The present invention relates to cleaning and regenerating emission control devices such as particulate filters, and more particularly to the use of plasma to clean and regenerate such devices.
Emission control devices, such as particulate filters, are used in many applications including vehicles, to limit the amount of particulate matter discharged into the environment. Such devices are used, for example, to reduce emissions originating from an internal combustion engine such as a diesel engine. Substrate materials for particulate filters are often fashioned from ceramics such as cordierite and silicon carbide, or in certain cases, metal monolith or mesh materials.
Over time, the accumulation of ash, soot, and other residues can interfere with operation of particulate filters, for example by causing excessive back-pressure resulting in reduced filtration efficiency and engine efficiency. In order to operate properly, particulate filters must be periodically regenerated via a cleaning process that removes trapped residue from the filter.
Existing regeneration techniques generally involve application of heat to break down the organic components in soot such as carbon. Once the carbon has been oxidized to substances such as CO2, it can be removed from the device.
Several problems arise from the use of heat to regenerate filters. First, thermal stress can shorten the lifespan of filters by introducing wear and tear and fracture failures in the substrate material. Heat application can also be a time-consuming operation, sometimes requiring up to twenty hours to regenerate each filter. In some cases, active filter elements cannot easily be removed from their canisters or other housings, requiring that the entire assembly be exposed to potentially damaging heat. Thermal methods can also emit undesirable exhaust by-products that require remediation. Finally, thermal regeneration methods can be expensive, both in terms of the specialized equipment needed and the attendant energy costs.
What is needed, therefore, is a technique for regenerating filters that overcomes the limitations of thermal methods. What is further needed is a method that accomplishes the goal of breaking down carbon and other residues in filters without causing device failures or other modes of wear and tear associated with the thermal approach. What is further needed is a filter regeneration technique that provides improved efficiency and cost-effectiveness.
According to the techniques of the present invention, filter regeneration is accomplished by exposing the filter (or other emission control device) to a plasma atmosphere. Plasma oxidizes carbon-based residues, such as soot, to enable a filter to be easily cleaned and regenerated. Plasma avoids the limitations of thermal methods, in particular by reducing or eliminating heat-related stresses and by improving efficiency and expense associated with filter regeneration.
The present invention also provides improved plasma application techniques that overcome obstacles to the use of plasma in filter regeneration. Specifically, if the filter element is housed within a metallic canister and cannot easily be removed, the canister can interfere with plasma excitation. Other metallic components (such as a metal-containing washcoat or mesh) can also interfere with plasma excitation in the filter element. In addition, filter geometries often include large numbers of small openings that can shorten the mean free path for particles in the plasma state, thus reducing the sustainability of the plasma.
In various embodiments, as described more fully below, these obstacles are addressed by the use of secondary or downstream plasmas, compressed gas cylinders, pressure manipulation, or some combination thereof. The present invention offers an improved filter regeneration technique that avoids the limitation of thermal methodologies and is able to function in the presence of metallic components and low-mean-free-path filter geometries.
The present invention also facilitates the use of a smaller power source than is commonly found in thermal-based systems. Furthermore, the present invention reduces or eliminates the need for exhaust remediation, since the by-products are generally limited to carbon dioxide, oxygen, and/or water. These advantages provide improved simplicity that can yield greater portability and efficiency.
The accompanying drawings illustrate several embodiments of the invention and, together with the description, serve to explain the principles of the invention. One skilled in the art will recognize that the particular embodiments illustrated in the drawings are merely exemplary, and are not intended to limit the scope of the present invention.
In the following description, the present invention is described in terms of an off-vehicle mechanism for regenerating diesel particulate filters using plasma. One skilled in the art will recognize that the present invention can be practiced according to other techniques as well, and that the specific details contained herein are intended to be illustrative and not limiting of the scope of the invention. For example, the present invention can be implemented as an on-vehicle or off-vehicle mechanism.
According to the techniques of the present invention, filter regeneration is accomplished by exposing the filter (or other emission control device) to plasma. Plasma breaks down at least a portion of carbon-based residues, such as soot, to low molecular weight substances such as carbon dioxide, water, and volatile hydrocarbons that can be removed by a vacuum pump. The process of the present invention thus enables the filter to be easily cleaned and regenerated. Plasma avoids the limitations of thermal methods, in particular by reducing, eliminating, and/or controlling heat-related stress and by improving efficiency and expense associated with filter regeneration.
Referring now to
An advantage of the implementation of
Referring now to
Chamber 102 is connected to a gas source 201 via opening 202 and to a vacuum via opening 203, so that gas 105 is pulled from opening 202 to opening 203. Gas source 201 may be, for example a compressed gas cylinder for supplying gas to chamber 102. The snug fit of filter 101 within chamber 102 ensures that gas 105 passes through filter 101 on its way from opening 202 to opening 203; no gas 105 passes around the exterior of filter 101. If desired, a sealant can be applied to help prevent leakage of gas 105 around the sides of filter 101.
Electrodes 104 generate an RF field that excites gas 105 as it passes through filter 101. In one embodiment, electrodes 104 are set up as two separate plates surrounding chamber 102, with each plate occupying approximately 100 degrees. One skilled in the art will recognize that other arrangements can be used.
By forcing gas 105 through filter 101, the arrangement of
Referring now to
By virtue of the RF-transparency of chamber 303, electrode 301 can be positioned outside chamber 303. This simplifies the architecture of the regeneration apparatus, since no dielectric is needed, and no feed-through aperture is needed to pass electricity through the walls of chamber 303. Accordingly, the arrangement of
Referring now to
For filters 101 that are housed within a metallic casing, and/or that include metal-containing mesh and/or washcoat, the metals contained therein can interfere with plasma excitation inside filter 101. In addition, certain types of filter 101 geometries may reduce the mean free path to the point where plasma cannot be satisfactorily maintained within filter 101. Thus, for either or both of these reasons, gas 105 within filters 101 may fail to excite sufficiently to attain or maintain a plasma state. Accordingly, in such a circumstance the regeneration operation may fail to achieve the desired results.
Referring now to
An adjoining chamber (not shown) can be provided, to capture the dislodged particulate matter; this matter can be disposed of before the gas 105 is cycled back into the main chamber 303 or exhausted to the atmosphere.
In one embodiment, back pressure can be monitored as the gas is pushed and pulled through chamber 303, so as to provide an indication as to the progress of the filter regeneration process. Once back pressure has reached a predefined threshold level, filter 101 has been sufficiently cleaned of particulate matter that it can be re-used.
Microwave source 501 and plasma generation chamber 502 can be positioned at the top of chamber 303, or at the bottom. In an alternative embodiment, two microwave sources 501 and plasma generation chambers 502 are provided: one at each end of chamber 303. Microwave power sources can be less expensive than high frequency generators; furthermore, microwave generates higher frequency dissociates that can process gases into a plasma more effectively. Thus there may be benefits to using microwave energy for downstream or remote plasma system design. Also, the embodiment of
One skilled in the art will recognize that other electromagnetic energies can be used to create plasmas.
The techniques illustrated in
In some cases, filter elements cannot easily be removed from their canister or other housing, and must be regenerated in situ. If the canister is constructed from stainless steel or other RF-opaque material, the RF energy needed to excite the gas into a plasma state may not be able to penetrate into the filter elements. In one embodiment, this situation is addressed by using secondary plasma; in particular, plasma is generated outside the filter and then forced through the filter as described above. Alternatively, the stainless steel canister can be used as a ground and an electrode can be placed within the filter stack to avoid the need for the RF energy to pass through the canister; however, such a solution may be limited to filters of specific design.
The above-described embodiments are presented for illustrative purposes only. One skilled in the art will recognize that the present invention can be practiced using other techniques, arrangements, and layouts without departing from the essential characteristics as set forth in the claims.
Any of the above-described techniques can operate with any type of plasma. In one embodiment, one or more of the following gases is used: oxygen, argon, nitrous oxide, helium, carbon tetrafluoride, carbon dioxide, nitrogen trifluoride, and water vapor.
The above description includes various specific details that are included for illustrative purposes only. One skilled in the art will recognize the invention can be practiced according to many embodiments, including embodiments that lack some or all of these specific details. Accordingly, the presence of these specific details is in no way intended to limit the scope of the claimed invention.
All terms used herein are to be considered labels only, and are intended to encompass any appropriate physical quantities or other physical manifestations. Any particular naming or labeling of the various modules, protocols, features, and the like is intended to be illustrative; other names and labels can be used.
References to “one embodiment” or “an embodiment” indicate that a particular element or characteristic is included in at least one embodiment of the invention. Although the phrase “in one embodiment” may appear in various places, these do not necessarily refer to the same embodiment.
This patent application claims priority from U.S. Provisional Application Ser. No. 60/861,543 for “METHODS FOR TREATING, CLEANING AND REGENERATING EMISSION CONTROL DEVICES”, filed Nov. 30, 2006, the disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60861543 | Nov 2006 | US |