This invention relates to a filter mesh assembly in a filter assembly for filtering molten, recycled plastic, and more particularly to a filter mesh assembly that allows both passage of molten plastic to a breaker plate in the filter assembly and lateral movement of the molten plastic parallel to the breaker plate.
Many methods are employed in the recycling of plastics. All these methods have a common problem; the removal of contaminant(s). Typically contaminant(s) are removed by employing several different levels of filtration throughout the recycling process. Removal of the coarse contaminant(s) is typically accomplished first. Current technology employs the use of apparatus in which molten polymer is forced into a chamber with an inlet(s) and two or more outlets.
Typically placed between the inlet and at least one of the outlet ports is a filtration device that is sealed in such a way to prevent polymer flow directly from the inlet to the outlet without passing through a filter device. Filter assemblies typically employ the use of at least one outlet port that allows for molten polymer to flow directly from the inlet to the outlet, this is the waste port.
Within the molten polymer chamber of the filter assembly, up-stream of and typically in intimate contact with the filter device, is a scraping device. The waste port is utilized when sufficient contaminant(s) has built up on the filter surface to cause a pressure drop that meets a predetermined set-point. When the pressure drop across the filter meets the set-point, the outlet port(s) valves down-stream of the filter close and the waste port valve opens. While the waste port valve is open, the scraper device is activated, removing the contaminant(s) from the filter surface, forcing contaminant(s) out the waste port. When the scraping device has completed the cleaning, the pressure drop across the filter is reduced below a specified set-point, waste port valve closes and outlet port valve down-stream of the filter opens and the cycle repeats as needed. The waste is collected for disposal or further processing.
The apparatus of the present disclosure must also be of construction which is both durable and long lasting, and it should also require little or no maintenance to be provided by the user throughout its operating lifetime. In order to enhance the market appeal of the apparatus of the present disclosure, it should also be of inexpensive construction to thereby afford it the broadest possible market. Finally, it is also an objective that all of the aforesaid advantages and objectives be achieved without incurring any substantial relative disadvantage.
The disadvantages and limitations of the background art discussed above are overcome by the present disclosure.
There is provided a filter mesh assembly configured to control particulate material in a filter assembly of a recycled plastic extruder. The filter assembly includes a housing defining an inlet and an outlet. The housing also defines a discharge port with a breaker plate located between the inlet and the outlet. The recycled plastic extruder includes a scraper assembly which is configured to sweep across the filter mesh assembly to remove the particulate material caught by the filter mesh.
The filter mesh assembly comprises a filter media, a wire mesh assembly with the wire mesh assembly disposed in the housing between the inlet and the breaker plate.
The filter media defines a plurality of orifices configured to pass the molten plastic entering the recycled plastic extruder. The wire mesh assembly includes a square weave construction defining a predetermined pore size, with the wire mesh assembly diffusion bonded to the filter media.
The filter media prevents passage of particular material and the wire mesh assembly allows both passage of the molten plastic to the breaker plate and lateral movement of the molten plastic parallel to the breaker plate.
In another embodiment, at least one additional wire mesh assembly is diffusion bonded to the first or other wire mesh assembly with the one additional wire mesh assembly configured with a wire diameter larger than the wire diameter of the other wire mesh assembly. In another embodiment, the wire mesh assembly is circular and defines an outer circumference and an inner circumference with the inner circumference configured to receive a portion of the scraper assembly.
There is further provided a filter mesh assembly configured to control particulate material in a filter assembly of a recycled plastic extruder. The filter assembly includes a housing defining an inlet, and an outlet, a discharge port, a breaker plate, with the breaker plate located between the inlet and outlet, and a scraper assembly.
The filter mesh assembly includes a filter disc and a wire mesh support layer for lateral flow. The filter disc defines a plurality of orifices with a predetermined pore size configured to pass molten plastic. The wire mesh has a square weave construction allowing lateral flow of molten plastic to breaker plate throughholes, with the wire mesh diffusion bonded to the filter disc.
The filter mesh assembly is disposed in the housing between the inlet and the breaker plate with the filter disc preventing passage of particulate material and the wire mesh allowing both, passage of molten plastic to the breaker plate and lateral movement of the molten plastic parallel to the breaker plate.
There is further provided a filter mesh assembly configured to control particulate material in a filter assembly of a recycled plastic extruder. The filter assembly includes a housing defining an inlet, an outlet, a discharge port, a breaker plate, with the breaker plate located between the inlet and the outlet, and a scraper assembly.
The filter mesh assembly includes a wire mesh filter having a square weave construction defining a predetermined pore size. The wire mesh filter has a flattened surface of adjacent wires on the same plane and configured to allow a portion of the scraper to move across the wire mesh filter to remove particulate material from the wire mesh filter. A wire mesh supporter, having a square weave construction, and a characteristic of sufficient strength to support the wire mesh filter against the breaker plate is coupled to the wire mesh filter.
The wire mesh filter and the wire mesh supporter are diffusion bonded to each other as a unified structure and disposed in the housing between the inlet and the breaker plate with the filter mesh assembly preventing passage of particulate material and allowing both passage of molten plastic through the breaker plate and the lateral movement of material, parallel to the breaker plate.
There is additionally provided a method to filter particulate material from a stream of molten, recycled plastic with a filter assembly and to increase flow-through of the molten, recycled plastic through the filter assembly. The filter assembly includes a housing defining an inlet, an outlet, a discharge port, a breaker plate, with the breaker plate located between the inlet and the outlet, and a scraper assembly.
The method includes installing at least one filter mesh assembly in the filter assembly. The filter mesh assembly includes a filter media, with the filter media defining a plurality of orifices configured to pass molten plastic. The filter mesh assembly also includes a wire mesh assembly having a square weave construction defining a predetermined pore size, with the wire mesh assembly diffusion bonded to the filter media.
The method also includes disposing at least one filter mesh assembly between a portion of the scraper assembly and the breaker plate, and scraping filtered particulate material with the scraper assembly.
The method to filter particulate material includes a filter media that is defined as a filter disc, with the filter disc defining a plurality of orifices and configured to allow a portion of the scraper to move across the filter disc to remove particulate material.
In another embodiment, the method to filter particulate material provides a wire mesh assembly is a wire mesh supporter having a square weave construction and bonded to the filter media to form a unified filter mesh assembly. The wire mesh supporter having a characteristic of sufficient strength to support the unified filter mesh assembly against the breaker plate. The method also includes installing the unified filter mesh assembly between the portion of the scraper assembly and the breaker plate with the unified filter mesh assembly configured to allow a portion of the scraper to move across the filter media to remove particulate material.
The apparatus of the present invention is of a construction which is both durable and long lasting, and which will require little or no maintenance to be provided by the user throughout its operating lifetime. Finally, all of the aforesaid advantages and objectives are achieved without incurring any substantial relative disadvantage.
These and other advantages of the present disclosure are best understood with reference to the drawings, in which:
The filtration device is typically comprised of two (2) components: filter media and breaker plate. (See
Perforations, in the breaker plate, range in size and shape but are generally round, having a diameter range of ⅛th inch to ¼ inch. The current technology for the filter media employs the use of perforated material. The diameter of the perforated hole establishes the micron rating of the filter. There are many shortfalls of the current technology: high cost, poor open area and poor drainage specifically.
High Costs:
There are several methods for the manufacture of the perforated filter media. Some of these methods include but are not limited to: traditional perforating punching, traditional drilling, laser drilling and electron beam drilling. It is recognized that each of these methods has advantages and disadvantages for any given micron rating but for separate reasons all are significantly expensive. Traditional perforated punching, punches groups of holes at a single cycle of a machine. The punch tooling is expensive and costly to maintain. Traditional drilling, drills one hole at a time and requires the use of many drills. Laser and electron beam drilling drill one hole at a time, but can be done very fast. However, both laser drilling and electron beam drilling require post drilling processes to remove slag.
Poor Open Area:
All of the above manufacturing methods, for a variety of reasons, produce a part that has a total open area in the range of 8 to 14% of surface area. This means that approximately 86% to 92% of the filter media disc area is solid and provides no filtration or flow through that portion of the filter media, i.e. the molten plastic is blocked. This results in the pressure drop across the filter media building up more quickly, requiring cleaning by the wiper blade more frequently, the generation of more waste, and more time for the process.
In conventional filter assemblies, the filter media orifices are blocked by portions of the breaker plate, See
Lack of Drainage:
For the specific application of filtering molten polymer the open area of the filter media and the breaker plate work together as multipliers to reduce the available flow area. This is caused when a solid portion of a breaker plate is directly behind a hole of the filter media, blocking the hole from flow. If there is no drainage as in the case when flat perforated sheets are used as the filter media, the realized open area of the filter media breaker plate assembly can be calculated by multiplying the percent open area of each component together.
Open Area Calculations:
For a perforated sheet with staggered center holes: D2×90.69/C2 where “D”=the diameter of the hole and “C”=the center distance. Typically filter media that uses perforations to create the pores, regardless of manufacturing method, has total open areas typically ranging from 8 to 14% of surface area of the media. Inspected exemplary samples were measured to have 0.01575″ diameter holes on 0.0472″ centers, yielding a resultant open area of 10.1%. The supporting breaker plate has an estimated hole pattern of 3/16″ diameter holes on 5/16″ center lines; yielding an open area of 32.6%. The resultant open area of the assembly is the product of the two (2) open areas or 3.3%.
The present disclosure resolves all three of the above-mentioned issues. Woven wire mesh creates pores adjacent to the intersections of wires forming the mesh. Typically, woven wire mesh has an open area of 35% to 60%.
Although using a single layer of woven wire mesh 128 (See
The wire count of the down-stream mesh(s) typically has fewer wires per inch than the filter mesh such that any particle that passes through the filter mesh is also able to pass through the down-stream mesh. (See
In a typical assembly, in accordance with the present disclosure, a filtration layer is the first layer of wire mesh 130 that is in contact with the blade 118 of the scraper assembly 114. The filtration layer is typically made from a wire mesh 130 in a woven condition, that results in a micron rating at the desired end product micron rating. (See
In one embodiment, as illustrated in
As illustrated in
For purposes of this disclosure, the term “coupled” means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or moveable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or the two components and any additional member being attached to one another. Such adjoining may be permanent in nature or alternatively be removable or releasable in nature.
Although the foregoing description of the present mechanism has been shown and described with reference to particular embodiments and applications thereof, it has been presented for purposes of illustration and description and is not intended to be exhaustive or to limit the disclosure to the particular embodiments and applications disclosed. It will be apparent to those having ordinary skill in the art that a number of changes, modifications, variations, or alterations to the mechanism as described herein may be made, none of which depart from the spirit or scope of the present disclosure. The particular embodiments and applications were chosen and described to provide the best illustration of the principles of the mechanism and its practical application to thereby enable one of ordinary skill in the art to utilize the disclosure in various embodiments and with various modifications as are suited to the particular use contemplated. All such changes, modifications, variations, and alterations should therefore be seen as being within the scope of the present disclosure as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.