | Jun 2002 | A1 |
20020091408 | Sutton et al. | Jul 2002 | A1 |
20020091409 | Sutton et al. | Jul 2002 | A1 |
20020095141 | Belef et al. | Jul 2002 | A1 |
20020095170 | Krolik et al. | Jul 2002 | A1 |
20020095171 | Belef | Jul 2002 | A1 |
20020095172 | Mazzocchi et al. | Jul 2002 | A1 |
20020095173 | Mazzocchi et al. | Jul 2002 | A1 |
20020095174 | Tsugita et al. | Jul 2002 | A1 |
20020099407 | Becker et al. | Jul 2002 | A1 |
20020103501 | Diaz et al. | Aug 2002 | A1 |
20020107541 | Vale et al. | Aug 2002 | A1 |
20020111648 | Kusleika et al. | Aug 2002 | A1 |
20020111649 | Russo et al. | Aug 2002 | A1 |
20020115942 | Stanford et al. | Aug 2002 | A1 |
20020120286 | DoBrava et al. | Aug 2002 | A1 |
20020120287 | Huter | Aug 2002 | A1 |
20020121472 | Garner et al. | Sep 2002 | A1 |
20020123720 | Kuleika et al. | Sep 2002 | A1 |
20020123755 | Lowe et al. | Sep 2002 | A1 |
20020128679 | Turovskiy et al. | Sep 2002 | A1 |
20020128680 | Pavlovic | Sep 2002 | A1 |
20020128681 | Broome et al. | Sep 2002 | A1 |
20020133092 | Oslund et al. | Sep 2002 | A1 |
20020138094 | Borillo et al. | Sep 2002 | A1 |
20020138095 | Mazzocchi et al. | Sep 2002 | A1 |
20020143360 | Douk et al. | Oct 2002 | A1 |
20020143361 | Douk et al. | Oct 2002 | A1 |
20020151927 | Douk et al. | Oct 2002 | A1 |
20020156456 | Fisher | Oct 2002 | A1 |
20020156457 | Fisher | Oct 2002 | A1 |
20020161390 | Mouw | Oct 2002 | A1 |
20020161392 | Dubrul | Oct 2002 | A1 |
20020161393 | Demond et al. | Oct 2002 | A1 |
20020161395 | Douk et al. | Oct 2002 | A1 |
20020165576 | Boyle et al. | Nov 2002 | A1 |
20020169414 | Kletschka | Nov 2002 | A1 |
20020169458 | Connors, III | Nov 2002 | A1 |
20020169472 | Douk et al. | Nov 2002 | A1 |
20020169474 | Kusleika et al. | Nov 2002 | A1 |
20020173815 | Hogendijk et al. | Nov 2002 | A1 |
20020173817 | Kleschka et al. | Nov 2002 | A1 |
20020183873 | Shadduck | Dec 2002 | A1 |
20020188313 | Johnson et al. | Dec 2002 | A1 |
20020188314 | Anderson et al. | Dec 2002 | A1 |
20020193825 | McGuckin et al. | Dec 2002 | A1 |
20020193826 | McGuckin et al. | Dec 2002 | A1 |
20020193827 | McGuckin et al. | Dec 2002 | A1 |
20020193828 | Griffin et al. | Dec 2002 | A1 |
20030004536 | Boylan et al. | Jan 2003 | A1 |
20030004537 | Boyle et al. | Jan 2003 | A1 |
20030004539 | Linder et al. | Jan 2003 | A1 |
20030004540 | Linder et al. | Jan 2003 | A1 |
20030004541 | Linder et al. | Jan 2003 | A1 |
20030009188 | Linder et al. | Jan 2003 | A1 |
20030009189 | Gilson et al. | Jan 2003 | A1 |
20030015206 | Roth et al. | Jan 2003 | A1 |
20030018354 | Roth et al. | Jan 2003 | A1 |
20030023265 | Forber | Jan 2003 | A1 |
20030028238 | Burkett et al. | Feb 2003 | A1 |
20030032941 | Boyle et al. | Feb 2003 | A1 |
20030032977 | Brady et al. | Feb 2003 | A1 |
20030040772 | Hyodoh et al. | Feb 2003 | A1 |
20030042186 | Boyle et al. | Mar 2003 | A1 |
20030045898 | Harrison et al. | Mar 2003 | A1 |
20030057156 | Peterson et al. | Mar 2003 | A1 |
20030060782 | Bose et al. | Mar 2003 | A1 |
20030060843 | Boucher | Mar 2003 | A1 |
20030060844 | Borillo et al. | Mar 2003 | A1 |
20030065354 | Boyle et al. | Apr 2003 | A1 |
20030069596 | Eskuri | Apr 2003 | A1 |
20030069597 | Petersen | Apr 2003 | A1 |
20030078519 | Salahieh et al. | Apr 2003 | A1 |
20030078614 | Salahieh et al. | Apr 2003 | A1 |
20030083692 | Vrba et al. | May 2003 | A1 |
20030083693 | Daniel et al. | May 2003 | A1 |
20030093106 | Brady et al. | May 2003 | A1 |
20030100917 | Boyle et al. | May 2003 | A1 |
20030100918 | Duane | May 2003 | A1 |
20030105484 | Boyle et al. | Jun 2003 | A1 |
20030109824 | Anderson et al. | Jun 2003 | A1 |
20030114879 | Euteneuer et al. | Jun 2003 | A1 |
20030114880 | Hansen et al. | Jun 2003 | A1 |
20030120303 | Boyle et al. | Jun 2003 | A1 |
20030125764 | Brady et al. | Jul 2003 | A1 |
20030130680 | Russell | Jul 2003 | A1 |
20030130681 | Ungs | Jul 2003 | A1 |
20030130682 | Broome et al. | Jul 2003 | A1 |
20030130684 | Brady et al. | Jul 2003 | A1 |
20030130685 | Daniel et al. | Jul 2003 | A1 |
20030130686 | Daniel et al. | Jul 2003 | A1 |
20030130687 | Daniel et al. | Jul 2003 | A1 |
20030130688 | Daniel et al. | Jul 2003 | A1 |
20030135162 | Deyette, Jr. et al. | Jul 2003 | A1 |
20030135232 | Douk et al. | Jul 2003 | A1 |
20030139764 | Levinson et al. | Jul 2003 | A1 |
20030144670 | Pavcnik et al. | Jul 2003 | A1 |
20030144685 | Boyle et al. | Jul 2003 | A1 |
20030144686 | Martinez et al. | Jul 2003 | A1 |
20030144687 | Brady et al. | Jul 2003 | A1 |
20030144688 | Brady et al. | Jul 2003 | A1 |
20030144689 | Brady et al. | Jul 2003 | A1 |
20030150821 | Bates et al. | Aug 2003 | A1 |
20030153942 | Wang et al. | Aug 2003 | A1 |
20030153943 | Michael et al. | Aug 2003 | A1 |
20030158574 | Esch et al. | Aug 2003 | A1 |
20030163064 | Vrba et al. | Aug 2003 | A1 |
20030171770 | Kusleika et al. | Sep 2003 | A1 |
20030171771 | Anderson et al. | Sep 2003 | A1 |
20030171803 | Shimon | Sep 2003 | A1 |
20030176884 | Berrada et al. | Sep 2003 | A1 |
20030176885 | Broome et al. | Sep 2003 | A1 |
20030176886 | Wholey et al. | Sep 2003 | A1 |
20030181942 | Sutton et al. | Sep 2003 | A1 |
20030181943 | Daniel et al. | Sep 2003 | A1 |
20030187474 | Keegan et al. | Oct 2003 | A1 |
20030187475 | Tsugita et al. | Oct 2003 | A1 |
20030187495 | Cully et al. | Oct 2003 | A1 |
20030191493 | Epstein et al. | Oct 2003 | A1 |
20030195555 | Khairkhahan et al. | Oct 2003 | A1 |
20030199819 | Beck | Oct 2003 | A1 |
20030204168 | Bosma et al. | Oct 2003 | A1 |
20030208224 | Broome | Nov 2003 | A1 |
20030208225 | Goll et al. | Nov 2003 | A1 |
20030208226 | Bruckheimer et al. | Nov 2003 | A1 |
20030208227 | Thomas | Nov 2003 | A1 |
20030208228 | Gilson et al. | Nov 2003 | A1 |
20030212361 | Boyle et al. | Nov 2003 | A1 |
20030212429 | Keegan et al. | Nov 2003 | A1 |
20030212431 | Brady et al. | Nov 2003 | A1 |
20030212434 | Thielen | Nov 2003 | A1 |
20030216774 | Larson | Nov 2003 | A1 |
20030220665 | Eskuri et al. | Nov 2003 | A1 |
20030225418 | Esksuri et al. | Dec 2003 | A1 |
20030229295 | Houde et al. | Dec 2003 | A1 |
20030229374 | Brady et al. | Dec 2003 | A1 |
20030233117 | Adams et al. | Dec 2003 | A1 |
20040010282 | Kusleika | Jan 2004 | A1 |
20040204737 | Boismler et al. | Oct 2004 | A1 |
20060030878 | Anderson et al. | Feb 2006 | A1 |
20060161198 | Sakai et al. | Jul 2006 | A1 |
20070027522 | Chang et al. | Feb 2007 | A1 |
20070135833 | Talpade et al. | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
3706077 | Jun 1988 | DE |
0256683 | Feb 1988 | EP |
0461375 | Apr 1991 | EP |
0533511 | Mar 1993 | EP |
0596172 | Nov 1994 | EP |
0655228 | May 1995 | EP |
0743046 | Nov 1996 | EP |
0759287 | Feb 1997 | EP |
0791340 | Aug 1997 | EP |
0827756 | Mar 1998 | EP |
1123688 | Aug 2001 | EP |
1127556 | Aug 2001 | EP |
1149566 | Oct 2001 | EP |
1172073 | Jan 2002 | EP |
1181900 | Feb 2002 | EP |
1676545 | Jul 2006 | EP |
2580504 | Oct 1986 | FR |
2616666 | Dec 1988 | FR |
2768326 | Mar 1999 | FR |
2020557 | Nov 1979 | GB |
2200848 | Aug 1988 | GB |
8809683 | Dec 1988 | WO |
8907422 | Aug 1989 | WO |
9424946 | Nov 1994 | WO |
9534254 | Dec 1995 | WO |
9534339 | Dec 1995 | WO |
9601591 | Jan 1996 | WO |
9639998 | Dec 1996 | WO |
9703810 | Feb 1997 | WO |
9717021 | May 1997 | WO |
9717100 | May 1997 | WO |
9717914 | May 1997 | WO |
9727808 | Aug 1997 | WO |
9742879 | Nov 1997 | WO |
9824377 | Jun 1998 | WO |
9830265 | Jul 1998 | WO |
9833443 | Aug 1998 | WO |
9838920 | Sep 1998 | WO |
9839053 | Sep 1998 | WO |
9846297 | Oct 1998 | WO |
9849952 | Nov 1998 | WO |
9850103 | Nov 1998 | WO |
9851237 | Nov 1998 | WO |
9916382 | Apr 1999 | WO |
9920335 | Apr 1999 | WO |
9922673 | May 1999 | WO |
9923976 | May 1999 | WO |
9925252 | May 1999 | WO |
9944510 | Sep 1999 | WO |
9944542 | Sep 1999 | WO |
9951167 | Oct 1999 | WO |
9955236 | Nov 1999 | WO |
0007521 | Feb 2000 | WO |
0007656 | Feb 2000 | WO |
0016705 | Mar 2000 | WO |
0021604 | Apr 2000 | WO |
0044428 | Aug 2000 | WO |
0049970 | Aug 2000 | WO |
0056390 | Sep 2000 | WO |
0066031 | Nov 2000 | WO |
0067664 | Nov 2000 | WO |
0067665 | Nov 2000 | WO |
0067666 | Nov 2000 | WO |
0067667 | Nov 2000 | WO |
0067668 | Nov 2000 | WO |
0067669 | Nov 2000 | WO |
0067670 | Nov 2000 | WO |
0067671 | Nov 2000 | WO |
0067829 | Nov 2000 | WO |
0076390 | Dec 2000 | WO |
0100084 | Jan 2001 | WO |
0100087 | Jan 2001 | WO |
0115329 | Jan 2001 | WO |
0108595 | Feb 2001 | WO |
0108596 | Feb 2001 | WO |
0108742 | Feb 2001 | WO |
0108743 | Feb 2001 | WO |
0110343 | Feb 2001 | WO |
0112081 | Feb 2001 | WO |
0115629 | Mar 2001 | WO |
0115630 | Mar 2001 | WO |
0121077 | Mar 2001 | WO |
0121100 | Mar 2001 | WO |
0135857 | May 2001 | WO |
0135858 | May 2001 | WO |
0143662 | Jun 2001 | WO |
0145590 | Jun 2001 | WO |
0145591 | Jun 2001 | WO |
0145592 | Jun 2001 | WO |
0149208 | Jul 2001 | WO |
0149209 | Jul 2001 | WO |
0149215 | Jul 2001 | WO |
0150982 | Jul 2001 | WO |
0152768 | Jul 2001 | WO |
0172205 | Oct 2001 | WO |
0180776 | Nov 2001 | WO |
0180777 | Nov 2001 | WO |
0182830 | Nov 2001 | WO |
0182831 | Nov 2001 | WO |
0187183 | Nov 2001 | WO |
0189413 | Nov 2001 | WO |
0197714 | Dec 2001 | WO |
0243595 | Jun 2002 | WO |
02083225 | Oct 2002 | WO |
03022325 | Mar 2003 | WO |
03047648 | Jun 2003 | WO |
03084434 | Oct 2003 | WO |
03084435 | Oct 2003 | WO |
03084436 | Oct 2003 | WO |
03088805 | Oct 2003 | WO |
03088869 | Oct 2003 | WO |
2004093738 | Nov 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20110125182 A1 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10189375 | Jul 2002 | US |
Child | 12339375 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12339375 | Dec 2008 | US |
Child | 13022040 | US | |
Parent | 09986060 | Nov 2001 | US |
Child | 10189375 | US | |
Parent | PCT/IE00/00057 | May 2000 | US |
Child | 09986060 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09188472 | Nov 1998 | US |
Child | PCT/IE00/00057 | US |