1. Field of the Invention
This invention relates generally to gaseous-material evacuation systems and more particularly to such systems having filters for cleaning evacuated gases.
2. Description of Related Art
This invention has uses in the area of waste disposal, such as in devices and systems for evacuating aerosol cans, and other containers of pressurized gases and residue contents.
Pressurized aerosol cans, and other pressurized containers, have widespread usage in homes and industry. It has long been recognized that improper disposal of such containers constitutes a safety hazard in that excessive external heat and/or pressure can cause them to explode if they have not been relieved of internal pressure. Similarly, the release of contents, both propellant gases and dangerous residue materials, from such containers often damages the environment.
Due to these hazards, the Environmental Protection Agency (EPA), an agency of the U.S. Government, regulates disposal of pressurized containers as well as their contents for industries. These regulations mandate regulated businesses and industries dispose of pressurized containers as hazardous waste. The Resource Conservation and Recovery Act mandates that the pressure within aerosol cans equal atmosphere prior to disposal. Further, these regulations require that certain contents of pressurized containers be captured and disposed of in particular manners. Depending upon the natures of such contents, disposal methods can involve permanent disposal through incineration, landfills or other means; treatment and permanent disposal; treatment and recycling; and treatment and reclamation for a new use. An example of reclamation would be recovering a solvent contained in waste paint for use as a fuel. But, whichever disposal method is used, the EPA requires many industries to relieve the pressure in pressurized containers prior to transporting them for disposal.
In addition to the above requirements of the EPA, many states within the United States and countries outside the United States have requirements similar to, or even stricter than, those of the EPA. For example, California closely regulates release of gases into the atmosphere. In this respect, California considers some propellants used in aerosol cans to be contaminants, particularly when they contain small aerosolized particles of materials, such as insecticides, paints and the like, which were in the aerosol cans.
Further, while EPA regulations do not apply to individuals and many small businesses, many of these still desire to dispose of hazardous contents of such containers, and the containers themselves, in a manner which provides personal safety and protects the environment, and would do so if a reliable, inexpensive apparatus therefor exists.
There have been a number of prior-art devices suggested for piercing pressurized containers such as are described in U.S. Pat. No. 3,303,968 to Compere; U.S. Pat. No. 3,333,735 to Odasso; U.S. Pat. No. 3,828,976 to Sidelinker, U.S. Pat. No. 3,926,340 to Tygenhof; U.S. Pat. No. 4,500,015 to Penney, and U.S. Pat. No. 4,934,055 to Chambers. Some of these devices do not adequately provide for disposal of gases and residual contents of the pressurized containers, such as the devices of Compere, Sidelinker, Odasso, Tygenhof and Penney.
The device of Chambers (U.S. Pat. No. 4,934,055) does provide for disposal of contents of pressurized cans, however, this device appears to be somewhat limited in application having an unduly small, custom-built, reservoir and apparently requiring an undue amount of strength and dexterity to operate. Also, the device of this patent does not appear to be sufficiently durable to withstand repeated use.
A number of US patents to Michael Campbell describe systems for evacuating gaseous materials from aerosol containers and other types of containers, see U.S. Pat. Nos. 5,163,585; 5,265,762; and 5,992,475. Most of these systems involve sealing a wall of an aerosol can on a seat, puncturing the can below the seat, and evacuating the contents of the can into a drum.
A widely used device for piercing pressurized containers is described in U.S. Pat. No. 5,265,762 to Campbell et al. This Campbell et al. patent describes a puncturing device for aerosol containers which includes an elongated tubular housing having male threads at a second end for being screwed into a first, or large, bung-plug hole (bunghole) of an off-the-shelf drum, such as a 15, 30 or 55 gallon drum. An aerosol can to be disposed of is inserted into a first opening at a first end of the cylindrical housing, nozzle-end-first, until a shoulder of the aerosol can engages a sealing shoulder seat in the elongated tubular housing. A puncturing member, as part of a mechanism mounted to the side of the housing, is driven through the housing to create a puncture opening in the aerosol can below the sealing shoulder seat. Propelling gas and residue material are driven from the aerosol can, by pressure of the propellant gas, through the puncture opening and through the second end opening of the housing into the drum. The sealing shoulder seat prevents the propellant gas and residue from retro-movement toward the first end opening of the housing (which opens to the environment) and ensures that these materials go into the drum.
Campbell et al (U.S. Pat. No. 5,265,762) also describes a filter screwed into a second, small, bunghole of the drum for filtering propellant gases escaping from the second bunghole of the drum to the environment for cleaning escaping gaseous vapors of atmosphere-harmful materials.
U.S. Pat. No. 5,992,475 to Campbell discloses a spring-activated check valve at the second end of the tubular wall of the housing with a spring-activated valve poppet positioned at the second end for opening and closing in response to pressure. Basically this check valve opens to allow propellant gases to escape from the punctured aerosol cans into the drum and then closes to prevent retrograde movement of the gases from the drum back through the piercing-device housing once the cans are removed. U.S. Pat. No. 5,181,462 to Isaac also describes a similar valve.
Other patents which describe devices and systems relating to the system described in Campbell et al (U.S. Pat. No. 5,265,762) include U.S. Pat. No. 3,358,883 to Loe; U.S. Pat. No. 3,828,976 to Sidelinker, U.S. Pat. No. 3,926,340 to Tygenhof; U.S. Pat. No. 4,349,054 to Chipman et al; U.S. Pat. No. 5,114,043 to Collins, Jr.; U.S. Pat. No. 5,181,462 to Isaac; U.S. Pat. No. 5,271,437 to O'Brien et al; U.S. Pat. No. 5,284,997 to Spearman et al; U.S. Pat. No. 5,309,956 to Hajma; U.S. Pat. No. 5,365,982 to O'Neill; U.S. Pat. No. 6,422,273 to Campbell; and U.S. Pat. No. 6,644,515 to Campbell. Additional patent documents disclosing devices for puncturing pressurized cans and/or disposing of their contents include U.S. Pat. No. 5,067,529 to Gonzalez-Miller et al., U.S. Pat. No. 4,459,906 to Cound et al, and U.S. Pat. No. 4,407,341 to Feldt et al. as well as Soviet patent document 821399 and German Offenlegungsschrift 1,607,991. All of these patent documents disclose relatively complicated, expensive, and large machines.
Although these prior-art devices prevent retrograde movement of unfiltered gases through the piercing-device housing back to atmosphere, they do not filter gases as they pass through the filter from the small bunghole in a manner which indicates when the filter is saturated and which inhibits flashback. Flow of such gaseous materials through the filter to atmosphere can be dangerous because personnel standing near the drum containing evacuated residue and gases are not aware that dangerous gases are being continually released. For example, one might smoke a cigarette close to a storage drum, thereby possibly igniting gases escaping from the drum through the filter. For this reason, it is desirable that evacuation systems filter residue and/or contaminants from the gaseous materials that escape into the atmosphere and prevent flashback so that the fumes are not ignited.
It is an object of the invention to provide a filter assembly for use in conjunction with a storage drum into which the contents of pressurized cans have been emptied. In common use, the filter assembly is used in conjunction with a device for puncturing a pressurized container to relieve the pressure therein and for releasing gases and residual contents thereof into a storage drum.
It is further an object to provide a filter assembly which is not unduly complicated, which can be easily transported to a site and installed thereat, which is relatively easy and convenient to use requiring no outside power, which can be used with off-the-shelf receptacles in common use, which is relatively inexpensive to manufacture, which operates in a manner complying with EPA regulations in a safe and efficient manner, and which can accommodate pressurized containers of various sizes. Thus, it is an object of this invention to provide a device for allowing desired easy flow of evacuated gaseous materials through a filter of an evacuation system when the evacuation system is being actively use for evacuation, but for stopping such flow when gaseous materials are not being actively evacuated.
Finally, it is an object of the present invention to accomplish the foregoing objectives in a simple and cost effective manner.
The above and further objects, details and advantages of the invention will become apparent from the following detailed description, when read in conjunction with the accompanying drawings.
The present invention addresses these needs by providing a device for filtering exhaust fumes from a storage container, having an upper filter chamber which has an outer housing and contains filter material, preferably activated carbon, such that exhaust fumes may pass therethrough and residue is filtered from the exhaust fumes. A lower filter chamber has an outer housing and contains a coalescing filter for filtering residue from the exhaust fumes. The upper end of the lower filter chamber is attached to a lower end of the upper filter chamber and the lower end of the lower filter chamber is adapted to attach to a venting hole on the storage container. A visual indicator is attached to the filter assembly which indicates when the filter assembly is saturated with residue and a flashback inhibitor, preferably a stainless steel screen, prevents flashback of the exhaust fumes or residue. The visual indicator is preferably a temperature indicator and/or an airflow indicator. A temperature indicator is attached to the inside or outside of the outer housing of the upper filter chamber. If the temperature indicator is attached to the inside of the outer housing of the upper filter chamber, then the outer housing includes a transparent window such that the temperature indicator may be seen through the outer housing. The temperature indicator provides a temperature reading of the temperature inside of the filter assembly or may indicate whether a sufficient temperature increase has been achieved inside of the filter assembly. An airflow indicator is a transparent chamber located between the upper filter chamber and the lower filter chamber which encloses a lightweight material which reacts to an airflow, preferably at least one spherical floating element. The flashback inhibitor is located either at the lower end of the upper filter chamber below the filter material or at the upper end of the lower filter chamber above the coalescing filter or, preferably at both locations. The upper filter chamber and lower filter chamber are preferably made from aircraft grade aluminum or polyethelene. In the preferred embodiment, the upper filter chamber and said lower filter chamber are connected by an airtight, threaded connection by means of an o-ring.
A more complete description of the subject matter of the present invention and the advantages thereof, can be achieved by reference to the following detailed description by which reference is made to the accompanying drawings in which:
The following detailed description is of the best presently contemplated mode of carrying out the invention. This description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating general principles of embodiments of the invention. The embodiments of the invention and the various features and advantageous details thereof are more fully explained with reference to the non-limiting embodiments and examples that are described and/or illustrated in the accompanying drawings and set forth in the following description. It should be noted that the features illustrated in the drawings are not necessarily drawn to scale, and the features of one embodiment may be employed with the other embodiments as the skilled artisan recognizes, even if not explicitly stated herein. Descriptions of well-known components and techniques may be omitted to avoid obscuring the invention. The examples used herein are intended merely to facilitate an understanding of ways in which the invention may be practiced and to further enable those skilled in the art to practice the invention. Accordingly, the examples and embodiments set forth herein should not be construed as limiting the scope of the invention, which is defined by the appended claims. Moreover, it is noted that like reference numerals represent similar parts throughout the several views of the drawings.
A puncturing device 28 for evacuating pressurized cans, punctures a pressurized container (aerosol can) for relieving the pressure therein and for releasing into a storage drum 30 gases and residue contents. The puncturing device 28 generally comprises an elongated housing, a puncturing apparatus, a force applying apparatus, and an auxiliary support member. Exemplary puncturing devices are shown in U.S. Pat. No. 6,422,273; U.S. Pat. No. 5,163,585; U.S. Pat. No. 5,265,762; U.S. Pat. No. 5,992,475 and co-pending U.S. patent application Ser. No. 14/623,996, filed Feb. 17, 2015 for Puncturing Device for Aerosol Containers, all of which are incorporated herein by reference in their entirety.
The puncturing device 28 generally works as follows: The elongated housing defines an elongated cavity with openings at either end thereof. The elongated housing member has an intermediate aperture through which a puncture pin extends. The elongated housing further includes a threaded terminus for selectively engaging and disengaging a large female threaded bunghole of a standard storage drum 30. It should be noted that other containers besides drums could serve as receptacles in similar systems. Further, in other embodiments the threaded terminus can be sized and threaded to fit other collection receptacles. In this regard, standard off-the-shelf drums mentioned above usually have 2 inch filling or spout bungholes with standard threads as well as three quarter inch venting bungholes, also with standard threads. Generally, drums meeting standards of other countries also usually have large and small threaded bungholes.
The puncturing device 28 comprises structure for driving the pressurized container onto the puncture pin or the puncture pin into the pressurized container to be emptied. Pressure in the thusly punctured pressurized container forces gases and residue materials from the container through the puncturing device 28 and into the storage drum 30.
A filter assembly 10, which can be part of a kit including the puncturing device 28, is mounted in the venting bunghole or outlet port 26 of the receptacle, a storage drum 30, for filtering escaping propellant gases and collecting gaseous vapors thereof. Propellants and other gases escaping through the filter assembly 10 to atmosphere are thereby filtered and released, with gaseous vapors being coalesced, prior to the release.
The filter assembly 10 depicted in the drawings is sometimes referred to as a two-stage capsule filter, it comprising a lower filter chamber 22 with a male pipe-threaded section or inlet port 24 for engaging female threads of the venting bunghole, or outlet port 26. On top of the lower filter chamber 22 is a detachable upper filter chamber 12 that can be removably attached to the lower filter chamber 22. The description in U.S. Pat. No. 5,284,997 to Spearman et al. describes such a filter assembly and the teachings of that patent are incorporated herein by reference.
Generally, as shown in
This filter assembly 10 includes a method for determining when it has ceased to function as intended and requires replacement. A visual indicator may be in the form of a temperature indicator 34 attached to the upper filter chamber 12 of the filter assembly 10. During proper functioning of the upper filter chamber 12, adsorption of hydrocarbons by the activated carbon 32 causes an increase in temperature of the housing around the upper filter chamber 12 of the filter assembly 10, preferably by having the temperature indicator 34 in direct contact with the upper filter chamber 12. A temperature indicator 34, preferably a liquid crystal indicator, is attached to the outer or inner surface of the outer housing of the upper filter chamber 12. If the temperature indicator 34 is attached to the inner surface of the outer housing, the housing includes a transparent window such that the indicator may be seen through the outer housing of the upper filter chamber 12. This temperature indicator 34 shows the appropriate temperature increase so long as the filter assembly 10 is functioning properly. Once the filter assembly 10 fails to function properly, either because the coalescing filter 20 is saturated or because the activated carbon 32 in the upper filter chamber 12 is incapable of adsorbing additional hydrocarbons from the propellant, the temperature indicator 34 displays a temperature below the normal functioning temperature. This temperature indicator 34 may display either the ambient temperature, in degrees, during operation or may simply indicate that the required temperature increase has been achieved.
Alternatively, a visual indicator in the nature of a flow indicator 36 can be located in the filter assembly 10, preferably, between the lower filter chamber 22 and the upper filter chamber 12, above the flashback inhibitor 18. This flow indicator 36 is preferably a translucent section in the housing into which at least one lightweight object is placed, preferably a plurality of lightweight beads, to act as flow indicator material 38. As the propellant gas flows 40 through the flashback inhibitor 18 and enters the translucent section of the flow indicator 36, the beads, acting as a flow indicator material 38, are agitated to indicate gas continues to flow. The translucent portion of the flow indicator 36 allows the operator to see the beads, acting as a flow indicator material 38, and appreciate when they are agitated or still. The coalescing filter 20 in this device eventually becomes saturated with liquid particulates as they are removed from the propellant gas. Once the coalescing filter 20 is saturated, flow of the propellant gas is impeded such that the beads, acting as a flow indicator material 38, are no longer agitated. Once this occurs, the filter assembly 10 must be replaced.
The propellant gas then enters the upper filter chamber 12 of the filter assembly 10. In this portion, activated carbon 32 adsorbs hydrocarbons from the propellant gas.
In construction, the coalescing filter 20 is inserted into the housing of the lower filter chamber 22 and rests upon a protrusion on the floor of the housing. The first flashback inhibitor 18 includes a central hole which fits over a protrusion on the top of the coalescing filter 20. The O-ring 16 rests on a lip located near the upper end of the housing of the lower filter chamber 22. The lower end of the upper filter chamber 12, which includes activated carbon 32, then screws onto threads in the upper end of the housing of the lower filter chamber 22 with a sealed connection via the O-ring 16. This design allows for replacement of the coalescing filter 20 and/or the activated carbon 32, as needed.
It can be appreciated by those of ordinary skill in the art that neither the filter assembly 10 of this invention does not require a power source and can be located indoors or outdoors with no consideration for access to electricity or other power sources.
Also, the filter assembly 10 of this invention can be directly attached to existing off-the-shelf collection containers or receptacles for collection of residual contents. That is, since the threaded terminus or inlet port 24 of the filter assembly 10 is sized to engage bung threads of typical storage drums, the invention can be easily transported without consideration for transporting large containers and can be inexpensively manufactured. It should be understood that although the device has been described herein to be mounted on drums standard in the United States, it could be sized to drum standards in any country.
This invention is portable, lightweight and inexpensive, all features which facilitate compliance with regulations within a manufacturing plant. That is, the invention can be located at each “work center” at the convenience of workers, rather than in one centralized location which is where a large expensive machine would typically be located. That is, if a facility employs expensive machines, it is not economical to have many such machines spread out through the facility. However, manufacturing facilities have, in addition to their normal production line, maintenance shops where many aerosol cans are used, such as pump shops, machine shops, electrical shops, HVAC shops, maintenance shops etc.
This invention facilitates the filtering of gases released from aerosol cans since filters can be relatively easily mounted to vent bung ports of standard drums.
Further, the filter assembly 10 of this invention can be easily disassembled for required maintenance such as replacing the coalescing filter 20 or the activated carbon 32.
Obviously, many modifications may be made without departing from the basic spirit of the present invention. Accordingly, it will be appreciated by those skilled in the art that within the scope of the appended claims, the invention may be practiced other than has been specifically described herein. Many improvements, modifications, and additions will be apparent to the skilled artisan without departing from the spirit and scope of the present invention as described herein and defined in the following claims.
This application claims the benefit of U.S. Provisional Application No. 62/063,885, filed Oct. 14, 2014 for “Puncturing device for aerosol containers and improved filter”, and U.S. Provisional Application No. 61/973,374, filed Apr. 1, 2014 for “Improved filter for a propellant gas evacuation system”, both incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1242873 | Schroeder | Oct 1917 | A |
1555759 | Rowe | Sep 1925 | A |
1586298 | Eaton | May 1926 | A |
1599685 | Spaeth | Sep 1926 | A |
1718985 | Scoville | Jul 1929 | A |
2014187 | Neff | Sep 1935 | A |
2553942 | Roos | May 1951 | A |
2569319 | Krug | Sep 1951 | A |
2778223 | Kimbrell | Nov 1953 | A |
2671528 | Gross | Mar 1954 | A |
2851768 | Ellis | Sep 1958 | A |
D185589 | Allen | Jun 1959 | S |
3157107 | Kosar | Nov 1964 | A |
3169665 | Colley | Feb 1965 | A |
3303968 | Compere | Feb 1967 | A |
3333735 | Odasso | Aug 1967 | A |
3358883 | Loe | Dec 1967 | A |
3430819 | Moonan | Mar 1969 | A |
3438548 | Ceyba | Apr 1969 | A |
3828976 | Sidelinker | Aug 1974 | A |
3834589 | Morane et al. | Sep 1974 | A |
3840967 | Olson | Oct 1974 | A |
3891417 | Wade | Jun 1975 | A |
3926340 | Tygenhof | Dec 1975 | A |
4071012 | Cooke | Jan 1978 | A |
4223799 | Eyster et al. | Sep 1980 | A |
4252547 | Johnson | Feb 1981 | A |
D266188 | Seeley et al. | Sep 1982 | S |
4349054 | Chipman et al. | Sep 1982 | A |
4407341 | Feldt et al. | Oct 1983 | A |
4420012 | Astrom | Dec 1983 | A |
4426863 | Gillette et al. | Jan 1984 | A |
4459906 | Cound et al. | Jul 1984 | A |
4500015 | Penney | Feb 1985 | A |
4580700 | Rush | Apr 1986 | A |
4620576 | Owen, Jr. | Nov 1986 | A |
4655060 | Jakubas | Apr 1987 | A |
4699190 | Bates | Oct 1987 | A |
4700866 | Taylor | Oct 1987 | A |
4705082 | Fanshaw et al. | Nov 1987 | A |
4742688 | Rubin | May 1988 | A |
4782597 | Mills | Nov 1988 | A |
4788840 | Wilson, Jr. | Dec 1988 | A |
4811977 | Swift et al. | Mar 1989 | A |
4834267 | Schroer et al. | May 1989 | A |
4934055 | Chambers | Jun 1990 | A |
4959980 | Phillips | Oct 1990 | A |
4968333 | Ellis et al. | Nov 1990 | A |
5002593 | Ichishita et al. | Mar 1991 | A |
5067529 | Gonzalez-Miller et al. | Nov 1991 | A |
5086814 | Sato et al. | Feb 1992 | A |
5088526 | Nash | Feb 1992 | A |
5114043 | Collins, Jr. | May 1992 | A |
5125700 | Fattori et al. | Jun 1992 | A |
5141656 | Rountree | Aug 1992 | A |
5163585 | Campbell | Nov 1992 | A |
5181462 | Isaac | Jan 1993 | A |
5188155 | Kremer | Feb 1993 | A |
5199286 | Jakubas | Apr 1993 | A |
5265762 | Campbell | Nov 1993 | A |
5271437 | O'Brien | Dec 1993 | A |
5284997 | Spearman | Feb 1994 | A |
5285827 | Gonzalez-Miller et al. | Feb 1994 | A |
5303749 | Stock et al. | Apr 1994 | A |
5309956 | Hajma | May 1994 | A |
5322093 | O'Neil | Jun 1994 | A |
5332009 | VanEtten | Jul 1994 | A |
5337503 | Goby | Aug 1994 | A |
5339876 | Mattern | Aug 1994 | A |
5341853 | Nugues et al. | Aug 1994 | A |
5351859 | Jansen | Oct 1994 | A |
5365982 | O'Neill | Nov 1994 | A |
5370268 | Adams | Dec 1994 | A |
5383498 | Mattern et al. | Jan 1995 | A |
5385177 | O'Neil | Jan 1995 | A |
5421380 | Campbell | Jun 1995 | A |
5427157 | Nickens | Jun 1995 | A |
5427609 | Zoglman et al. | Jun 1995 | A |
5460154 | Mattern et al. | Oct 1995 | A |
5465473 | Teeslink | Nov 1995 | A |
5469898 | Campbell | Nov 1995 | A |
5471730 | Sackett | Dec 1995 | A |
5474114 | Nickens et al. | Dec 1995 | A |
5499665 | Gold et al. | Mar 1996 | A |
5499945 | Ferlin et al. | Mar 1996 | A |
5524945 | Georgopoulos et al. | Jun 1996 | A |
5529097 | Campbell | Jun 1996 | A |
5533767 | Georgopoulos et al. | Jul 1996 | A |
5535730 | Mattern | Jul 1996 | A |
5546995 | Van Etten | Aug 1996 | A |
5564414 | Walker et al. | Oct 1996 | A |
5568951 | Morgan | Oct 1996 | A |
5584325 | Nickens et al. | Dec 1996 | A |
5596892 | Edgar et al. | Jan 1997 | A |
5613533 | Gold et al. | Mar 1997 | A |
5613534 | Nickens et al. | Mar 1997 | A |
5615715 | Yore | Apr 1997 | A |
5657800 | Campbell | Aug 1997 | A |
D383659 | Norman | Sep 1997 | S |
5664610 | Nickens et al. | Sep 1997 | A |
5702592 | Suri et al. | Dec 1997 | A |
5715803 | Mattern | Feb 1998 | A |
5727498 | Hackler et al. | Mar 1998 | A |
5740615 | Treske | Apr 1998 | A |
5743246 | Mattern | Apr 1998 | A |
5775362 | Sato et al. | Jul 1998 | A |
5785038 | Mattern | Jul 1998 | A |
5819815 | Nickens et al. | Oct 1998 | A |
5823236 | Kirby et al. | Oct 1998 | A |
5826447 | Campbell | Oct 1998 | A |
5826631 | Gold et al. | Oct 1998 | A |
5832966 | Nickens et al. | Nov 1998 | A |
5868174 | Mattern | Feb 1999 | A |
5900216 | Nickens et al. | May 1999 | A |
5901759 | Nickens et al. | May 1999 | A |
5918649 | Johse | Jul 1999 | A |
5934511 | Ausmus | Aug 1999 | A |
5957168 | Nickens et al. | Sep 1999 | A |
5967012 | Dummer et al. | Oct 1999 | A |
5979709 | Liccioni | Nov 1999 | A |
5992475 | Campbell | Nov 1999 | A |
6000391 | Timmons | Dec 1999 | A |
6013121 | Chiu et al. | Jan 2000 | A |
6041506 | Iwao | Mar 2000 | A |
6053362 | Lin | Apr 2000 | A |
6139806 | Nickens et al. | Oct 2000 | A |
6164344 | Nickens et al. | Dec 2000 | A |
6219925 | Chen | Apr 2001 | B1 |
6240981 | Nickens et al. | Jun 2001 | B1 |
D446816 | Hsuan | Aug 2001 | S |
6308748 | Nickens et al. | Oct 2001 | B1 |
6318252 | Kao | Nov 2001 | B1 |
6331141 | Chua | Dec 2001 | B1 |
6393900 | Buckner, III et al. | May 2002 | B1 |
D458308 | Hsuan | Jun 2002 | S |
6412384 | Lwao | Jul 2002 | B1 |
6422273 | Campbell | Jul 2002 | B1 |
6428410 | Campbell | Aug 2002 | B1 |
6450192 | Romanek | Sep 2002 | B1 |
6481470 | Rubenic | Nov 2002 | B1 |
6644515 | Campbell | Nov 2003 | B1 |
6709221 | Roura Adell et al. | Mar 2004 | B2 |
6743281 | Miller | Jun 2004 | B1 |
6810731 | Lo | Nov 2004 | B1 |
6908372 | Larsson | Jun 2005 | B2 |
6923851 | Butler | Aug 2005 | B1 |
6941979 | Potts et al. | Sep 2005 | B1 |
7562622 | Babiel et al. | Jul 2009 | B2 |
7690130 | Risinger | Apr 2010 | B1 |
D632318 | Sindlinger | Feb 2011 | S |
7930947 | Counts | Apr 2011 | B2 |
7946010 | Myers et al. | May 2011 | B1 |
D671357 | Trombly | Nov 2012 | S |
D675237 | Broadbent et al. | Jan 2013 | S |
D685035 | Kanbar | Jun 2013 | S |
D690332 | Morehead et al. | Sep 2013 | S |
8997617 | Thomson | Apr 2015 | B2 |
D737904 | Kuehne | Sep 2015 | S |
9314661 | Chen | Apr 2016 | B1 |
D761673 | Allen et al. | Jul 2016 | S |
20020170861 | Monsrud et al. | Nov 2002 | A1 |
20030027699 | Brodie et al. | Feb 2003 | A1 |
20030189002 | Proulx et al. | Oct 2003 | A1 |
20040038096 | Chou | Feb 2004 | A1 |
20040045424 | Ikeda et al. | Mar 2004 | A1 |
20060191422 | Dorion | Aug 2006 | A1 |
20070005072 | Castillo et al. | Jan 2007 | A1 |
20070068352 | Morgan | Mar 2007 | A1 |
20070180723 | Morgan | Aug 2007 | A1 |
20080173086 | McQuaid | Jul 2008 | A1 |
20080295562 | Straka | Dec 2008 | A1 |
20080314220 | Ferry et al. | Dec 2008 | A1 |
20090050121 | Holzmann et al. | Feb 2009 | A1 |
20090223032 | Huang et al. | Sep 2009 | A1 |
20100095815 | Laib et al. | Apr 2010 | A1 |
20110016733 | Peretti | Jan 2011 | A1 |
20110265655 | Schuster et al. | Nov 2011 | A1 |
20120024771 | Abdalla et al. | Feb 2012 | A1 |
20120094810 | Anderson | Apr 2012 | A1 |
20120121751 | Atagi et al. | May 2012 | A1 |
20120210689 | Rogers et al. | Aug 2012 | A1 |
20130042944 | Campbell | Feb 2013 | A1 |
20130109545 | Chen | May 2013 | A1 |
20130209338 | Prasad | Aug 2013 | A1 |
20140018213 | Chen | Jan 2014 | A1 |
20140109742 | Elsmore et al. | Apr 2014 | A1 |
20140121075 | Brown | May 2014 | A1 |
20140162850 | Chen | Jun 2014 | A1 |
20140202375 | Goff | Jul 2014 | A1 |
20150273384 | Campbell | Oct 2015 | A1 |
20150298955 | Campbell | Oct 2015 | A1 |
20160325222 | Campbell | Nov 2016 | A1 |
20160338712 | Chernosky et al. | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
105312302 | Feb 2016 | CN |
1607991 | Oct 1970 | DE |
4204836 | Aug 1993 | DE |
19932519 | May 2001 | DE |
417022 | Mar 1991 | EP |
550815 | Jul 1993 | EP |
616328 | Jan 1927 | FR |
821399 | Apr 1981 | SU |
WO 9218418 | Oct 1992 | WO |
WO 9622916 | Aug 1996 | WO |
WO 9748475 | Dec 1997 | WO |
WO 0005137 | Feb 2000 | WO |
WO 2009156757 | Dec 2009 | WO |
WO 2016182976 | Nov 2016 | WO |
WO 2017030540 | Feb 2017 | WO |
WO 2017058229 | Apr 2017 | WO |
Entry |
---|
U.S. Appl. No. 15/149,136, filed Dec. 3, 2015, Michael C. Campbell. |
U.S. Appl. No. 29/547,478, filed Dec. 3, 2015, Michael C. Campbell. |
U.S. Appl. No. 29/546,867, filed Nov. 25, 2015, Michael C. Campbell. |
U.S. Appl. No. 61/940,810, filed Feb. 17, 2014, Michael C. Campbell. |
U.S. Appl. No. 61/973,374. filed Apr. 1, 2014, Michael C. Campbell. |
U.S. Appl. No. 62/063,885, filed Oct. 14, 2014, Michael C. Campbell. |
U.S. Appl. No. 62/158,928, filed May 8, 2015, Michael C. Campbell. |
Aerosol Can Disposal—American Gas Products, Inc. |
TalkTools “Adult Straw with Blue Lip Block,” http://www.talktools.com/adult-straw-with-blue-lip-block/ 1 page (Oct. 7, 2016). |
U.S. Patent and Trademark Office, International Search Report in International Application No. PCT/US1999/016418 (dated Nov. 4, 1999). |
U.S. Patent and Trademark Office, International Search Report in International Application No. PCT/US2015/045366 (dated Nov. 24, 2015). |
U.S. Patent and Trademark Office, International Search Report in International Application No. PCT/US2015/053416 (dated Dec. 30, 2015). |
U.S. Patent and Trademark Office, International Search Report in International Application No. PCT/US2016/031396 (dated Aug. 11, 2016). |
Number | Date | Country | |
---|---|---|---|
20150273384 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
62063885 | Oct 2014 | US | |
61973374 | Apr 2014 | US |