The following disclosure relates to electrical circuit for lamp.
A filter is used to remove the noise of the switching power supply for lamps. Convention filter typically includes a R-C filter composed of a resistor and a capacitor or an L-C filter composed of an inductor and a capacitor.
For a R-C filter, If you want to decrease the noise to 1/10000 of original magnitude, that is 20 log( 1/10000)=−80 dB, the noise frequency must be at least 10000 times of corner frequency of R-C filter. Only very high frequency noise can be removed.
For a L-C filter, If you want to decrease the noise to 1/10000 of original magnitude, that is 20 log( 1/10000)=−80 dB, the noise frequency must be at least 100 times of corner frequency of R-C filter. Only very high frequency noise can be removed.
The invention is a lamp filter composed of reference, error amplifier, feedback and controlled component to remove ripple or noise from power supply to lamp. This invention can remove low frequency, middle frequency and high frequency noise for lamps.
Corner frequency is square the root of production of L and C.
Only noise with frequency above the corner frequency of L-C filter can be reduced. If you want to decrease the noise to 1/10000 of original magnitude, that is 20·log( 1/10000)=−80 dB, the noise frequency must be at least 100 times of corner frequency of L-C filter. On
Input voltage comes from power supply 101 and output voltage supplies current to lamp 106. Feedback 105 feeds back voltage signal and compares with reference 103 by Error Amplifier 104. The output of Error Amplifier 104 controls the controlled component 102 to regulate the output voltage at predetermined value.
Here, the controlled component 102 is a PNP bipolar junction transistor. Power supply 101 supplies current through the PNP bipolar junction transistor Q1 to lamp 106. Reference 103 is composed of a resistor Rz and a zener diode Dz. Voltage divider composed of resistors R1 and R2 works as the feedback 105. Feedback 105 feeds output voltage signal back to compare with reference voltage Vref through Error Amplifier 104. The output of Error Amplifier 104 supplies voltage to resistor R3 to control current through transistor Q1 from input power supply 101 to lamp 106 by controlling the current through the base of the PNP bipolar junction transistor Q1.
The only difference between
Assume input voltage has small ripple Vin and lamp resistance is r.
Output voltage of Error Amplifier is Va, output voltage is Vo;
Open loop gain of the Error Amplifier IS Aol, β is the current gain of the transistor;
From above equations, we get
So we get Vo=Vin/(100000+0.3), So if input has a ripple or noise Vin, output noise or ripple will be reduced to 1/100000. Input ripple typical value is 100 mv, so the ripple is reduced to 0.1V/100000= 1/1000000V. That is almost 0.
Assume input voltage has small ripple Vin and lamp resistance is r.
Output voltage of Error Amplifier is Va, output voltage is Vo;
open loop gain of the Error Amplifier is Aol, Gm is transconductance of the Field-Effect transistor (FET);
From above equations, we get
So if input has a ripple or noise Vin, output noise or ripple will be reduced to 1/100000. Input ripple typical value is 100 mv, so the ripple is reduced to 0.1V/100000= 1/1000000V. That is almost 0.
Pin SHDN and pin IN are connected to power supply 101 and one end of a capacitor C1. The other end of a capacitor C1 is connected to ground. Pin GND is connected to ground. Pin OUT and PIN sense are connected to output lamp 106, one end of a capacitor C2 and one end of a capacitor C3. Pin BYP is connected to the other end of a capacitor C2. The other end of a capacitor C3 is connected to ground.
Power supply 101 is connected to one end of inductor Lf2, the other end of inductor Lf2 is connected to Pin SHDN and pin IN, one end of a capacitor Cf2, one end of a capacitor C1. The other end of capacitor Cf2 and the other end of a capacitor C1 are grounded. Pin GND is connected to ground. Pin OUT and Pin SENSE are connected to one end of inductor Lf1, one end of capacitor C2 and one end of capacitor C3. Pin BYP is connected to the other end of capacitor C2. The other end of capacitor C3 is connected to ground. The other end of inductor Lf1 is connected to lamp 106 and one end of capacitor Cf1. The other end of capacitor Cf1 is grounded.
Power supply 101 is connected to the input of invention 100, The output of invention 100 is connected to one end of inductor Lf1. The other end of inductor Lf1 is connected to lamp 106 and one end of capacitor Cf1. The other end of capacitor Cf1 is grounded.
The invention 100 includes reference 103, Error Amplifier 104, feedback 105 and controlled component 102.
Pin SHDN and Pin IN are connected to the power supply 101 and one end of a capacitor C1, the other end of a capacitor C1 is connected to ground. Pin GND is connected to ground. Pin OUT and Pin SENSE are connected to one end of output inductor Lf1, one end of a capacitor C2 and one end of a capacitor C3. Pin BYP is connected to the other end of a capacitor C2. The other end of output capacitor C3 is connected to ground. The other end of inductor Lf1 is connected to lamp 106 and one end of capacitor Cf1. The other end of capacitor Cf1 is connected to ground.
Power supply 101 is connected to one end of inductor Lf1, the other end of inductor Lf1 is connected to one end of capacitor Cf1 and the input of invention 100, the other end of capacitor Cf1 is grounded. The output of invention 100 is connected to lamp 106. The invention 100 includes reference 103, Error Amplifier 104, feedback 105 and a controlled component 102.
Power supply 101 is connected to one end of inductor Lf1. The other end of inductor Lf1 is connected one end of a capacitor Cf1, one end of a capacitor C1, Pin SHDN and pin IN of integrated circuit. The other end of a capacitor C1 is connected to ground. Pin GND is connected to ground. Pin OUT and Pin SENSE are connected to lamp 106, one end of a capacitor C2 and one end of a capacitor C3. Pin BYP is connected to the other end of capacitor C2. The other end of capacitor C3 is connected to ground.
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention.
The L-C filter between power supply and the input of the invention or the L-C filter between output of the invention and lamp can be replace by the filter as the following: L filter, T filter, π filter, R-C filter, low-pass filter, high-pass filter, band-pass filter, band-stop filter, all-pass filter, SAW filter, BAW filter, Garnet filter, all-pass filter, passive filter, active filter or the combination of the filters in series or in parallel.