The present invention relates generally to devices and methods for treating occluded or stenoic blood vessels. More particularly, the present invention relates to devices and methods for removing a filter which has been placed in a blood vessel during a procedure to remove an occlusion or stenosis.
It is critical that the heart muscle be well oxygenated so that the blood pumping action of the heart is not impaired. Blood vessels which have become occluded (blocked) or stenotic (narrowed) may interrupt the oxygen supply to the heart muscle.
Occluded or stenotic blood vessels may be treated with a number of medical procedures including angioplasty and atherectomy. Angioplasty techniques such as percutaneous transluminal angioplasty (PTA) and percutaneous transluminal coronary angioplasty (PTCA) are relatively non-invasive methods of treating a stenotic lesion. These angioplasty techniques typically involve the use of a guidewire and a balloon catheter. In these procedures, a balloon catheter is advanced over a guidewire such that the balloon is positioned proximate a restriction in a diseased vessel. The balloon is then inflated and the restriction in the vessel is opened. During an atherectomy procedure, the stenotic lesion is mechanically cut or abraded away from the blood vessel wall using an atherectomy catheter.
During atherectomy procedures, stenotic debris that is separated from the stenosis may be free to flow within the lumen of the vessel. If this debris enters the circulatory system, it may facilitate the formation of an occlusion in the neural vasculature, or in the lungs, both of which are highly undesirable. An occlusion in the neural vasculature may cause a stroke, and an occlusion in the lungs may interfere with the oxygenation of the blood. During angioplasty procedures, stenotic debris may also break loose due to manipulation of the blood vessel.
The present invention relates generally to devices and methods for treating occluded or stenoic blood vessels. More particularly, the present invention relates to devices and methods for removing a filter which has been placed in a blood vessel during a procedure to remove an occlusion or stenosis. A filter retrieval catheter in accordance with an exemplary embodiment of the present invention includes an elongate shaft defining a lumen. A shaft hub is disposed about the elongate shaft proximate a proximal end thereof. A filter housing is fixed to the elongate shaft proximate a distal end thereof. The filter housing preferably has a proximal portion and a distal portion. A tip member is preferably slidingly disposed within the distal portion of the filter housing.
The tip member of the filter retrieval catheter preferably has an extended position and a retracted position. The filter retrieval catheter preferably includes a distal stop mechanism that is adapted to stop the movement of the tip member to the filter housing when the tip member is in the extended position. When the tip member is in the extended position, a tapered distal portion of the tip member preferably extends distally from the filter housing. The tapered distal portion of the tip member preferably has a generally conical shape. The generally conical shape of the tapered distal portion may facilitate the tracking of the filter retrieval catheter as it is advanced through a blood vessel.
The filter retrieval catheter preferably also includes a proximal stop mechanism that is adapted to stop relative movement between the tip member and the filter housing when the tip member is in the retracted position. In one embodiment, the proximal stop mechanism includes a trailing surface of the tip member and a mating surface defined a portion of the filter housing. In this embodiment, the trailing surface of the tip member seats against the mating surface when the tip member is in the retracted position. In a particularly preferred embodiment, the proximal stop mechanism is adapted to provide a hard stop that may be sensed by a physician using the filter retrieval catheter in a surgical procedure. This hard stop provides tactile feedback indicating that the tip member has been successfully placed in the retracted position.
In a preferred embodiment, the filter retrieval catheter includes a guidewire lumen extending through the tip member. In a preferred embodiment, the tip member is configured such that guidewire is substantially centered within the filter housing. Centering the filter housing about guidewire may facilitate the tracking of the filter retrieval catheter as it is advanced along a guidewire disposed within a blood vessel. Centering the filter housing may also reduce the magnitude of force which is required to urge the filter housing over a filter or other collapsible device attached to guidewire.
In one embodiment, the filter housing has an inner diameter and the tip member has an outer radial extent comprising an outer diameter. In a preferred embodiment, the outer diameter of the tip member is similar to the inner diameter of the filter housing. In a particularly preferred embodiment, the outer diameter of the tip member is slightly smaller than inner diameter of the filter housing.
In one embodiment, an inner tubular member extends proximally from the tip member. The inner tubular member preferably has an outer radial extent which is generally smaller than the outer radial extent of the tip member. In one embodiment, the inner tubular member extends through a shaft lumen defined by the elongate shaft. The elongate shaft is preferably slidingly disposed about the inner tubular member. A shaft hub is disposed about the elongate shaft proximate a proximal end thereof. An ancillary hub is disposed about the inner tubular member proximate the proximal end thereof. The inner tubular member preferably enables a physician to remotely move the tip member between the extended position and the retracted position.
The filter retrieval catheter may be utilized to remove a filter from a blood vessel. In a preferred embodiment, the physician may manipulate the distal portion of the filter retrieval catheter by applying forces to the proximal portion of the filter retrieval catheter. In a particularly preferred embodiment, the filter retrieval catheter is adapted to provide hard stops that may be sensed by a physician using the filter retrieval catheter in a surgical procedure. These hard stops provide tactile feedback indicating that the tip member has been successfully placed in the desired position. Also in a preferred embodiment, the filter is urged into a contracted configuration when it is disposed within the filter housing and is free to assume an expanded configuration when it is outside of the filter housing.
The following detailed description should be read with reference to the drawings, in which like elements in different drawings are numbered in like fashion. The drawings which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. In some cases, the drawings may be highly diagrammatic in nature. Examples of constructions, materials, dimensions, and manufacturing processes are provided for various elements. Those skilled in the art will recognize that many of the examples provided have suitable alternatives that may be utilized.
In
Filter retrieval catheter 100 includes a filter housing 124 that is fixed to elongate shaft 102 proximate a distal end 108 thereof. In the embodiment of
The term “wire”, as used in describing wire 126 should not be mistaken as limiting wire 126 to elements having a circular cross section. The cross section of wire 126 may be any number of shapes. For example, the cross section of wire 126 could be rectangular, elliptical, etc. Likewise, the term “wire”, as used in describing wire 126 should not be mistaken as being limited to metallic materials. In fact, wire 126 may be comprised of many metallic and non-metallic materials. Examples of metallic materials that may be suitable in some applications include stainless steel, tantalum, gold, and titanium. Wire 126 may also include a nickel-titanium alloy known in the art as Nitinol. Nitinol is commercially available from Memry Technologies (Brookfield, Conn.), TiNi Alloy Company (San Leandro, Calif.), and Shape Memory Applications (Sunnyvale, Calif.). Examples of non-metallic materials that may be suitable in some applications may be found in the list immediately below which is not exhaustive: polycarbonate, poly(L-lactide) (PLLA), poly(D,L-lactide) (PLA), polyglycolide (PGA), poly(L-lactide-co-D,L-lactide) (PLLA/PLA), poly(L-lactide-co-glycolide) (PLLA/PGA), poly(D, L-lactide-co-glycolide) (PLA/PGA), poly(glycolide-co-trimethylene carbonate) (PGA/PTMC), polyethylene oxide (PEO), polydioxanone (PDS), polycaprolactone (PCL), polyhydroxylbutyrate (PHBT), poly(phosphazene), polyD,L-lactide-co-caprolactone) (PLA/PCL), poly(glycolide-co-caprolactone) (PGA/PCL), polyanhydrides (PAN), poly(ortho esters), poly(phoshate ester), poly(amino acid), poly(hydroxy butyrate), polyacrylate, polyacrylamid, poly(hydroxyethyl methacrylate), polyurethane, polysiloxane and their copolymers. Embodiments of the present invention have also been envisioned in which wire 126 has a tubular cross section.
Filter housing 124 has a proximal portion 132 and a distal portion 134. In a preferred embodiment, inner tubular member 120 extends distally into distal portion 134 of filter housing 124. Also in a preferred embodiment, a tip member 136 is disposed about inner tubular member 120 proximate it's distal end. In the embodiment of
Filter housing 124 preferably includes an atraumatic tip 130 that is fixed to wire 126. Atraumatic tip 130 preferably defines a tip lumen that is adapted to accept tip member 136. In the embodiment of
A tip member 236 of filter retrieval catheter 200 is partially disposed within a housing lumen 240 defined by distal portion 234 of filter housing 224. The position of tip member 236 shown in
In a preferred embodiment, tip member 236 is configured such that guidewire 296 is substantially centered within filter housing 224. Centering filter housing 224 about guidewire 296 may facilitate the tracking of filter retrieval catheter 200 as it is advanced along a guidewire disposed within a blood vessel. Centering filter housing 224 about guidewire 296 may also reduce the magnitude of force which is required to urge filter housing 224 over a filter or other collapsible device attached to guidewire 296.
Distal portion 234 of filter housing 224 has an inner diameter 242. Tip member 236 has an outer radial extent 244 comprising an outer diameter 246. In a preferred embodiment, outer diameter 246 of tip member 236 is similar to inner diameter 242 of filter housing 224. In a particularly preferred embodiment, outer diameter 246 of tip member 236 is slightly smaller than inner diameter 242 of filter housing 224.
An inner tubular member 220 extends proximally from tip member 236. Inner tubular member preferably has an outer radial extent that is generally smaller than outer radial extent 244 of tip member 236. In the embodiment of
In a preferred embodiment, filter retrieval catheter 200 includes a guidewire lumen 250 extending through tip member 236, inner tubular member 220, and ancillary hub 222. In
In the embodiment of
Filter retrieval catheter 200 preferably includes a proximal stop mechanism 256 that is adapted to stop relative movement between tip member 236 and filter housing 224 when tip member 236 is in the retracted position. In the embodiment of
As mentioned previously, tip member 236 of filter retrieval catheter 200 preferably has both a retracted position as shown in
In the embodiment of
Tip member 336 of filter retrieval catheter 300 is preferably fixed to an inner tubular member 320 of filter retrieval catheter 300 proximate a distal end thereof. Inner tubular member 320 of filter retrieval catheter 300 is, preferably, slidingly disposed within a shaft lumen 348 defined by an elongate shaft 302 of filter retrieval catheter 300. An ancillary hub 322 is disposed about inner tubular member 320 proximate a proximal end thereof. In
Filter retrieval catheter 300 includes an elongate shaft 302. In
Filter housing 324 has a proximal portion 332 and a distal portion 334. In the embodiment of
In the embodiment of
Filter retrieval catheter 300 may be utilized to remove filter 368 from blood vessel 370. In a preferred embodiment, the physician may manipulate the distal portion of filter retrieval catheter 300 by applying forces to the proximal portion of filter retrieval catheter 300. In a particularly preferred embodiment, filter retrieval catheter 300 is adapted to provide hard stops that may be sensed by a physician using filter retrieval catheter 300 in a surgical procedure. These hard stops provide tactile feedback indicating that tip member 336 has been successfully placed in the desired position.
In
In the embodiment of
Filter retrieval catheter 300 preferably also includes a distal stop mechanism 362 that is adapted to stop the movement of tip member 336 and inner tubular member 320 relative to filter housing 324 when tip member 336 is in the extended position. In the embodiment of
In a preferred embodiment, tip member 336 and filter housing 324 are configured such that guidewire 326 is substantially centered within filter housing 324. Centering filter housing 324 about guidewire 326 may reduced the magnitude of force which is required to urge filter housing 324 over filter 368 and/or the magnitude of force which is required to urge filter 368 into a contracted configuration.
Having thus described the preferred embodiments of the present invention, those of skill in the art will readily appreciate that yet other embodiments may be made and used within the scope of the claims hereto attached. Numerous advantages of the invention covered by this document have been set forth in the foregoing description. It will be understood, however, that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of parts without exceeding the scope of the invention. The invention's scope is, of course, defined in the language in which the appended claims are expressed.
This is a continuation application of U.S. application Ser. No. 09/795,833, filed Feb. 28, 2001 now U.S. Pat. No. 6,974,468.
Number | Name | Date | Kind |
---|---|---|---|
3472230 | Fogarty | Oct 1969 | A |
3952747 | Kimmell, Jr. | Apr 1976 | A |
3996938 | Clark, III | Dec 1976 | A |
4425908 | Simon | Jan 1984 | A |
4643184 | Mobin-Uddin | Feb 1987 | A |
4662885 | DiPisa, Jr. | May 1987 | A |
4706671 | Weinrib | Nov 1987 | A |
4723549 | Wholey et al. | Feb 1988 | A |
4727873 | Mobin-Uddin | Mar 1988 | A |
4790812 | Hawkins et al. | Dec 1988 | A |
4790813 | Kensey | Dec 1988 | A |
4794928 | Kletschka | Jan 1989 | A |
4857045 | Rydell | Aug 1989 | A |
4873978 | Ginsburg | Oct 1989 | A |
4886061 | Fischell et al. | Dec 1989 | A |
4926858 | Gifford et al. | May 1990 | A |
4969891 | Gewertz | Nov 1990 | A |
5011488 | Ginsburg | Apr 1991 | A |
5037404 | Gold et al. | Aug 1991 | A |
5071407 | Termin et al. | Dec 1991 | A |
5085662 | Willard | Feb 1992 | A |
5133733 | Rasmussen et al. | Jul 1992 | A |
5160342 | Reger et al. | Nov 1992 | A |
5192286 | Phan et al. | Mar 1993 | A |
5324304 | Rasmussen | Jun 1994 | A |
5329942 | Gunther et al. | Jul 1994 | A |
5365943 | Jansen | Nov 1994 | A |
5366464 | Belknap | Nov 1994 | A |
5370657 | Irie | Dec 1994 | A |
5415630 | Gory et al. | May 1995 | A |
5419774 | Willard et al. | May 1995 | A |
5462529 | Simpson et al. | Oct 1995 | A |
5466222 | Ressemann et al. | Nov 1995 | A |
5536242 | Willard et al. | Jul 1996 | A |
5540707 | Ressemann et al. | Jul 1996 | A |
5549626 | Miller et al. | Aug 1996 | A |
5569274 | Rapacki et al. | Oct 1996 | A |
5662671 | Barbut et al. | Sep 1997 | A |
5669933 | Simon et al. | Sep 1997 | A |
5683451 | Lenker et al. | Nov 1997 | A |
5695499 | Helgerson et al. | Dec 1997 | A |
5695519 | Summers et al. | Dec 1997 | A |
5769816 | Barbut et al. | Jun 1998 | A |
5779671 | Ressemann et al. | Jul 1998 | A |
5779716 | Cano et al. | Jul 1998 | A |
5800457 | Gelbfish | Sep 1998 | A |
5800525 | Bachinski et al. | Sep 1998 | A |
5807398 | Shaknovich | Sep 1998 | A |
5814064 | Daniel et al. | Sep 1998 | A |
5833644 | Zadno-Azizi et al. | Nov 1998 | A |
5833650 | Imran | Nov 1998 | A |
5848964 | Samuels | Dec 1998 | A |
5910154 | Tsugita et al. | Jun 1999 | A |
5911734 | Tsugita et al. | Jun 1999 | A |
5951585 | Cathcart et al. | Sep 1999 | A |
5989210 | Morris et al. | Nov 1999 | A |
6027520 | Tsugita et al. | Feb 2000 | A |
6042598 | Tsugita et al. | Mar 2000 | A |
6066114 | Goodin et al. | May 2000 | A |
6066149 | Samson et al. | May 2000 | A |
6066158 | Engelson et al. | May 2000 | A |
6090099 | Samson et al. | Jul 2000 | A |
6136016 | Barbut et al. | Oct 2000 | A |
6142987 | Tsugita | Nov 2000 | A |
6152946 | Broome et al. | Nov 2000 | A |
6152947 | Ambrisco et al. | Nov 2000 | A |
6165200 | Tsugita et al. | Dec 2000 | A |
6168579 | Tsugita | Jan 2001 | B1 |
6171327 | Daniel et al. | Jan 2001 | B1 |
6171328 | Addis | Jan 2001 | B1 |
6179861 | Khosravi et al. | Jan 2001 | B1 |
6187025 | Machek | Feb 2001 | B1 |
6203561 | Ramee et al. | Mar 2001 | B1 |
6206868 | Parodi | Mar 2001 | B1 |
6221006 | Dubrul et al. | Apr 2001 | B1 |
6235045 | Barbut et al. | May 2001 | B1 |
6254633 | Pinchuk et al. | Jul 2001 | B1 |
6270513 | Tsugita et al. | Aug 2001 | B1 |
6277139 | Levinson et al. | Aug 2001 | B1 |
6280457 | Wallace et al. | Aug 2001 | B1 |
6287315 | Wijeratne et al. | Sep 2001 | B1 |
6290710 | Cryer et al. | Sep 2001 | B1 |
6319268 | Ambrisco et al. | Nov 2001 | B1 |
6336934 | Gilson et al. | Jan 2002 | B1 |
6371970 | Khosravi et al. | Apr 2002 | B1 |
6391044 | Yadav et al. | May 2002 | B1 |
6423086 | Barbut et al. | Jul 2002 | B1 |
6485501 | Green | Nov 2002 | B1 |
6520978 | Blackledge et al. | Feb 2003 | B1 |
6544280 | Daniel et al. | Apr 2003 | B1 |
6589227 | Sønderskov | Jul 2003 | B2 |
6602271 | Adams et al. | Aug 2003 | B2 |
6605102 | Mazzocchi et al. | Aug 2003 | B1 |
6616680 | Thielen | Sep 2003 | B1 |
6616681 | Hanson et al. | Sep 2003 | B2 |
6620182 | Khosravi et al. | Sep 2003 | B1 |
6663651 | Krolik et al. | Dec 2003 | B2 |
6974468 | DoBrava et al. | Dec 2005 | B2 |
7011672 | Barbut et al. | Mar 2006 | B2 |
7153320 | Euteneuer et al. | Dec 2006 | B2 |
20020016564 | Courtney et al. | Feb 2002 | A1 |
20020042626 | Hanson et al. | Apr 2002 | A1 |
20020049467 | Gilson et al. | Apr 2002 | A1 |
20020120286 | DoBrava et al. | Aug 2002 | A1 |
20020123766 | Seguin et al. | Sep 2002 | A1 |
20020133192 | Kusleika et al. | Sep 2002 | A1 |
20020138094 | Borillo et al. | Sep 2002 | A1 |
20020183781 | Casey et al. | Dec 2002 | A1 |
20030060843 | Boucher | Mar 2003 | A1 |
20030060844 | Borillo et al. | Mar 2003 | A1 |
20030114879 | Euteneuer et al. | Jun 2003 | A1 |
20030125751 | Griffin et al. | Jul 2003 | A1 |
20030181943 | Daniel et al. | Sep 2003 | A1 |
20040082968 | Krolik et al. | Apr 2004 | A1 |
20040127934 | Gilson et al. | Jul 2004 | A1 |
20050113865 | Daniel et al. | May 2005 | A1 |
20050171573 | Salahieh et al. | Aug 2005 | A1 |
20050234502 | Gilson et al. | Oct 2005 | A1 |
20050288704 | Cartier et al. | Dec 2005 | A1 |
20060004403 | Gilson et al. | Jan 2006 | A1 |
20060015139 | Tsugita et al. | Jan 2006 | A1 |
20060025805 | DoBrava et al. | Feb 2006 | A1 |
20060025806 | Krolik et al. | Feb 2006 | A1 |
Number | Date | Country |
---|---|---|
9601591 | Jan 1996 | WO |
WO9944542 | Sep 1999 | WO |
WO0016705 | Mar 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20060025805 A1 | Feb 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09795833 | Feb 2001 | US |
Child | 11241027 | US |