This invention relates to the Armstrong process as described in U.S. Pat. Nos. 5,779,761, 5,958,106 and 6,409,797, the disclosures of each of which is incorporated herein by reference. In the practice of the invention disclosed in the above referenced patents, there is produced in the reaction chamber a slurry consisting of excess reductant metal, salt particles produced and elemental material or alloy particles or powder produced. This slurry is thereafter treated by a variety of methods. However, all of the methods have in common the separation of excess liquid metal from the slurry and thereafter separating the remaining liquid metal and the produced salt from the desired product which is the elemental material or alloy. In the particular example disclosed in the three referenced patents, liquid sodium is used as a reductant for titanium tetrachloride to produce titanium powder.
Accordingly, it is an object of the present invention to provide a transfer mechanism and method for transferring a slurry of liquid and particles between two vessels or containers, at least one of which is under vacuum or inert atmosphere.
Yet another object of the present invention is to provide a transfer mechanism of the type set forth for the Armstrong Process in order to transfer slurry from an inerted vessel or container to a vacuum or inerted chamber for further processing wherein a plug established in the transfer mechanism isolating the vessels or containers.
Yet another object of the present invention is to provide a transfer mechanism between a first vessel containing a slurry of liquid and solids and a second vessel with at least one of the first and second vessels being under a protective atmosphere and/or vacuum, comprising a housing in communication with the first and the second vessels, a screw having at least one helical thread along a longitudinal shank within the housing for transferring material from the first vessel to the second vessel, the screw and the housing cooperating to compress the slurry, whereby slurry entering the housing from the first vessel has the solids therein concentrated as the slurry is transported by the screw toward the second vessel while liquid is expressed from the slurry as the solids are concentrated until the concentrated solids form a plug isolating the second vessel from the first vessel while solids discharge into the second vessel.
A further object of the invention is to provide a transfer mechanism between a first vessel containing a slurry of liquid alkali or alkaline earth metal or mixtures thereof and metal or alloy or ceramic particles and halide salt particles and a second vessel with at least one of the first and second vessels having a protective atmosphere and/or vacuum therein, comprising a housing in communication with the first and the second vessels, a screw having at least one helical thread along a longitudinal shank within the housing for transferring material from the first vessel to the second vessel, the screw and the housing cooperating to increase the concentration of solids in the slurry between the first and the second vessels until the concentrated particles form a plug isolating the second vessel and the protective atmosphere or vacuum therein from the first vessel and the protective atmosphere or vacuum therein while solids discharge into the second vessel.
A final object of the present invention is to provide a method of concentrating and transferring a slurry of a liquid and solids from one container to another while isolating the environments within the containers from each other, comprising providing communication between the containers, transporting slurry from one container toward another container while expressing liquid from the slurry thereby increasing the solids concentration thereof until a plug is formed between two containers isolating same while solids from the plug are transferred to the another container.
The invention consists of certain novel features and a combination of parts hereinafter fully described, illustrated in the accompanying drawings, and particularly pointed out in the appended claims, it being understood that various changes in the details may be made without departing from the spirit, or sacrificing any of the advantage of the present invention.
For the purpose of facilitating an understanding of the invention, there is illustrated in the accompanying drawings a preferred embodiment thereof, from an inspection of which, when considered in connection with the following description, the invention, its construction and operation, and many of its advantages should be readily understood and appreciated.
Referring to
A feed screw 30 is positioned within the inner conduit 15 and includes a rotatable shank 31 having a helical thread 32 positioned on the shank 31 as is well known in the art. The thread 32 may have a constant or a variable pitch. The pitch is the distance between adjacent threads and the variable pitch may preferably be a progressive pitch in which the pitch decreases from the vessel 20 toward the container or vessel 25, for a purpose hereinafter described.
In the preferred but not limiting embodiment of the present invention, the transfer mechanism 10 is used in conjunction with a material made by the Armstrong Process. More particularly, for purposes of illustration only, the slurry discussed herein will be a combination of liquid sodium, sodium chloride particles and particles of titanium and/or a titanium alloy. As set forth in the Armstrong patents, a variety of metal and non-metal products may be made thereby and it is intended that the present invention not be limited to any particular product made by the Armstrong Process and certainly not limited to the preferred product described herein.
In any event, the vessel or container 20 preferably operated under an inert atmosphere or under vacuum has therein a slurry of the particles previously described and as the slurry enters the portion 19 of the inner conduit or tube 15 and the feed screw 30 is rotated as illustrated in the drawings by rotation of the shank 31, the slurry is moved along the feed screw from left to right as illustrated in
Another way to express what occurs is that the volume between adjacent threads and the wall of the cylinder or tube 16 diminishes as material is moved by the feed screw 30 from container or vessel 20 to container or vessel 25. By the time the slurry is concentrated and reaches the portion 16, the solid portion 16 of the inner tube or conduit 15, a seal or plug is established between the vessel 25 and the vessel 20 which houses the slurry from the reactor thereby isolating the two vessels and the respective environments therein, one from the other. By isolating, we mean nearly complete separation of the two environments, not necessarily perfect separation, although perfect is desirable. The formation of a seal by the transfer mechanism 10 is a critical aspect of the present invention because separation of liquid sodium and salt from the desired particles of the ceramic or metal alloy, as described in the Armstrong patents may include distillation in a vacuum chamber or a vessel 25 or removal of the liquid metal by vaporization with a hot inert sweep gas and the Armstrong reactor itself may be an inerted vessel such as with argon. Accordingly, it is important for a seal or plug to be formed between the two containers or vessels in order to permit continuous operation between the two vessels without the necessity of shutting down one of the vessels during transfer or destroying the protective atmosphere in the vessel 20 or the vacuum or protective atmosphere in vessel 25.
Referring to
Referring to
Referring to
By way of example only, in the production of Ti or a Ti alloy by the reduction of TiCl4 with Na in an inert atmosphere as taught in the incorporated Armstrong patents, separation of Na and/or NaCl from Ti or Ti alloy powder in vessel 25 may be accomplished by distillation and/or by a hot inert sweep gas followed by passivation and/or washing the water. By effectively separating the environments in vessels 20 and 25, continuous operation of production and separation is accomplished, an important commercial feature. In one example of the invention, liquid Na may be present at about 60% by weight of the slurry leaving vessel 20, while the wet solids discharged into vessel 25 may have Na present only in the range of from about 20 to about 50% by weight.
Although the invention has been described with respect to an inerted vessel and a vacuum vessel, the invention includes movement and concentration of material from one container to another without compromising the environment of either container. The containers may be connected pipes or vessels, and the environments may be vacuums, inerted atmospheres or otherwise. Central to the invention is concentration of solids in a slurry to transport solids from one environment to another while forming a seal or plug therebetween so as to isolate the environments from each other.
While there has been disclosed what is considered to be the preferred embodiment of the present invention, it is understood that various changes in the details may be made without departing from the spirit, or sacrificing any of the advantages of the present invention.
This application according to 35 U.S.C. §365(c), is a continuation-in-part of PCT application serial no. PCT/US03/27647, filed Sep. 3, 2003, which pursuant to 35 U.S.C. 119(e), claims the priority based on Provisional Application Ser. No. 60/408,919 Filed Sep. 7, 2002.
Number | Date | Country | |
---|---|---|---|
60408919 | Sep 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US03/27647 | Sep 2003 | US |
Child | 10692096 | Oct 2003 | US |