Filter loading

Information

  • Patent Grant
  • 8480373
  • Patent Number
    8,480,373
  • Date Filed
    Thursday, December 7, 2006
    17 years ago
  • Date Issued
    Tuesday, July 9, 2013
    11 years ago
Abstract
A pumping system for moving water of a swimming pool includes a water pump, a variable speed motor, and a filter arrangement in fluid communication with the pump. The pumping system can also include means for determining a load value indicative of an unclogged filter that permits movement of water through the filter arrangement, means for determining a load value indicative of a clogged filter that inhibits movement of water through the filter arrangement, and means for determining a performance value of the pumping system. The pumping system also includes means for determining a relative loading value of the filter arrangement, means for displaying the relative loading value, and means for controlling the motor in response to the relative loading value. In one example, the load values and performance value can include flow pressure values. A method of moving water of a swimming pool is also disclosed.
Description
FIELD OF THE INVENTION

The present invention relates generally to control of a pump, and more particularly to control of a variable speed pumping system for a pool.


BACKGROUND OF THE INVENTION

Conventionally, a pump to be used in a pool is operable at a finite number of predetermined speed settings (e.g., typically high and low settings). Typically these speed settings correspond to the range of pumping demands of the pool at the time of installation. Factors such as the volumetric flow rate of water to be pumped, the total head pressure required to adequately pump the volume of water, and other operational parameters determine the size of the pump and the proper speed settings for pump operation. Once the pump is installed, the speed settings typically are not readily changed to accommodate changes in the pool conditions and/or pumping demands.


Conventionally, it is also typical to equip a pumping system for use in a pool with a filter arrangement capable of filtering the fluid moved by the pumping system, such as water. The filter arrangement can filter the fluid to remove unwanted impurities and particulates therefrom to maintain the water clarity and chemical balance. However, during use, it is possible that the filter arrangement can become clogged over time so as to inhibit the flow of the water therethrough. Thus, resistance to the flow of water can cause a decrease in the flow rate if the pumping system does not compensate to overcome this resistance. However, merely adjusting the pump to one of a few predetermined settings may cause the pump to operate at a rate that exceeds a needed rate, while adjusting the pump to another setting may cause the pump to operate at a rate that provides an insufficient amount of flow and/or pressure. In such a case, the pump will either operate inefficiently or operate at a level below that which is desired.


Accordingly, it would be beneficial to provide a pump that could be readily and easily adapted to provide a suitable supply of water at a desired pressure to pools having a variety of sizes and features. The pumping system can be configured to monitor the status of the filter arrangement and provide feedback to a user regarding the filter status. Further, the pump should be responsive to a change of conditions (i.e., a clogged filter or the like) and/or user input instructions.


SUMMARY OF THE INVENTION

In accordance with one aspect, the present invention provides a pumping system for moving water of a swimming pool. The pumping system includes a water pump for moving water in connection with performance of a filtering operation upon the water, a variable speed motor operatively connected to drive the pump, and a filter arrangement in fluid communication with the pump. The pumping system also includes means for determining a load value indicative of an unclogged filter that permits movement of water through the filter arrangement, means for determining a load value indicative of a clogged filter that inhibits movement of water through the filter arrangement, and means for determining a performance value of the pumping system. The pumping system also includes means for determining a relative loading value of the filter arrangement based upon the load value indicative of an unclogged filter, load value indicative of a clogged filter, and the performance value. The pumping system also includes means for displaying the relative loading value, and means for controlling the motor in response to the relative loading value.


In accordance with another aspect, the present invention provides a pumping system for moving water of a swimming pool. The pumping system includes a water pump for moving water in connection with performance of a filtering operation upon the water, a variable speed motor operatively connected to drive the pump, and a filter arrangement in fluid communication with the pump. The pumping system also includes means for determining a flow pressure value indicative of an unclogged filter that permits movement of water through the filter arrangement, means for determining a threshold flow pressure value indicative of a clogged filter that inhibits movement of water through the filter arrangement and means for determining an actual pressure value of the pumping system during the filtering operation. The pumping system also includes means for determining a relative loading value of the filter arrangement based upon the pressure value indicative of an unclogged filter, threshold pressure value indicative of a clogged filter, and the actual pressure value, and means for displaying the relative loading value as a percentage with respect to the threshold flow pressure value.


In accordance with another aspect, the present invention provides a pumping system for moving water of a swimming pool. The pumping system includes a water pump for moving water in connection with performance of a filtering operation upon the water, a variable speed motor operatively connected to drive the pump, and a filter arrangement in fluid communication with the pump. The pumping system also includes means for determining a flow pressure value indicative of an unclogged filter that permits movement of water through the filter arrangement, means for determining a threshold flow pressure value indicative of a clogged filter that inhibits movement of water through the filter arrangement, and means for determining an actual pressure value of the pumping system during the filtering operation. The pumping system also includes means for determining a relative loading value of the filter arrangement based upon the pressure value indicative of an unclogged filter, pressure value indicative of a clogged filter, and the actual pressure value, and means for controlling the motor to perform an operation upon the water. The means for controlling is configured to alter operation of the motor when the relative loading value exceeds a predetermined value.


In accordance with yet another aspect, the present invention provides a method of moving water of a swimming pool including a water pump for moving water in connection with performance of a filtering operation upon the water, a variable speed motor operatively connected to drive the pump, and a filter arrangement in fluid communication with the pump. The method comprises the steps of determining a flow pressure value indicative of an unclogged filter that permits movement of water through the filter arrangement, determining a threshold flow pressure value indicative of a clogged filter that inhibits movement of water through the filter arrangement, and determining an actual pressure value of the pumping system during the filtering operation. The method also includes the steps of determining a relative loading value of the filter arrangement based upon the pressure value indicative of an unclogged filter, pressure value indicative of a clogged filter, and the actual pressure value, displaying the relative loading value, and controlling the motor in response to the relative loading value.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features and advantages of the present invention will become apparent to those skilled in the art to which the present invention relates upon reading the following description with reference to the accompanying drawings, in which:



FIG. 1 is a block diagram of an example of a variable speed pumping system in a pool environment in accordance with the present invention;



FIG. 2 is another block diagram of another example of a variable speed pumping system in a pool environment in accordance with the present invention;



FIG. 3 is a diagram of an example filter loading profile for a filter arrangement between an unclogged condition and a clogged condition;



FIG. 4 is a function flow chart for an example methodology in accordance with the present invention;



FIG. 5 is a perceptive view of an example pump unit that incorporates one aspect of the present invention;



FIG. 6 is a perspective, partially exploded view of a pump of the unit shown in FIG. 5; and



FIG. 7 is a perspective view of a controller unit of the pump unit shown in FIG. 5.





DESCRIPTION OF EXAMPLE EMBODIMENTS

Certain terminology is used herein for convenience only and is not to be taken as a limitation on the present invention. Further, in the drawings, the same reference numerals are employed for designating the same elements throughout the figures, and in order to clearly and concisely illustrate the present invention, certain features may be shown in somewhat schematic form.


An example variable-speed pumping system 10 in accordance with one aspect of the present invention is schematically shown in FIG. 1. The pumping system 10 includes a pump unit 12 that is shown as being used with a pool 14. It is to be appreciated that the pump unit 12 includes a pump 16 for moving water through inlet and outlet lines 18 and 20.


The swimming pool 14 is one example of a pool. The definition of “swimming pool” includes, but is not limited to, swimming pools, spas, and whirlpool baths. Features and accessories may be associated therewith, such as water jets, waterfalls, fountains, pool filtration equipment, chemical treatment equipment, pool vacuums, spillways and the like.


A water operation 22 is performed upon the water moved by the pump 16. Within the shown example, the water operation 22 is a filter arrangement that is associated with the pumping system 10 and the pool 14 for providing a cleaning operation (i.e., filtering) on the water within the pool. The filter arrangement 22 is operatively connected between the pool 14 and the pump 16 at/along an inlet line 18 for the pump. Thus, the pump 16, the pool 14, the filter arrangement 22, and the interconnecting lines 18 and 20 form a fluid circuit or pathway for the movement of water.


It is to be appreciated that the function of filtering is but one example of an operation that can be performed upon the water. Other operations that can be performed upon the water may be simplistic, complex or diverse. For example, the operation performed on the water may merely be just movement of the water by the pumping system (e.g., re-circulation of the water in a waterfall or spa environment).


Turning to the filter arrangement 22, any suitable construction and configuration of the filter arrangement is possible. For example, the filter arrangement 22 can include a sand filter, a cartridge filter, and/or a diatomaceous earth filter, or the like. In another example, the filter arrangement 22 may include a skimmer assembly for collecting coarse debris from water being withdrawn from the pool, and one or more filter components for straining finer material from the water. In still yet another example, the filter arrangement 22 can be in fluid communication with a pool cleaner, such as a vacuum pool cleaner adapted to vacuum debris from the various submerged surfaces of the pool. The pool cleaner can include various types, such as various manual and/or automatic types.


The pump 16 may have any suitable construction and/or configuration for providing the desired force to the water and move the water. In one example, the pump 16 is a common centrifugal pump of the type known to have impellers extending radially from a central axis. Vanes defined by the impellers create interior passages through which the water passes as the impellers are rotated. Rotating the impellers about the central axis imparts a centrifugal force on water therein, and thus imparts the force flow to the water. Although centrifugal pumps are well suited to pump a large volume of water at a continuous rate, other motor-operated pumps may also be used within the scope of the present invention.


Drive force is provided to the pump 16 via a pump motor 24. In the one example, the drive force is in the form of rotational force provided to rotate the impeller of the pump 16. In one specific embodiment, the pump motor 24 is a permanent magnet motor. In another specific embodiment, the pump motor 24 is an induction motor. In yet another embodiment, the pump motor 24 can be a synchronous or asynchronous motor. The pump motor 24 operation is infinitely variable within a range of operation (i.e., zero to maximum operation). In one specific example, the operation is indicated by the RPM of the rotational force provided to rotate the impeller of the pump 16. In the case of a synchronous motor 24, the steady state speed (RPM) of the motor 24 can be referred to as the synchronous speed. Further, in the case of a synchronous motor 24, the steady state speed of the motor 24 can also be determined based upon the operating frequency in hertz (Hz). Thus, either or both of the pump 16 and/or the motor 24 can be configured to consume power during operation.


A controller 30 provides for the control of the pump motor 24 and thus the control of the pump 16. Within the shown example, the controller 30 includes a variable speed drive 32 that provides for the infinitely variable control of the pump motor 24 (i.e., varies the speed of the pump motor). By way of example, within the operation of the variable speed drive 32, a single phase AC current from a source power supply is converted (e.g., broken) into a three-phase AC current. Any suitable technique and associated construction/configuration may be used to provide the three-phase AC current. The variable speed drive supplies the AC electric power at a changeable frequency to the pump motor to drive the pump motor. The construction and/or configuration of the pump 16, the pump motor 24, the controller 30 as a whole, and the variable speed drive 32 as a portion of the controller 30, are not limitations on the present invention. In one possibility, the pump 16 and the pump motor 24 are disposed within a single housing to form a single unit, and the controller 30 with the variable speed drive 32 are disposed within another single housing to form another single unit. In another possibility, these components are disposed within a single housing to form a single unit. Further still, the controller 30 can receive input from a user interface 31 that can be operatively connected to the controller in various manners.


The pumping system 10 has means used for control of the operation of the pump. In accordance with one aspect of the present invention, the pumping system 10 includes means for sensing, determining, or the like one or more parameters indicative of the operation performed upon the water. Within one specific example, the system includes means for sensing, determining or the like one or more parameters indicative of the movement of water within the fluid circuit.


The ability to sense, determine or the like one or more parameters may take a variety of forms. For example, one or more sensors 34 may be utilized. Such one or more sensors 34 can be referred to as a sensor arrangement. The sensor arrangement 34 of the pumping system 10 would sense one or more parameters indicative of the operation performed upon the water. Within one specific example, the sensor arrangement 34 senses parameters indicative of the movement of water within the fluid circuit. The movement along the fluid circuit includes movement of water through the filter arrangement 22. As such, the sensor arrangement 34 includes at least one sensor used to determine flow rate of the water moving within the fluid circuit and/or includes at least one sensor used to determine flow pressure of the water moving within the fluid circuit. In one example, the sensor arrangement 34 is operatively connected with the water circuit at/adjacent to the location of the filter arrangement 22. It should be appreciated that the sensors of the sensor arrangement 34 may be at different locations than the locations presented for the example. Also, the sensors of the sensor arrangement 34 may be at different locations from each other. Still further, the sensors may be configured such that different sensor portions are at different locations within the fluid circuit. Such a sensor arrangement 34 would be operatively connected 36 to the controller 30 to provide the sensory information thereto.


It is to be noted that the sensor arrangement 34 may accomplish the sensing task via various methodologies, and/or different and/or additional sensors may be provided within the system 10 and information provided therefrom may be utilized within the system. For example, the sensor arrangement 34 may be provided that is associated with the filter arrangement and that senses an operation characteristic associated with the filter arrangement. For example, such a sensor may monitor filter performance. Such monitoring may be as basic as monitoring filter flow rate, filter pressure, or some other parameter that indicates performance of the filter arrangement. Of course, it is to be appreciated that the sensed parameter of operation may be otherwise associated with the operation performed upon the water. As such, the sensed parameter of operation can be as simplistic as a flow indicative parameter such as rate, pressure, etc.


Such indication information can be used by the controller 30, via performance of a program, algorithm or the like, to perform various functions, and examples of such are set forth below. Also, it is to be appreciated that additional functions and features may be separate or combined, and that sensor information may be obtained by one or more sensors.


With regard to the specific example of monitoring flow rate and flow pressure, the information from the sensor arrangement 34 can be used as an indication of impediment or hindrance via obstruction or condition, whether physical, chemical, or mechanical in nature, that interferes with the flow of water from the pool to the pump such as debris accumulation or the lack of accumulation, within the filter arrangement 34. As such, the monitored information can be indicative of the condition of the filter arrangement.


The example of FIG. 1 shows an example additional operation 38 and the example of FIG. 2 shows an example additional operation 138. Such an additional operation (e.g., 38 or 138) may be a cleaner device, either manual or autonomous. As can be appreciated, an additional operation involves additional water movement. Also, within the presented examples of FIGS. 1 and 2, the water movement is through the filter arrangement (e.g., 22 or 122). Such additional water movement may be used to supplant the need for other water movement.


Within another example (FIG. 2) of a pumping system 110 that includes means for sensing, determining, or the like one or more parameters indicative of the operation performed upon the water, the controller 130 can determine the one or more parameters via sensing, determining or the like parameters associated with the operation of a pump 116 of a pump unit 112. Such an approach is based upon an understanding that the pump operation itself has one or more relationships to the operation performed upon the water.


It should be appreciated that the pump unit 112, which includes the pump 116 and a pump motor 124, a pool 114, a filter arrangement 122, and interconnecting lines 118 and 120, may be identical or different from the corresponding items within the example of FIG. 1. In addition, as stated above, the controller 130 can receive input from a user interface 131 that can be operatively connected to the controller in various manners.


Turning back to the example of FIG. 2, some examples of the pumping system 110, and specifically the controller 130 and associated portions, that utilize at least one relationship between the pump operation and the operation performed upon the water attention are shown in U.S. Pat. No. 6,354,805, to Moller, entitled “Method For Regulating A Delivery Variable Of A Pump” and U.S. Pat. No. 6,468,042, to Moller, entitled “Method For Regulating A Delivery Variable Of A Pump.” The disclosures of these patents are incorporated herein by reference. In short summary, direct sensing of the pressure and/or flow rate of the water is not performed, but instead one or more sensed or determined parameters associated with pump operation are utilized as an indication of pump performance. One example of such a pump parameter is input power. Pressure and/or flow rate can be calculated/determined from such pump parameter(s).


Although the system 110 and the controller 130 there may be of varied construction, configuration and operation, the function block diagram of FIG. 2 is generally representative. Within the shown example, an adjusting element 140 is operatively connected to the pump motor and is also operatively connected to a control element 142 within the controller 130. The control element 142 operates in response to a comparative function 144, which receives input from a power calculation 146.


The power calculation 146 is performed utilizing information from the operation of the pump motor 124 and controlled by the adjusting element 140. As such, a feedback iteration is performed to control the pump motor 124. Also, it is the operation of the pump motor and the pump that provides the information used to control the pump motor/pump. As mentioned, it is an understanding that operation of the pump motor/pump has a relationship to the flow rate and/or pressure of the water flow that is utilized to control flow rate and/or flow pressure via control of the pump.


As mentioned, the sensed, determined (e.g., calculated, provided via a look-up table, graph or curve, such as a constant flow curve or the like, etc.) information can be utilized to determine the various performance characteristics of the pumping system 110, such as input power consumed, motor speed, flow rate and/or the flow pressure. In one example, the operation can be configured to prevent damage to a user or to the pumping system 10, 110 caused by an obstruction. Thus, the controller (e.g., 30 or 130) provides the control to operate the pump motor/pump accordingly. In other words, the controller (e.g., 30 or 130) can repeatedly monitor one or more performance value(s) 146 of the pumping system 10,110, such as the input power consumed by, or the speed of, the pump motor (e.g., 24 or 124) to sense or determine a parameter indicative of an obstruction or the like.


Turning to the issue of operation of the system (e.g., 10 or 110) over a course of a long period of time, it is typical that a predetermined volume of water flow is desired. For example, it may be desirable to move a volume of water equal to the volume within the pool. Such movement of water is typically referred to as a turnover. It may be desirable to move a volume of water equal to multiple turnovers within a specified time period (e.g., a day). Within an example in which the water operation includes a filter operation, the desired water movement (e.g., specific number of turnovers within one day) may be related to the necessity to maintain a desired water clarity.


Within the water operation that contains a filter operation, the amount of water that can be moved and/or the ease by which the water can be moved is dependent in part upon the current state (e.g., quality, cleanliness) of the filter arrangement. In general, a clean (e.g., new, fresh, backwashed) filter arrangement provides a lesser impediment to water flow than a filter arrangement that has accumulated filter matter (e.g., dirty). For a constant flow rate through a filter arrangement, a lesser pressure is required to move the water through a clean filter arrangement than a pressure that is required to move the water through a dirty filter arrangement. Another way of considering the effect of dirt accumulation is that if pressure is kept constant then the flow rate will decrease as the dirt accumulates and hinders (e.g., progressively blocks) the flow.


Turning to one aspect that is provided by the present invention, the system can operate to maintain a constant flow of water within the fluid circuit. Maintenance of constant flow is useful in the example that includes a filter arrangement. Moreover, the ability to maintain a constant flow is useful when it is desirable to achieve a specific flow volume during a specific period of time. For example, it may be desirable to filter pool water and achieve a specific number of water turnovers within each day of operation to maintain a desired water clarity despite the fact that the filter arrangement will progressively increase dirt accumulation.


It should be appreciated that maintenance of a constant flow volume despite an increasing impediment caused by filter dirt accumulation can require an increasing pressure and is the result of increasing motive force from the pump/motor. As such, one aspect of the present invention is to control the motor/pump to provide the increased motive force that provides the increased pressure to maintain the constant flow.


Turning to one specific example, attention is directed to the filter loading chart 200 that is shown in FIG. 3. The filter loading chart 200 shows a relationship between a relative filter loading value 202 and an associated performance value 204 of the filter arrangement, such as pressure. For example, when the filter arrangement is substantially clean, such as when it is new or after a cleaning operation (e.g., a backwash cycle), the relative filter loading value 206 of the filter arrangement can be approximately 0%. Correspondingly, the associated performance value 208 can indicate an initial or unclogged pressure value (OP) within the filter arrangement at a specific water flow rate. Similarly, when the filter arrangement (e.g., filter, skimmer, pool cleaner, etc.) is substantially dirty and/or clogged, such as after can occur over a period of time, the relative filter loading value 210 can be approximately 100%, while a corresponding performance value 212 can indicate a final or clogged pressure value (CFP) within the filter arrangement at substantially the same water flow rate. Thus, as can be seen from the chart 200, as the filter loading 202 changes (e.g., increases), the associated performance value 204 can also change (e.g., increase), and a relationship can be determined therebetween. In one example, a mathematical relationship can be determined to permit the relative filter loading value 202 to be calculated, or predetermined data can also be collected to permit the relative filter loading value 202 to be determined from a look-up table or the like. For example, as shown, if a performance value 214 (AP) can be determined (e.g., directly or indirectly measured) during the filtration operation, a corresponding filter loading 204 can also be determined (e.g., calculated, look-up table, etc.).


It is to be appreciated that various relationships can be determined between the relative loading value 202 and the performance value 204, and that various performance values 204 can be used (e.g., motor speed, power consumption of the pump unit 12,112 and/or motor 24, 124, flow rate and/or flow pressure of water moved by the pump unit 12, 112, or the like). It is also to be appreciated that although the chart 200 shows an example linear relationship between the relative filter loading value 202 and the performance value 204, various other relationships (e.g., polynomial equation, exponential equation, or the like) can also be used.


Turning now to one specific example of a filter loading control system, attention is directed to the block diagram of FIG. 4 that shows an example control system. It is to be appreciated that the block diagram as shown is intended to be only one example method of operation, and that more or less elements can be included in various orders. For the sake of clarity, the example block diagram described below can control the flow of the pumping system based on a detection of a performance value, such as a change in flow pressure and/or filter loading as determined though either direct or indirect measurement and/or determination. Thus, in one example, the flow rate of water through the fluid circuit can be controlled upon a determination of a change in flow pressure. In a “sensorless” system, the flow pressure can be determined directly or indirectly from a measurement of various other values. In one example, the flow pressure can be determined from a measurement of motor speed and flow rate of the pumping system 10, 110. Thus, the controller 30, 130 can contain a one or more predetermined pump curves or associated tables using various variables (e.g., motor speed, flow rate, flow pressure, etc.). The curves or tables can be arranged or converted in various manners, such as into constant flow curves or associated tables. For example, the curves can be arranged as a plurality of pressure (psi) versus speed (RPM or Hz) curves for discrete flow rates (e.g., flow curves for the range of 15 GPM to 130 GPM in 1 GPM increments) and stored in the computer program memory. Thus, for a given flow rate, one can use a known value, such as the motor speed to determine (e.g., calculate or look-up) the flow pressure. The pump curves can have the data arranged to fit various mathematical models, such as linear or polynomial equations, that can be used to determine the performance value.


In another example, the flow pressure can be determined from a measurement of power consumption of the motor 24, 124 and/or associated other performance values (e.g., relative amount of change, comparison of changed values, time elapsed, number of consecutive changes, etc.). The change in power consumption can be determined in various ways, such as by a change in power consumption based upon a measurement of electrical current and electrical voltage provided to the motor 24, 124. Various other factors can also be included, such as the power factor, resistance, and/or friction of the motor 24, 124 components, and/or even physical properties of the swimming pool, such as the temperature of the water. It is to be appreciated that in the various implementations of a “sensorless” system, various other variables (e.g., filter loading, flow rate, flow pressure, motor speed, time, etc.) can be either supplied by a user, other system elements, and/or determined from the power consumption.


Keeping with the block diagram shown in FIG. 4, an example filter loading control process 300 is shown schematically. It is to be appreciated that the filter loading control process 300 can be an iterative and/or repeating process, such as a computer program or the like. As such, the process 300 can be contained within a constantly repeating loop, such as a “while” loop, “if-then” loop, or the like, as is well known in the art. In one example, the “while” or “if-then” loop can cycle at predetermined intervals, such as once every 5 minutes, though various other time cycle intervals are also contemplated. Further, it is to be appreciated that the loop can include various methods of breaking out of the loop due to various conditions and/or user inputs. In one example, the loop can be broken (and the program restarted) if a user changes an input value or a blockage or other alarm condition is detected in the fluid circuit.


Thus, the process 300 can be initiated with step 302 and proceeds to step 304. At step 304 information can be retrieved from a filter menu, such as through the user interface 31, 131. The information may take a variety of forms and may have a variety of contents. As one example, the information can include a value indicative of a clogged filter (CFP) that inhibits movement of water through the filter arrangement. The value indicative of a clogged filter (CFP) can also be referred to as a threshold value, and can include an absolute value, a relative change of a performance value (AP) with respect to a load value indicative of an unclogged filter (OP), and/or a percentage change of a performance value (AP) with respect to the load value indicative of an unclogged filter (OP). Thus, the value indicative of a clogged filter (CFP) can be entered by a user directly, such as in pounds per square inch (PSI), or can be entered indirectly as a value, such as a value between 1 and 128. For example, a clogged filter value input of 10 psi can indicate, relative to a baseline value, such as the load value indicative of an unclogged filter (OP), a clogged filter condition. Alternatively, the value indicative of a clogged filter (CFP) can be calculated or otherwise determined by the controller 30, 130, such as by a look-up table or a constant value retrieved from memory. As another example, the information can include the value indicative of an unclogged filter (OP) that permits movement of water through the filter arrangement. It should be appreciated that such information (e.g., values) is desired and/or intended, and/or preselected/predetermined.


Subsequent to step 304, the process 300 proceeds to step 306. At step 306, the process 300 can determine whether a predetermined flow reference has been reached by the pumping system 10, 110. As stated previously, the process 300 can act to maintain the predetermined water flow rate despite an increase in filter loading caused by the filter arrangement becoming clogged over time. Additionally, once a steady state flow condition has been reached (e.g., the pumping system 10, 110 maintains the reference flow rate), the controller 30, 130 can use the steady state flow rate and corresponding motor speed to determine the flow pressure, as described previously herein. Thus, the process can wait until the flow reference has been reached until beginning to monitor the filter loading. Accordingly, if the controller 30, 130 finds that the predetermined water flow rate has not yet been achieved by the pumping system 10, 110 (e.g., FALSE), the process 300 can proceed directly to step 308 to exit the filter loading process 300 until the next time cycle (e.g., the next five minute time cycle). Alternatively, if the predetermined water flow rate has actually been achieved (e.g., TRUE), the process 300 can proceed onto step 310.


At step 310, the process 300 can determine whether the present time cycle includes the first steady-state condition of the pumping system 10, 110 that immediately follows a cleaning cycle for the filter arrangement. In one example, a steady-state condition can include a stable (e.g., not transient) maintenance of the predetermined flow rate of step 306 by the pumping system 10, 110. Thus, step 310 can determine whether the present time cycle includes the first steady-state condition of the pumping system 10, 110 that immediately follows a backwash operation. If step 310 determines that the present time cycle does not include the first steady-state condition (e.g., FALSE), the process 300 can proceed onto step 314.


However, if step 310 determines that the present time cycle does actually include the first steady-state condition of the pumping system 10, 110 following a cleaning cycle (e.g., TRUE), the process 300 can proceed onto step 312. At step 312, the process 300 can determine (e.g., calculate, measure, etc.) a value indicative of an unclogged filter, which can also be referred to as an offset value. Thus, the offset value can correspond to a condition of substantially no filter loading (e.g., 0%), as shown in items 206 and 208 of FIG. 3. In one example, the offset value can include the water flow pressure through the clean filter arrangement and can be referred to as an offset pressure (OP). It is to be appreciated that, because a clean filter can often have some flow pressure associated with the water being moved and filtered therethrough, it can be beneficial to know this baseline offset pressure (OP) value. However, the offset value can also be otherwise determined by the controller 30, 130, such as by being retrieved from memory or even from a user input in step 304.


Subsequent to either of steps 310 or 312, the process can proceed onto step 314. At step 314, the process 300 can determine (e.g., calculate, measure, compare, etc.) a performance value of the pumping system 10, 110 during the filtration operation, such as flow pressure value of the water being moved through the filter arrangement. The flow pressure value can also be referred to as an actual pressure (AP) of the pumping system 10, 110. The actual pressure value (AP) can be determined in various manners, such as by a pressure sensor. Alternatively, as described previously, in a “sensorless” system the flow pressure can be determined directly or indirectly from a constant flow curve (e.g., motor speed vs. pressure), measurement of power consumption of the motor 24, 124, and/or even from associated other performance values (e.g., motor speed, flow rate, time, filter loading, relative amount of change, comparison of changed values, time elapsed, number of consecutive changes, etc.). The power consumption can be determined in various ways, such as by a measurement of electrical current and electrical voltage provided to the motor 24, 124. In addition or alternatively, the performance value can include various other values, such as motor speed, flow rate, or the like that can be used to indirectly determine the filter loading.


Subsequent to step 314, the process can proceed onto step 316 to determine a relative loading value of the filter arrangement. The relative loading value of the filter arrangement can be based upon the value indicative of an unclogged filter, the value indicative of a clogged filter, and the performance value. Thus, in one example, the relative filter loading value can be based upon the offset pressure (OP), the user input clogged filter value (CFP), and the actual pressure value (AP) of the filter arrangement. The relative filter loading value can be determined in various manners. In one example, the relative filter loading value can be calculated as a percentage directly from the offset pressure (OP), clogged filter value (CFP), and the actual pressure value (AP). For example, the relative filter loading value percentage can be determined through the formula 100*((AP−OP)/(CFP−OP)). Thus, using this formula, if the offset pressure (OP) is equal to 10 psi, the clogged filter value (CFP) is 20 psi, and the actual pressure (AP) is equal to 15 psi, the relative filter loading is equal to 50%.


In another example, the relative filter loading value can be calculated from a chart or graph similar to that shown in FIG. 3, or even from another mathematical equation, chart, or graph. Other comparisons between any or all of the offset pressure (OP), clogged filter value (CFP) and/or actual pressure value (AP) can also be used, and can even include various other values (e.g., time, power, flow, motor speed, etc.). It is to be appreciated that the determination of any or all of the values (e.g., AP, OP, CFP, relative loading value) can be exact or estimated values, and that the process 300 can operate effectively with either or both.


Subsequent to the determination of the relative loading value for the filter arrangement, the process 300 can proceed onto step 318. At step 318, the process 300 can perform various actions in response to the relative loading value. In one example, step 318 can make a determination as to whether the relative filter loading value exceeds a predetermined or threshold value. In another example, the process 300 can determine a relative change of the actual pressure (AP) value with respect to a load value indicative of an unclogged filter (OP), and/or a percentage change of the actual pressure (AP) value with respect to the load value indicative of an unclogged filter (OP). In still yet another example, the process 300 can determine a relative and/or percentage change in the actual pressure (AP) value with respect to a previous measurement taken during a previous time cycle interval.


In the shown example, step 318 can determine whether the calculated relative filter loading percentage exceeds 100%. If the relative filter loading percentage does not exceed 100% (e.g., FALSE), the process can proceed onto step 320. At step 320, the process 300 can display the relative loading value for viewing by a user. The pumping system 10, 110 can include various types of displays that may or may not be incorporated into the user interface 31, 131. In one example, the pumping system 10, 110 can include a liquid crystal display (LCD) or the like that is configured to display the relative loading value in an alphanumeric manner (e.g., “Filter Loading is 58%”) or the like. The LCD display can also be configured to display various other information, such as the clogged filter pressure (CFP), offset pressure (OP), and/or the actual pressure (AP). In another example, the pumping system 10, 110 can include one or more visual indicators, such as one or more LED lights and/or adjacent indicia corresponding to various relative loading values.


Subsequent to step 320, the process 300 can proceed onto step 322. At step 322, the process 300 can determine whether the present water flow rate through the pumping system is equal to the original reference flow rate. If the present water flow rate does not equal the reference flow rate (e.g., FALSE), the process 300 can proceed onto step 324 to control the motor in response to the relative loading value, such as may be required if the filter is partially loaded. For example, as shown in step 324, the process 300 can increase the flow rate by one gallon per minute (GPM), though the process 300 can make other corrections as needed.


If the present water flow rate does equal the reference flow rate (e.g., TRUE), or if the process has already performed step 324, the process 300 can then proceed onto step 308 to exit the filter loading process 300. Because the filter loading process 300 is a repetitious program, it can repeat at a predetermined interval, such as once every five minutes, though various other time intervals are contemplated to be within the scope of the invention. It can be beneficial for the time cycle intervals to have an appreciable length as it can often take a few months for a general pool filter to reach a clogged condition. However, in situations where a filter is prone to clog easily or quickly, the time cycle interval can be reduced accordingly.


Turning back to step 318, if the relative filter loading percentage does exceed 100% (e.g., TRUE), then the process can proceed onto step 326. At step 326, the process 300 can indicate a 100% or greater filter loading condition, and can also display various alarms. In one example, the LCD display could display a warning message, such as “Service System Soon.” In addition or alternatively, various other indicators and/or warnings can also be used to alert a user, such as various other lights and/or sounds (e.g., beepers, buzzers or the like).


Subsequent to step 326, the process 300 can proceed onto step 328 to control the motor in response to the relative loading value, such as may be required if the filter is in a clogged condition. For example, as shown in step 328, the process 300 can decrease the flow rate by one gallon per minute (GPM), though the process 300 can make other corrections as needed. By decreasing the flow rate by one GPM, the actual pressure (AP) of the water flow through the filter arrangement can also decrease. The process 300 can continue to decrease the flow rate during each consecutive time cycle until the relative loading value is less than 100% to help prolong the filter life. In addition or alternatively, the process 300 can continue to decrease the flow rate during each consecutive time cycle until a backwash cycle has been completed to clean the filter arrangement. In addition or alternatively, the process 300 can make other adjustments. For example, the process 300 can automatically initiate a backwash cycle to clean the filter arrangement, or it can even shut down the pumping system 10, 110 until a user manually restarts it. Subsequent to step 328, the process 300 can then proceed onto step 308 to exit the filter loading process 300, whereupon the process 300 can repeat at the predetermined interval as discussed above.


Further still, in accordance with yet another aspect of the invention, a method of moving water of a swimming pool in connection with performance of a filtering operation upon the water is provided. The method can include some or all of the aforementioned features of the filter loading control process 300, though more or less steps can also be included to accommodate the various other features described herein. One example method of moving water of a swimming pool can be used with a water pump for moving water in connection with performance of a filtering operation upon the water, a variable speed motor operatively connected to drive the pump, and a filter arrangement in fluid communication with the pump. The method can comprise the steps of determining a flow pressure value indicative of an unclogged filter that permits movement of water through the filter arrangement, determining a threshold flow pressure value indicative of a clogged filter that inhibits movement of water through the filter arrangement, and determining an actual pressure value of the pumping system during the filtering operation. The method can also include the steps of determining a relative loading value of the filter arrangement based upon the pressure value indicative of an unclogged filter, pressure value indicative of a clogged filter, and the actual pressure value, displaying the relative loading value, and controlling the motor in response to the relative loading value.


It is to be appreciated that the controller (e.g., 30 or 130) may have various forms to accomplish the desired functions. In one example, the controller 30 includes a computer processor that operates a program. In the alternative, the program may be considered to be an algorithm. The program may be in the form of macros. Further, the program may be changeable, and the controller 30 is thus programmable.


Also, it is to be appreciated that the physical appearance of the components of the system (e.g., 10 or 110) may vary. As some examples of the components, attention is directed to FIGS. 5-7. FIG. 5 is a perspective view of the pump unit 112 and the controller 130 for the system 110 shown in FIG. 2. FIG. 6 is an exploded perspective view of some of the components of the pump unit 112. FIG. 7 is a perspective view of the controller 130.


It should be evident that this disclosure is by way of example and that various changes may be made by adding, modifying or eliminating details without departing from the scope of the teaching contained in this disclosure. As such it is to be appreciated that the person of ordinary skill in the art will perceive changes, modifications, and improvements to the example disclosed herein. Such changes, modifications, and improvements are intended to be within the scope of the present invention.

Claims
  • 1. A pumping system for a swimming pool, the pumping system comprising: a pump;a motor coupled to the pump;a filter coupled to the pump; anda controller in communication with the motor, the controller determining if a steady state flow rate to achieve a desired number of turnovers in the swimming pool has been reached,the controller calculating a filter loading value based on a clogged filter pressurevalue, an unclogged filter pressure value, and an actual pressure of the pumping system after the steady state flow rate has been reached, the controller decreasing an actual flow rate of the pumping system if the filter loading value is greater than a threshold value to help prolong filter life after the filter has become clogged,the controller decreasing the actual flow rate during at least one subsequent time cycle until at least one of the filter loading value is less than the threshold value and a backwash cycle is completed,the controller increasing the actual flow rate if the filter loading value is less than the threshold value and the actual flow rate is less than the steady state flow rate.
  • 2. The pumping system of claim 1, wherein the controller attempts to maintain the steady state flow rate despite an increase in the filter loading value caused by the filter becoming clogged.
  • 3. The pumping system of claim 1, wherein the clogged filter pressure value includes at least one of an absolute value, a relative change with respect to the unclogged filter pressure value, and a percentage change with respect to the unclogged filter pressure value.
  • 4. The pumping system of claim 1, wherein the controller determines whether the steady state flow rate substantially immediately follows a backwash operation.
  • 5. The pumping system of claim 4, wherein the controller determines the unclogged filter pressure value after the backwash operation.
  • 6. The pumping system of claim 1, wherein the controller uses a motor speed to determine the actual pressure.
  • 7. The pumping system of claim 6, wherein the controller uses a curve of motor speed versus pressure to determine the actual pressure.
  • 8. The pumping system of claim 1, wherein the controller uses power consumption of the motor to determine the actual pressure.
  • 9. The pumping system of claim 8, wherein the controller determines the power consumption of the motor from at least one of current and voltage provided to the motor.
  • 10. The pumping system of claim 1, wherein the filter loading value is a percentage calculated from the clogged filter pressure value, the unclogged filter pressure value, and the actual pressure, and wherein the threshold value is about 100 percent.
  • 11. The pumping system of claim 1, wherein the controller determines whether the filter loading value has exceeded the threshold value by determining at least one of a relative change and a percentage change in the actual pressure with respect to a load angle of an unclogged filter.
  • 12. The pumping system of claim 11, wherein the controller determines at least one of the relative change and the percentage change with respect to a previous measurement taken during a previous time cycle interval.
  • 13. The pumping system of claim 1, wherein the controller displays the filter loading value.
  • 14. The pumping system of claim 13, wherein the controller displays a service system soon indicator when the filter loading value is greater than the threshold value.
  • 15. The pumping system of claim 1, wherein the controller increases the actual flow rate by about one gallon per minute in order to attempt to maintain the steady state flow rate.
  • 16. The pumping system of claim 1, wherein the controller decreases the actual flow rate by about one gallon per minute in order to lower the filter loading value.
  • 17. The pumping system of claim 16, wherein the controller decreases the actual flow rate during each consecutive time cycle of a predetermined elapsed period of time until at least one of the filter loading value is less than the threshold value and a backwash cycle is completed.
  • 18. The pumping system of claim 1, wherein the controller determines the filter loading value about once every five minutes.
  • 19. The pumping system of claim 1, wherein the controller automatically initiates a backwash cycle when the filter loading value is greater than the threshold value.
  • 20. The pumping system of claim 1, wherein the controller automatically shuts down the pumping system when the filter loading value is greater than the threshold value and the pumping system remains shut down until the pumping system is manually restarted.
  • 21. The pumping system of claim 1, wherein the filter includes at least one of a sand filter, a cartridge filter, and a diatomaceous earth filter.
  • 22. The pumping system of claim 1, wherein the actual flow rate of the pumping system depends in part on the desired number of turnovers.
RELATED APPLICATIONS

This application is a continuation-in-part application of U.S. application Ser. No. 10/926,513, filed Aug. 26, 2004, and U.S. application Ser. No. 11/286,888, filed Nov. 23, 2005, the entire disclosures of which are hereby incorporated herein by reference.

US Referenced Citations (409)
Number Name Date Kind
1061919 Miller May 1913 A
1993267 Ferguson Mar 1935 A
2238597 Page Apr 1941 A
2458006 Kilgore Jan 1949 A
2488365 Abbott et al. Nov 1949 A
2494200 Ramqvist Jan 1950 A
2615937 Ludwig et al. Oct 1952 A
2716195 Anderson Aug 1955 A
2767277 Wirth Oct 1956 A
2778958 Hamm et al. Jan 1957 A
2881337 Wall Apr 1959 A
3191935 Uecker Jun 1965 A
3213304 Landerg et al. Oct 1965 A
3227808 Morris Jan 1966 A
3291058 McParlin Dec 1966 A
3481973 Wygant Dec 1969 A
3558910 Dale et al. Jan 1971 A
3559731 Stafford Feb 1971 A
3581895 Howard et al. Jun 1971 A
3613805 Lindstad Oct 1971 A
3737749 Schmit Jun 1973 A
3778804 Adair Dec 1973 A
3787882 Fillmore Jan 1974 A
3838597 Montgomery et al. Oct 1974 A
3949782 Athey et al. Apr 1976 A
3953777 McKee Apr 1976 A
3963375 Curtis Jun 1976 A
4021700 Ellis-Anwyl May 1977 A
4041470 Slane et al. Aug 1977 A
4123792 Gephart et al. Oct 1978 A
4133058 Baker Jan 1979 A
4151080 Zuckerman et al. Apr 1979 A
4168413 Halpine Sep 1979 A
4225290 Allington Sep 1980 A
4241299 Bertone Dec 1980 A
4263535 Jones Apr 1981 A
4286303 Genheimer et al. Aug 1981 A
4319712 Bar Mar 1982 A
4322297 Bajka Mar 1982 A
4353220 Curwen Oct 1982 A
4370098 McClain et al. Jan 1983 A
4402094 Sanders Sep 1983 A
4419625 Bejot et al. Dec 1983 A
4420787 Tibbits et al. Dec 1983 A
4421643 Frederick Dec 1983 A
4427545 Arguilez Jan 1984 A
4449260 Whitaker May 1984 A
4470092 Lombardi Sep 1984 A
4473338 Garmong Sep 1984 A
4494180 Streater Jan 1985 A
4504773 Suzuki et al. Mar 1985 A
4505643 Millis et al. Mar 1985 A
D278529 Hoogner Apr 1985 S
4541029 Ohyama Sep 1985 A
4545906 Frederick Oct 1985 A
4610605 Hartley Sep 1986 A
4620835 Bell Nov 1986 A
4635441 Ebbing et al. Jan 1987 A
4647825 Profio et al. Mar 1987 A
4676914 Mills et al. Jun 1987 A
4678404 Lorett et al. Jul 1987 A
4678409 Kurokawa Jul 1987 A
4686439 Cunningham et al. Aug 1987 A
4695779 Yates Sep 1987 A
4703387 Miller Oct 1987 A
4705629 Weir et al. Nov 1987 A
4758697 Jeuneu Jul 1988 A
4767280 Markuson Aug 1988 A
4780050 Caine et al. Oct 1988 A
4795314 Prybella Jan 1989 A
4827197 Giebeler May 1989 A
4834624 Jensen May 1989 A
4837656 Barnes Jun 1989 A
4841404 Marshall et al. Jun 1989 A
4864287 Kierstead Sep 1989 A
4885655 Springer et al. Dec 1989 A
4891569 Light Jan 1990 A
4907610 Meincke Mar 1990 A
4912936 Denpou Apr 1990 A
4913625 Gerlowski Apr 1990 A
4963778 Jensen Oct 1990 A
4971522 Butlin Nov 1990 A
4977394 Manson et al. Dec 1990 A
4985181 Strada et al. Jan 1991 A
4986919 Allington Jan 1991 A
4996646 Farrington Feb 1991 A
D315315 Stairs, Jr. Mar 1991 S
4998097 Noth et al. Mar 1991 A
5026256 Kuwabara Jun 1991 A
5076761 Krohn et al. Dec 1991 A
5076763 Anastos et al. Dec 1991 A
5079784 Rist et al. Jan 1992 A
5099181 Canon Mar 1992 A
5100298 Shibata et al. Mar 1992 A
RE33874 Miller Apr 1992 E
5117233 Hamos et al. May 1992 A
5123080 Gillett Jun 1992 A
5151017 Sears et al. Sep 1992 A
5156535 Budris Oct 1992 A
5158436 Jensen Oct 1992 A
5159713 Gaskill et al. Oct 1992 A
5167041 Burkitt Dec 1992 A
5172089 Wright et al. Dec 1992 A
D334542 Lowe Apr 1993 S
5240380 Mabe Aug 1993 A
5324170 Anastos et al. Jun 1994 A
5327036 Carey Jul 1994 A
5342176 Redlich Aug 1994 A
5418984 Livingston, Jr. May 1995 A
D359458 Pierret Jun 1995 S
D363060 Hunger Oct 1995 S
5471125 Wu Nov 1995 A
5473497 Beatty Dec 1995 A
5499902 Rockwood Mar 1996 A
5511397 Makino et al. Apr 1996 A
5512883 Lane Apr 1996 A
5518371 Wellstein May 1996 A
5519848 Wloka May 1996 A
5520517 Sipin May 1996 A
5540555 Corso et al. Jul 1996 A
D372719 Jensen Aug 1996 S
5545012 Anastos et al. Aug 1996 A
5548854 Bloemer et al. Aug 1996 A
5550753 Tompkins et al. Aug 1996 A
5559762 Sakamoto Sep 1996 A
D375908 Schumaker Nov 1996 S
5570481 Mathis et al. Nov 1996 A
5571000 Zimmermann Nov 1996 A
5577890 Nielsen et al. Nov 1996 A
5580221 Triezenberg Dec 1996 A
5598080 Jensen Jan 1997 A
5604491 Coonley et al. Feb 1997 A
5614812 Wagoner Mar 1997 A
5626464 Schoenmeyr May 1997 A
5628896 Klingenberger May 1997 A
5633540 Moan May 1997 A
5672050 Webber et al. Sep 1997 A
5682624 Ciochetti Nov 1997 A
5690476 Miller Nov 1997 A
5711483 Hays Jan 1998 A
5713320 Pfaff et al. Feb 1998 A
5727933 Laskaris Mar 1998 A
5730861 Sterghos et al. Mar 1998 A
5731673 Gilmore Mar 1998 A
5739648 Ellis et al. Apr 1998 A
5754421 Nystrom May 1998 A
5767606 Bresolin Jun 1998 A
5777833 Romillon Jul 1998 A
5791882 Stucker Aug 1998 A
5804080 Klingenberger Sep 1998 A
5819848 Rasmuson Oct 1998 A
5820350 Mantey et al. Oct 1998 A
5828200 Ligman et al. Oct 1998 A
5833437 Kurth et al. Nov 1998 A
5836271 Sasaki Nov 1998 A
5863185 Cochimin et al. Jan 1999 A
5883489 Konrad Mar 1999 A
5894609 Barnett Apr 1999 A
5907281 Miller, Jr. et al. May 1999 A
5909372 Thybo Jun 1999 A
5914881 Trachier Jun 1999 A
5920264 Kim et al. Jul 1999 A
5930092 Nystrom Jul 1999 A
5941690 Lin Aug 1999 A
5945802 Konrad Aug 1999 A
5947689 Schick Sep 1999 A
5947700 McKain et al. Sep 1999 A
5959534 Campbell et al. Sep 1999 A
5961291 Sakagami Oct 1999 A
5969958 Nielsen Oct 1999 A
5973465 Rayner Oct 1999 A
5983146 Sarbach Nov 1999 A
5991939 Mulvey Nov 1999 A
6030180 Clarey et al. Feb 2000 A
6037742 Rasmussen Mar 2000 A
6043461 Holling et al. Mar 2000 A
6045331 Gehm et al. Apr 2000 A
6045333 Breit Apr 2000 A
6046492 Machida Apr 2000 A
6048183 Meza Apr 2000 A
6059536 Stingl May 2000 A
6065946 Lathrop May 2000 A
6072291 Pedersen Jun 2000 A
6091604 Plougsgaard Jul 2000 A
D429699 Davis Aug 2000 S
D429700 Liebig Aug 2000 S
6098654 Cohen et al. Aug 2000 A
6102665 Centers Aug 2000 A
6116040 Stark Sep 2000 A
6121746 Fisher et al. Sep 2000 A
6125481 Sicilano Oct 2000 A
6142741 Nishihata Nov 2000 A
6157304 Bennett et al. Dec 2000 A
6171073 McKain et al. Jan 2001 B1
6178393 Irvin Jan 2001 B1
6199224 Versland Mar 2001 B1
6208112 Jensen Mar 2001 B1
6227808 McDonough May 2001 B1
6238188 Lifson May 2001 B1
6249435 Vicente et al. Jun 2001 B1
6253227 Tompkins et al. Jun 2001 B1
D445405 Schneider Jul 2001 S
6254353 Polo Jul 2001 B1
6257304 Jacobs et al. Jul 2001 B1
6259617 Wu Jul 2001 B1
6264431 Triezenberg Jul 2001 B1
6264432 Kilayko et al. Jul 2001 B1
6280611 Henkin et al. Aug 2001 B1
6299414 Schoenmeyr Oct 2001 B1
6299699 Porat et al. Oct 2001 B1
6326752 Jensen Dec 2001 B1
6330525 Hays Dec 2001 B1
6342841 Stingl Jan 2002 B1
6349268 Ketonen et al. Feb 2002 B1
6351359 Jæger Feb 2002 B1
6354805 Moller Mar 2002 B1
6362591 Moberg Mar 2002 B1
6364621 Yamauchi Apr 2002 B1
6373204 Peterson Apr 2002 B1
6373728 Aarestrup Apr 2002 B1
6380707 Rosholm et al. Apr 2002 B1
6388642 Cotis May 2002 B1
6390781 McDonough May 2002 B1
6399781 Gupton Jun 2002 B1
6406265 Hahn Jun 2002 B1
6415808 Joshi Jul 2002 B2
6416295 Nagai Jul 2002 B1
6426633 Thybo Jul 2002 B1
6447446 Smith et al. Sep 2002 B1
6450771 Centers Sep 2002 B1
6464464 Sabini Oct 2002 B2
6468042 Moller Oct 2002 B2
6468052 McKain et al. Oct 2002 B2
6474949 Arai Nov 2002 B1
6481973 Struthers Nov 2002 B1
6483378 Blodgett Nov 2002 B2
6493227 Nielsen et al. Dec 2002 B2
6501629 Marriott Dec 2002 B1
6504338 Eichorn Jan 2003 B1
6522034 Nakayama Feb 2003 B1
6534940 Bell et al. Mar 2003 B2
6534947 Johnson et al. Mar 2003 B2
6537032 Horiuchi Mar 2003 B1
6548976 Jensen Apr 2003 B2
6591697 Henyan Jul 2003 B2
6604909 Schoenmeyr Aug 2003 B2
6623245 Meza Sep 2003 B2
6636135 Vetter Oct 2003 B1
D482664 Hunt Nov 2003 S
6651900 Yoshida Nov 2003 B1
6672147 Mazet Jan 2004 B1
6676831 Wolfe Jan 2004 B2
6690250 Møller Feb 2004 B2
6696676 Graves et al. Feb 2004 B1
6709240 Schmalz et al. Mar 2004 B1
6709575 Verdegan et al. Mar 2004 B1
6715996 Moeller Apr 2004 B2
6717318 Mathiassen Apr 2004 B1
6732387 Waldron May 2004 B1
D490726 Eungprabhanth Jun 2004 S
6747367 Cline Jun 2004 B2
6770043 Kahn Aug 2004 B1
6774664 Godbersen Aug 2004 B2
6799950 Meier et al. Oct 2004 B2
6806677 Kelly et al. Oct 2004 B2
6837688 Kimberlin et al. Jan 2005 B2
6842117 Keown Jan 2005 B2
6847854 Discenzo Jan 2005 B2
6863502 Bishop et al. Mar 2005 B2
6875961 Collins Apr 2005 B1
6884022 Albright Apr 2005 B2
D504900 Wang May 2005 S
D505429 Wang May 2005 S
6888537 Benson et al. May 2005 B2
D507243 Miller Jul 2005 S
6925823 Lifson et al. Aug 2005 B2
6933693 Schuchmann Aug 2005 B2
6941785 Haynes et al. Sep 2005 B2
D511530 Wang Nov 2005 S
D512026 Nurmi Nov 2005 S
6965815 Tompkins et al. Nov 2005 B1
D512440 Wang Dec 2005 S
6976052 Tompkins et al. Dec 2005 B2
D513737 Riley Jan 2006 S
6984158 Satoh Jan 2006 B2
6989649 Mehlhorn Jan 2006 B2
6993414 Shah Jan 2006 B2
7005818 Jensen Feb 2006 B2
7040107 Lee et al. May 2006 B2
7050278 Poulsen May 2006 B2
7080508 Stavale Jul 2006 B2
7083392 Meza et al. Aug 2006 B2
7114926 Oshita Oct 2006 B2
7117120 Beck et al. Oct 2006 B2
D533512 Nakashima Dec 2006 S
7183741 Mehlhorn Feb 2007 B2
7221121 Skaug et al. May 2007 B2
7244106 Kallman Jul 2007 B2
D562349 Bulter Feb 2008 S
D567189 Stiles, Jr. Apr 2008 S
D582797 Fraser Dec 2008 S
D583828 Li Dec 2008 S
7542251 Ivankovic Jun 2009 B2
7690897 Branecky Apr 2010 B2
7777435 Aguilar Aug 2010 B2
7821215 Koehl Oct 2010 B2
7874808 Stiles Jan 2011 B2
20010041139 Sabini et al. Nov 2001 A1
20020010839 Tirumala et al. Jan 2002 A1
20020018721 Kobayashi Feb 2002 A1
20020032491 Imamura et al. Mar 2002 A1
20020050490 Pittman May 2002 A1
20020070875 Crumb Jun 2002 A1
20020082727 Laflamme et al. Jun 2002 A1
20020131866 Phillips Sep 2002 A1
20020136642 Moller Sep 2002 A1
20020150476 Lucke et al. Oct 2002 A1
20020176783 Moeller Nov 2002 A1
20020190687 Bell et al. Dec 2002 A1
20030017055 Fong Jan 2003 A1
20030034284 Wolfe Feb 2003 A1
20030061004 Discenzo Mar 2003 A1
20030063900 Wang et al. Apr 2003 A1
20030099548 Meza May 2003 A1
20030106147 Cohen et al. Jun 2003 A1
20030174450 Nakajima et al. Sep 2003 A1
20030196942 Jones Oct 2003 A1
20040000525 Hornsby Jan 2004 A1
20040006486 Schmidt et al. Jan 2004 A1
20040009075 Meza Jan 2004 A1
20040013531 Curry et al. Jan 2004 A1
20040016241 Street Jan 2004 A1
20040025244 Loyd et al. Feb 2004 A1
20040055363 Bristol Mar 2004 A1
20040062658 Beck et al. Apr 2004 A1
20040090197 Schuchmann May 2004 A1
20040117330 Ehlers et al. Jun 2004 A1
20040149666 Leaverton Aug 2004 A1
20040265134 Iimura Dec 2004 A1
20050050908 Lee et al. Mar 2005 A1
20050095150 Leone et al. May 2005 A1
20050123408 Koehl Jun 2005 A1
20050137720 Spira et al. Jun 2005 A1
20050170936 Quinn Aug 2005 A1
20050180868 Miller Aug 2005 A1
20050190094 Andersen Sep 2005 A1
20050193485 Wolfe Sep 2005 A1
20050226731 Mehlhorn et al. Oct 2005 A1
20050260079 Allen Nov 2005 A1
20060045750 Stiles Mar 2006 A1
20060045751 Beckman et al. Mar 2006 A1
20060090255 Cohen May 2006 A1
20060127227 Mehlhorn Jun 2006 A1
20060138033 Hoal et al. Jun 2006 A1
20060146462 McMillian, IV Jul 2006 A1
20060169322 Torkelson Aug 2006 A1
20060204367 Meza Sep 2006 A1
20070001635 Ho Jan 2007 A1
20070041845 Freudenberger Feb 2007 A1
20070061051 Maddox Mar 2007 A1
20070113647 Mehlhorn May 2007 A1
20070114162 Stiles et al. May 2007 A1
20070124321 Szydlo May 2007 A1
20070154319 Stiles Jul 2007 A1
20070154320 Stiles Jul 2007 A1
20070154321 Stiles et al. Jul 2007 A1
20070154322 Stiles Jul 2007 A1
20070154323 Stiles Jul 2007 A1
20070160480 Ruffo Jul 2007 A1
20070163929 Stiles et al. Jul 2007 A1
20070183902 Stiles Aug 2007 A1
20070187185 Abraham et al. Aug 2007 A1
20070212210 Kernan et al. Sep 2007 A1
20070212229 Stavale et al. Sep 2007 A1
20070212230 Stavale et al. Sep 2007 A1
20080003114 Levin et al. Jan 2008 A1
20080039977 Clark et al. Feb 2008 A1
20080041839 Tran Feb 2008 A1
20080063535 Koehl Mar 2008 A1
20080095638 Branecky Apr 2008 A1
20080095639 Bartos et al. Apr 2008 A1
20080131286 Koehl Jun 2008 A1
20080131289 Koehl Jun 2008 A1
20080131291 Koehl Jun 2008 A1
20080131294 Koehl Jun 2008 A1
20080131295 Koehl Jun 2008 A1
20080131296 Koehl Jun 2008 A1
20080140353 Koehl Jun 2008 A1
20080152508 Meza Jun 2008 A1
20080168599 Caudill et al. Jul 2008 A1
20080181785 Koehl Jul 2008 A1
20080181786 Meza Jul 2008 A1
20080181787 Koehl Jul 2008 A1
20080181788 Meza Jul 2008 A1
20080181789 Koehl Jul 2008 A1
20080181790 Meza Jul 2008 A1
20080189885 Erlich et al. Aug 2008 A1
20080260540 Koehl Oct 2008 A1
20080288115 Rusnak et al. Nov 2008 A1
20090014044 Hartman et al. Jan 2009 A1
20090104044 Koehl Apr 2009 A1
20090204237 Sustaeta Aug 2009 A1
20090204267 Sustaeta Aug 2009 A1
20090210081 Sustaeta Aug 2009 A1
20100306001 Discenzo Dec 2010 A1
20110044823 Stiles Feb 2011 A1
20110052416 Stiles Mar 2011 A1
20120020810 Stiles, Jr. Jan 2012 A1
20120100010 Stiles, Jr. Apr 2012 A1
Foreign Referenced Citations (27)
Number Date Country
3023463 Feb 1981 DE
19736079 Aug 1997 DE
19645129 May 1998 DE
10231773 Feb 2004 DE
19938490 Apr 2005 DE
246769 May 1986 EP
0306814 Mar 1989 EP
0314249 May 1989 EP
0709575 May 1996 EP
833436 Sep 1996 EP
0735273 Oct 1996 EP
0831188 Mar 1998 EP
0978657 Feb 2000 EP
1134421 Sep 2001 EP
2529965 Jun 1983 FR
2703409 Oct 1994 FR
2124304 Jun 1983 GB
5010270 Jan 1993 JP
WO 9804835 Feb 1998 WO
WO0042339 Jul 2000 WO
WO 0147099 Jun 2001 WO
WO03099705 Dec 2003 WO
WO 2004006416 Jan 2004 WO
WO 2004073772 Sep 2004 WO
WO2004073772 Sep 2004 WO
WO 2004088694 Oct 2004 WO
WO 2006069568 Jul 2006 WO
Non-Patent Literature Citations (46)
Entry
“Better, Stronger, Faster;” Pool & Spa News, Sep. 3, 2004; pp. 52-54, 82-84, USA.
54DX30-Sabbagh et al.; “A Model for Optimal . . . Control of Pumping Stations in Irrigation Systems;” Jul. 1988; NL pp. 119-133; Civil Action 5:11-cv-00459D.
54DX31-Danfoss; “VLT 5000 FLUX Aqua DeviceNet Instruction Manual;” Apr. 28, 2003; pp. 1-39; cited in Civil Action 5:11-cv-00459D.
54DX32-Danfoss, “VLT 5000 FLUX Aqua Profibus Operating Instructions;” May 22, 2003; 1-64; cited in Civil Action 5:11-cv-00459D.
54DX33-Pentair, “IntelliTouch Owner's Manual Set-Up & Programming;” May 22, 2003; Sanford, NC; pp. 1-61; cited in Civil Action 5:11-cv-00459D.
54DX34-Pentair; “Compool 3800 Pool-Spa Control System Installation & Operating Instructions;” Nov. 7, 1997; pp. 1-45; cited in Civil Action 5:11-cv-00459D.
54DX35-Pentair Advertisement in “Pool & Spa News;” Mar. 22, 2002; pp. 1-3; cited in Civil Action 5:11-cv-00459D.
54DX36-Hayward; “Pro-Series High-Rate Sand Filter Owner's Guide;” 2002; Elizabeth, NJ; pp. 1-5; cited in Civil Action 5:11-cv-00459D.
54DX37-Danfoss; “VLT 8000 Aqua Fact Sheet;” Jan. 2002; pp. 1-3; cited in Civil Action 5:11-cv-00459D.
54DX38-Danfoss; “VLT 6000 Series Installation, Operation & Maintenance Manual;” Mar. 2000; pp. 1-118; cited in Civil Action 5:11-cv-00459D.
“Product Focus—New AC Drive Series Targets Water, Wastewater Applications;” WaterWorld Article; Jul. 2002; pp. 1-2.
54DX18-Stmicroelectronics; “STAN1946—Sensorless BLDC Motor Control & BEMF Sampling Methods with ST7MC;” 2007; pp. 1-35; Civil Action 5:11-cv-00459D; 2007.
54DX19-Stmicroelectronics; “STAN1276 BLDC Motor Start Routine for ST72141 Microcontroller;” 2000; pp. 1-18; cited in Civil Action 5:11-cv-00459D.
54DX21-Danfoss; “VLT 8000 Aqua Instruction Manual;” Apr. 2004; 1-140; cited in Civil Action 5:11-cv-00459D.
54DX22-Danfoss; “VLT 8000 Aqua Instruction Manual;” Undated; pp. 1-35; cited in Civil Action 5:11-cv-00459D.
54DX23-Commander; “Commander SE Advanced User Guide;” Nov. 2002; pp. 1-118; cited in Civil Action 5:11-cv-00459D.
PX34-Pentair; “IntelliTouch Pool & Spa Control System User's Guide;” pp. 1-129; 2011; cited in Civil Action 5:11-cv-00459D.
PX138-Deposition of Dr. Douglas C. Hopkins; pp. 1-391; 2011; cited in Civil Action 5:11-cv-00459D.
PX141-Danfoss; Whitepaper Automatic Energy Optimization; pp. 1-4; 2011; cited in Civil Action 5:11-cv-00459D.
Shabnam Mogharabi; “Better, Stronger, Faster;” Pool and Spa News; pp. 1-5; Sep. 3, 2004; www/poolspanews.com.
Pentair Pool Products; “IntelliFlo 4X160 a Breathrough in Energy-Efficiency and Service Life;” pp. 1-4; Nov. 2005; www/pentairpool.com.
Pentair Water Pool and Spa, Inc.; “The Pool Pro's Guide to Breakthrough Efficiency, Convenience & Profitability;” pp. 1-8; Mar. 2006; wwwpentairpool.com.
Grundfos Pumps Corporation; “The New Standard in Submersible Pumps;” Brochure; pp. 1-8; Jun. 1999; Fresno, CA USA.
Grundfos Pumps Corporation; “Grundfos SQ/SQE Data Book;” pp. 1-39; Jun. 1999; Fresno, CA USA.
Goulds Pumps; “Balanced Flow System Brochure;” pp. 1-4; 2001.
Goulds Pumps; “Balanced Flow Submersible System Installation, Operation & Trouble-Shooting Manual;” pp. 1-9; 2000; USA.
Goulds Pumps; “Balanced Flow Submersible System Informational Seminar;” pp. 1-22; Undated.
Goulds Pumps; “Balanced Flow System Variable Speed Submersible Pump” Specification Sheet; pp. 1-2; Jan. 2000; USA.
Goulds Pumps; Advertisement from “Pumps & Systems Magazine;” Jan. 2002; Seneca Falls, NY.
Goulds Pumps; “Hydro-Pro Water System Tank Installation, Operation & Maintenance Instructions;” pp. 1-30; Mar. 31, 2001; Seneca Falls, NY USA.
Goulds Pumps; “Pumpsmart Control Solutions” Advertisement from Industrial Equipment News; Aug. 2002; New York, NY USA.
Goulds Pumps; “Model BFSS List Price Sheet;” Feb. 5, 2001.
Goulds Pumps; “Balanced Flow System Model BFSS Variable Speed Submersible Pump System” Brochure; pp. 1-4; Jan 2001; USA.
Goulds Pumps; “Balanced Flow System Model BFSS Variable Speed Submersible Pump” Brochure; pp. 1-3; Jan. 2000; USA.
Goulds Pumps; “Balanced Flow System . . . The Future of Constant Pressure Has Arrived;” Undated Advertisement.
Amtrol Inc.; “Amtrol Unearths the Facts About Variable Speed Pumps and Constant Pressure Valves;” pp. 1-5; Aug. 2002; West Warwick, RI USA.
Franklin Electric; “CP Water-Subdrive 75 Constant Pressure Controller” Product Data Sheet; May 2001; Bluffton, IN USA.
Franklin Electric; “Franklin Aid, Subdrive 75: You Made It Better;” vol. 20, No. 1; pp. 1-2; Jan./Feb. 2002; www.franklin-electric.com.
Grundfos; “SQ/SQE—A New Standard in Submersible Pumps;” Undated Brochure; pp. 1-14; Denmark.
Grundfos; “JetPaq—The Complete Pumping System;” Undated Brochure; pp. 1-4; Clovis, CA USA.
Email Regarding Grundfos' Price Increases/SQ/SQE Curves; pp. 1-7; Dec. 19, 2001.
F.E. Myers; “Featured Product: F.E. Myers Introducts Revolutionary Constant Pressure Water System;” pp. 1-8; Jun. 28, 2000; Ashland, OH USA.
“Water Pressure Problems” Published Article; The American Well Owner; No. 2, Jul. 2000.
Bjarke Soerensen; “Have You Chatted With Your Pump Today?” Undated Article Reprinted with Permission of Grundfos Pump University; pp. 1-2; USA.
“Understanding Constant Pressure Control;” pp. 1-3; Nov. 1, 1999.
“Constant Pressure is the Name of the Game;” Published Article from National Driller; Mar. 2001.
Related Publications (1)
Number Date Country
20070163929 A1 Jul 2007 US
Continuation in Parts (2)
Number Date Country
Parent 10926513 Aug 2004 US
Child 11567916 US
Parent 11286888 Nov 2005 US
Child 10926513 US