Claims
- 1. A filter element assembly for use in cartridge type liquid filtration systems comprising:
first and second cylindrical filter sleeves formed of flexible filter media, said second filter sleeve having a cross-sectional diameter less than the cross-sectional diameter of said first filter sleeve and arranged concentrically within said first filter sleeve forming a concentric cylindrical sleeve arrangement with an annular space between said first and second filter sleeves; a rigid inlet plate connected at one longitudinal end of said first and second filter sleeve concentric cylindrical arrangement, and a rigid terminal plate connected at the other longitudinal end of said concentric cylindrical arrangement; said inlet plate having a plurality of plate openings provided therein for communicating with said annular space between said first and second filter sleeves to thereby permit the flow of liquid to be filtered into said annular space; said terminal plate having an annular closed surface to prevent the flow of liquid from said annular space therethrough; a cylindrically shaped perforated outer cage connected to said first filter sleeve and surrounding said first filter sleeve to support said first filter sleeve against the flow of liquid; a cylindrically shaped perforated inner core located interiorly of and adjacent to said second filter sleeve to support said second filter sleeve against the flow of liquid; an end cap connected to said inlet plate, said end cap having an inlet opening for communicating with a source of liquid to be filtered and adapted to pass said liquid to be filtered through said end cap; and said filter element assembly adapted to be positioned within said cartridge filtration system so that said end cap will be oriented to receive liquid to be filtered so that liquid will pass through said end cap and through said plate openings into said annular space between said first and second filter sleeves to be passed through said filter sleeves for filtration of impurities or particles therefrom.
- 2. The filter element assembly according to claim 1, wherein said inlet plate comprises a planar surface for receiving liquid to be filtered, said plate openings extending through said planar surface inlet plate, an inner flange depending from said planar surface and an outer flange located exteriorly of said inner flange, said outer flange depending from said planar surface, said first and second sleeves being connected to said outer and inner flanges respectively, said planar surface of said inlet plate having a central area closed to communication with the space defined interiorly of said second sleeve.
- 3. The filter element assembly according to claim 2, wherein said first and second sleeves are ultrasonically welded to said flanges of said inlet plate.
- 4. The filter element assembly according to claim 3, wherein said terminal plate has a closed annular planar surface, an outer flange depending from said planar surface, and an inner flange extending from said planar surface in a direction substantially perpendicular to said closed planar surface, said first and said second sleeves being ultrasonically welded to said outer and inner flanges respectively.
- 5. The filter element assembly according to claim 1, wherein said inlet plate, said terminal plate and said first and said second sleeves are polypropylene.
- 6. The filter element assembly according to claim 1, wherein said outer cage and said inner core are polypropylene.
- 7. A filter element for use in liquid filtration systems comprising:
first and second cylindrical filter sleeves formed of flexible filter media, said second filter sleeve having a cross-sectional diameter less than the cross-sectional diameter of said first filter sleeve and arranged concentrically within said first filter sleeve forming an annular space therebetween, said second filter sleeve forming a cylindrical space interiorly thereof, a rigid circularly shaped inlet plate connected at one longitudinal end of both the first and second filter sleeves, said inlet plate having an outer circumferential edge and a closed central circular area corresponding approximately to the cross-sectional area of said cylindrical space and a rigid closed terminal plate connected at the other longitudinal end of both said first and second filter sleeves, said first filter sleeve being ultrasonically welded to said inlet plate proximate to the outer circumferential edge of said inlet plate, said second filter sleeve being ultrasonically welded to said inlet plate proximate to the circumference of said central circular area, said inlet plate having at least one plate opening provided therein between said outer circumferential edge and the circumference of said central circular area for communicating with said annular space between said first and second filter sleeves to thereby permit the flow of liquid to be filtered into said annular space, said terminal plate having a closed annular surface to prevent the flow of liquid form said annular space therethrough, a cylindrically shaped perforated outer cage surrounding said first filter sleeve and a cylindrically shaped perforated inner core located interiorly of said second filter sleeve; said outer cage and said inner core being connected to said inlet plate and adapted to support said first and second filter sleeves respectively against the flow of liquid; and an end cap connected to said outer cage and located proximate said inlet plate, said end cap having an inlet opening for passing liquid to be filtered therethrough so that said liquid can flow through said end cap; whereby when said filter element is arranged within said filtration system said inlet plate will be oriented to receive-liquid to be filtered from the opening in said end cap so that said liquid will pass through said plate openings into said annular space between said first and second filter sleeves for passing through said filter sleeves for filtration of impurities or particles therefrom.
- 8. The filter element assembly according to claim 7, wherein said inlet plate comprises a planar surface for receiving liquid to be filtered, said plate openings being arranged through said planar surface, an inner flange depending from said planar surface at the circumference of said central circular area, and an outer flange located exteriorly of said inner flange proximate said circumferential edge and connected to said planar surface, said first and second sleeves being connected to said outer and inner flanges respectively, said planar surface of said inlet plate being closed to communication with said cylindrical space.
- 9. The filter element assembly according to claim 8, wherein said outer flange extends from said planar surface in a longitudinal direction.
- 10. The filter element assembly according to claim 7, wherein said terminal plate has an open central area in communication with said cylindrical space so that filtered liquid in said cylindrical space can pass through said terminal plate opening to exit said filter element assembly.
- 11. The filter element assembly according to claim 10, wherein said terminal plate has a closed planar surface, an outer flange depending from said terminal plate planar surface, and an inner flange attached to said terminal plate planar surface and extending in a longitudinal direction opposite to that of said terminal plate outer flange, said first and second sleeves being ultrasonically welded to said terminal plate outer and inner flanges respectively.
- 12. A filter element assembly for use in liquid filtration systems comprising:
first and second cylindrical filter sleeves formed of flexible filter media, said second filter sleeve having a cross-sectional diameter less than the cross-sectional diameter of said first filter sleeve and arranged concentrically within said first filter sleeve forming a concentric cylindrical sleeve arrangement with an annular space between said first and second filter sleeves and a cylindrical space interiorly of said′ second filter sleeve; inlet means connected at one longitudinal end of said first and second filter sleeve concentric cylindrical arrangement, said inlet means having at least one opening for permitting flow of liquid to be filtered into said annular space and an area closed to the flow of liquid for preventing flow of said liquid to be filtered into said cylindrical space; terminal means connected at the other longitudinal end of said concentric cylindrical arrangement to prevent the flow of liquid to be filtered from said annular space other than through at least one of said filter sleeves and to permit the flow of filtered liquid from said cylindrical space and out of said filter element assembly; first and second support means adjacent to said first and second filter sleeves respectively for supporting said sleeves against radial outward and radial inward pressure respectively from the flow of liquid radially against said sleeves; assembly end means connected with said inlet means for communicating with a source of liquid to be filtered and for passing said liquid to be filtered therethrough; and said filter element assembly adapted to be positioned within said cartridge filtration system so that said assembly end means will be oriented to receive liquid to be filtered so that said liquid to be filtered will pass through said assembly end means and through said inlet means into said annular space between said first and second filter sleeves for passing through said filter sleeves for filtration of impurities or particles therefrom.
- 13. The filter element assembly according to claim 12, wherein said inlet means comprises a rigid inlet plate having a planar surface for receiving liquid to be filtered, said planar surface having at least one plate opening provided therein for communicating with said annular space between said first and second filter sleeves to thereby permit the flow of liquid to be filtered into said annular space, an inner flange depending from said planar surface and an outer flange located exteriorly of said inner flange, said outer flange depending from said planar surface, said first and second sleeves being connected to said outer and inner flanges respectively, said planar surface of said inlet plate having a central area closed to communication with said cylindrical space.
- 14. The filter element assembly according to claim 13, wherein said first and second sleeves are ultrasonically welded to said flanges of said inlet plate.
- 15. The filter element assembly according to claim 13, wherein said terminal means comprises a terminal plate having a closed planar surface to prevent the flow of liquid to be filtered from said annular space therethrough, an outer flange depending from said planar surface, and an inner flange extending from said planar surface in a direction substantially perpendicular to said closed planar surface, said first and said second sleeves being ultrasonically welded to said outer and inner flanges respectively.
- 16. The filter element assembly according to claim 15, wherein said inlet plate, said terminal plate and said first and said second sleeves are polypropylene.
- 17. The filter element assembly according to claim 12, wherein said first support means comprises a cylindrically shaped perforated outer cage connected to said first filter sleeve.
- 18. The filter element assembly according to claim 12, wherein said outer cage is polypropylene.
- 19. The filter element assembly according to claim 12, wherein said second support means comprises a cylindrically shaped perforated inner core located interiorly of said second filter sleeve.
- 20. The filter element assembly according to claim 19, wherein said inner core is polypropylene.
- 21. The filter element assembly according to claim 12, wherein said assembly end means comprises an end cap having an inlet opening therethrough, said end cap connected to said inlet means.
- 22. The filter element assembly according to claim 21, wherein said end cap is polypropylene and wherein said inlet means is a polypropylene inlet plate.
- 23. The filter element assembly according to claim 22, wherein said end cap is ultrasonically welded to said inlet plate.
- 24. A method of filtering liquid comprising:
directing liquid to be filtered into a filter element assembly; causing said liquid to be filtered to pass through at least one opening through a rigid generally circular inlet plate of said filter element assembly and into an annular space formed between first and second cylindrical filter sleeves of said filter element assembly, said filter sleeves formed of flexible filtration media, said second filter sleeve having a cross-sectional diameter less than the cross-sectional diameter of said first filter sleeve and forming a cylindrical space interiorly of said second filter sleeve, said liquid to be filtered entering said annular space at one longitudinal end thereof through said at least one opening; preventing the flow of liquid to be filtered into said cylindrical space by a closed central surface of said inlet plate corresponding to the area of said cylindrical space; preventing the flow of liquid to be filtered from said annular space except through said first and/or second filter sleeves to thereby effect filtration of impurities or particles from said liquid; and permitting the flow of filtered liquid from said cylindrical space out of said filter element assembly.
- 25. The method of claim 24, wherein preventing the flow of liquid to be filtered into said cylindrical space comprises positioning said closed central surface of said inlet plate in alignment with said cylindrical space, said closed central surface being generally circular having a diameter approximately the same as the cross-sectional diameter of said cylindrical space.
- 26. The method of claim 24, wherein preventing the flow of liquid to be filtered from said annular space comprises connecting an annularly shaped closed terminal plate to said first and second filter sleeves at the longitudinal end of said filter sleeves opposite the end thereof where said liquid to be filtered enters said annular space.
- 27. The method of claim 26, wherein permitting the flow of filtered liquid from said cylindrical space out of said filter element assembly comprises positioning a central opening in said terminal plate in communication with said cylindrical space, said central opening having a diameter approximately the same as the diameter of said cylindrical space.
- 28. The method of claim 24 further comprising supporting said first and second filter sleeves against the flow of liquid.
- 29. The method according to claim 28, wherein supporting said first filter sleeve comprises placing an outer cylindrical support cage adjacent to and surrounding said first filter sleeve so as to support said first filter sleeve against radially outward pressure from the flow of liquid radially against said first sleeve.
- 30. The method according to claim 29, wherein supporting said second filter sleeve comprises placing an inner core adjacent to and interiorly of said second filter sleeve for supporting said second filter sleeve against radial inward pressure from the flow of liquid radially against said second sleeve.
- 31. A method of filtering liquid comprising:
directing liquid to be filtered into a filter element assembly; causing said liquid to be filtered to pass through a plurality of openings through a rigid generally circular inlet plate of said filter element assembly and into an annular space formed between first and second cylindrical filter sleeves of said filter element assembly, said filter sleeves formed of flexible filtration media, said second filter sleeve having a cross-sectional diameter less than the cross-sectional diameter of said first filter sleeve and forming a cylindrical space interiorly of said second filter sleeve, said liquid to be filtered entering said annular space at one longitudinal end thereof; preventing the flow of liquid to be filtered into said cylindrical space by positioning a closed central surface of said inlet plate corresponding to the cross-sectional area of said cylindrical space in alignment with said cylindrical space; preventing the flow of liquid to be filtered from said annular space except through said first and/or second filter sleeves by connecting an annularly shaped closed terminal plate to said first and second filter sleeves at the longitudinal end of said filter sleeves opposite the end thereof where said liquid to be filtered enters said annular space to thereby effect filtration of impurities or particles from said liquid; permitting the flow of filtered liquid from said cylindrical space out of said filter element assembly; and supporting said first and second filter sleeves against the flow of liquid.
- 32. A filter system, comprising:
(i) a generally cylindrical filter housing having an interior space for accommodating a filter element through which liquid to be filtered is caused to pass, said housing having an open top and a removable closure lid supported on the top of said housing so that said housing is closed when said lid is in the closed position, allowing access to the interior of said housing when said lid is in the open position; (ii) an inlet conduit connected to said housing for directing liquid to be filtered through a filter element, and an outlet conduit connected to and in fluid communication with the interior of said housing to direct flow of filtered liquid away from said housing; and (iii) a filter element assembly adapted to be supported within the interior space of said housing, said filter element assembly comprising first and second cylindrical filter sleeves formed of flexible filter media, said first filter sleeve having a cross-sectional diameter less than the cross-sectional diameter of said second filter sleeve and arranged concentrically within said second filter sleeve forming an annular space between said first and second filter sleeves, said first filter sleeve forming a cylindrical space interiorly thereof, a rigid substantially circularly shaped inlet plate connected at one longitudinal end of both the first and second filter sleeves, said inlet plate having an outer circumferential edge and a central circular area generally corresponding to the cross sectional area of said cylindrical space and a rigid closed terminal plate connected at the other longitudinal end of both said first and second filter sleeves, said first filter sleeve being ultrasonically welded to said inlet plate proximate to the outer circumferential edge of said inlet plate, said second filter sleeve being ultrasonically welded to said inlet plate proximate to the circumference of said central circular area, said inlet plate having plate openings provided therein and located between said outer circumferential edge and the circumference of said central circular area for communicating with said annular space between said first and second filter sleeves to thereby permit flow of liquid to be filtered into said annular space, said terminal plate having a closed surface to prevent the flow of liquid from said annular space therethrough, a central opening in said central circular area of said inlet plate adapted to communicate with said inlet conduit so that liquid to be filtered will pass through said central opening in said central circular area in order to flow into said annular space through said plate openings in said inlet plate when said filter element assembly is supported within the interior of said housing; and (iv) said filter element adapted to be carried within a support basket when said filter element is positioned within the interior of said housing.
- 33. The filter element assembly according to claim 32, wherein said inlet plate comprises a planar surface for receiving liquid to be filtered, said plate openings being arranged through said planar surface, an inner flange depending from said planar surface and an outer flange located exteriorly of said inner flange, said outer flange depending from said planar surface, said first and second sleeves being connected to said outer and inner flanges respectively.
- 34. The filter element assembly according to claim 33, wherein said first and second sleeves are ultrasonically welded to said flanges of said inlet plate.
- 35. The filter element assembly according to claim 34, wherein said terminal plate has a closed annular planar surface, an outer flange depending from said planar surface, and an inner flange extending from said planar surface in a direction substantially perpendicular to said closed planar surface, said first and second sleeves being ultrasonically welded to said outer and inner flanges respectively.
- 36. The filter element assembly according to claim 35, wherein said inlet plate, said terminal plate and said first and second sleeves are polypropylene.
- 37. A filter element assembly for use in liquid filtration systems comprising:
first and second cylindrical filter sleeves formed of flexible filter media, said second filter sleeve having a cross-sectional diameter less than the cross-sectional diameter of said first filter sleeve and arranged concentrically within said first filter sleeve forming an annular space therebetween, said second filter sleeve forming a cylindrical space interiorly thereof, a rigid circularly shaped inlet plate connected at one longitudinal end of both the first and second filter sleeves, said inlet plate having an outer circumferential edge and a central circular area corresponding approximately to the cross-sectional area of said cylindrical space and a rigid closed terminal plate connected at the other longitudinal end of both said first and second filter sleeves, said first filter sleeve being ultrasonically welded to said inlet plate proximate to the outer circumferential edge of said inlet plate, said second filter sleeve being ultrasonically welded to said inlet plate proximate to the circumference of said central circular area, said inlet plate having a plurality of plate openings provided therethrough, said openings located between said outer circumferential edge and the circumference of said central circular area for communicating with said annular space between said first and second filter sleeves to thereby permit the flow of liquid to be filtered into said annular space, said terminal plate having a closed surface to prevent the flow of liquid form said annular space therethrough, said inlet plate having a central opening adapted to communicate with an inlet conduit extending longitudinally through said cylindrical space to provide liquid to be filtered to flow into said annular space through said plate openings when said filter element assembly is supported within a filter vessel in which said inlet conduit enters said vessel through the bottom thereof.
- 38. The filter element assembly according to claim 37, wherein said inlet plate comprises a planar surface for receiving liquid to be filtered, said plate openings being arranged through said planar surface, an inner flange depending from said planar surface at the circumference of said central circular area, and an outer flange located exteriorly of said inner flange proximate said circumferential edge and connected to said planar surface, said first and second sleeves being connected to said outer and inner flanges respectively.
- 39. The filter element assembly according to claim 38, wherein said terminal plate has an open central area in communication with said cylindrical space so that filtered liquid in said cylindrical space can pass through said terminal plate opening and to allow said inlet conduit to pass therethrough into said cylindrical space.
- 40. The filter element assembly according to claim 39, wherein said terminal plate has a closed planar surface, an outer flange depending from said terminal plate planar surface, and an inner flange attached to said terminal plate planar surface and extending in a longitudinal direction said first and second sleeves being ultrasonically welded to said terminal plate outer and inner flanges respectively.
- 41. A filter element assembly for use in liquid filtration systems adapted to be accommodated within a filter housing, said filter element assembly comprising:
a support basket for placement within said filter housing and a collapsible filter insert removably carried within said basket; said basket having first, second and third rigid cylindrically shaped and concentrically arranged mesh screens allowing for the free flow of liquid therethrough; said first cylindrically shaped screen defining a cylindrical space interiorly thereof; said first screen arranged interiorly of said second screen forming a first annular space therebetween, said second screen arranged interiorly of said third screen forming a second annular space therebetween; said second and third cylindrical screens being connected to each other by a flat annularly shaped mesh screen located at one longitudinal end thereof, said first screen connected to a flat circular mesh screen located at one longitudinal end thereof; said filter insert adapted to be supported within said cylindrical space and said second annular space and having first, second and third cylindrical filter sleeves formed of flexible filter media, said first filter sleeve having a cross-sectional diameter less than the cross-sectional diameter of said second filter sleeve and arranged concentrically within said second filter sleeve forming an annular space therebetween, said second filter sleeve having a cross-sectional diameter less than the cross-sectional diameter of said third filter sleeve and arranged concentrically within said third filter sleeve forming an annular space therebetween; a rigid inlet plate connected at one longitudinal end of said first, second and third filter sleeves, and a first rigid circularly shaped terminal plate connected at the other longitudinal end of said first filter sleeve, and a second rigid annularly shaped terminal plate connected at the other longitudinal end of said second and third filter sleeves, said inlet plate having at least one plate opening provided therein for communicating with said second annular space and the annular space between said second and third filter sleeves to thereby permit the flow of liquid to be filtered into said second annular space, and a central opening provided in a center area of said inlet plate for communicating with said cylindrical space to thereby permit the flow of liquid to be filtered into said cylindrical space; said first and second terminal plates each having a closed surface to prevent the flow of liquid from said second annular space therethrough; said filter′ insert being collapsible so that said inlet plate and said terminal plates are moveable toward and away from each other when said filter insert is outside of said basket; whereby when said filter insert is carried within said basket said inlet plate and said terminal plates are positioned remote from each other, said first and second terminal plates being positioned adjacent said flat circular and annular mesh screens respectively, and said first sleeve of said filter insert is positioned adjacent and concentrically interior of said first screen of said basket, said second sleeve of said filter insert is positioned adjacent and concentrically exterior of said second screen of said basket, and said third sleeve is positioned adjacent and concentrically interior of said third screen so that said cylindrical screens of said basket support said sleeves of said filter element against the pressure of liquid flow, and whereby when said filter element assembly is arranged within a filter housing said inlet plate of said filter insert will be oriented to receive liquid to be filtered which enters said filter housing so that liquid will pass through said at least one plate opening into the annular space between said second and third filter sleeves and through said central opening into said cylindrical space for passing first through said filter sleeves and then through said screens of said basket to effect filtration of impurities or particles therefrom.
- 42. The filter element assembly according to claim 41, wherein said inlet plate further comprises a planar surface for receiving liquid to be filtered, said at least one plate opening and said central opening being arranged through said planar surface.
- 43. The filter element assembly according to claim 42, wherein said inlet plate further comprises′ first, second and third depending flanges to which said first, second and third sleeves are respectively connected.
- 44. The filter element assembly according to claim 43, wherein said inlet plate, said terminal plates and said first, second and third filter sleeves are polypropylene.
- 45. The filter element assembly according to claim 44, wherein said first, second and third sleeves are ultrasonically welded to said flanges of said inlet plate.
- 46. The filter element assembly according to claim 45, wherein said first terminal plate has a closed planar surface, and an outer flange depending from said planar surface.
- 47. The filter element assembly according to claim 46, wherein said first sleeve is ultrasonically welded to said outer flange of said first terminal plate.
- 48. The filter element assembly according to claim 45, wherein said second terminal plate has a closed annular planar surface and an outer flange at the outer circumferential edge of said planar surface depending from said planar surface and an inner flange at the inner circumferential edge of said planar surface.
- 49. The filter element assembly according to claim 41, further comprising means for supporting said filter element assembly within said housing.
- 50. The filter element assembly according to claim 49, wherein said means for supporting said filter element assembly within said housing comprising an annular ring formed integrally with said inlet plate, a shoulder formed on said basket for supporting said ring, said shoulder arranged to be supported by said housing.
- 51. The filter element assembly according to claim 50, wherein said ring of said inlet plate supports a V shaped groove the open end of which faces a direction perpendicular to the longitudinal axis of said filter element assembly, and further comprising an O-ring carried within said groove, whereby when said filter insert is supported within said basket said O-ring will engage a side wall surface of said basket.
- 52. The filter element assembly according to claim 51, wherein said V shaped groove comprises upper and lower forks, whereby when said assembly is carried within a housing said upper fork is positioned to be pressed against by a cover plate of said housing to thereby compress said O-ring causing said O-ring to exert a force against said side wall surface of said basket to effect a fluid seal.
- 53. A collapsible filter element for use in liquid filtration systems adapted to be accommodated within a filter housing, said filter element comprising:
first, second and third cylindrical filter sleeves formed of flexible filter media, said first filter sleeve forming a cylindrical space interiorly thereof and having a cross-sectional diameter less than the cross-sectional diameter of said second filter sleeve and arranged concentrically within said second filter sleeve thereby forming a first annular space therebetween, said second filter sleeve having a cross-sectional diameter less than the cross-sectional diameter of said third filter sleeve and arranged concentrically within said third filter sleeve thereby forming a second annular space therebetween; a rigid inlet plate connected at one longitudinal end of said first, second and third filter sleeves, a first rigid circularly shaped terminal plate connected at the other longitudinal end of said first filter sleeve, and a second rigid annularly shaped terminal plate connected at the other longitudinal end of said second and third filter sleeves; said inlet plate having an outer circumferential edge, at least one plate opening provided through said inlet plate for communicating with said second annular space to thereby permit the flow of liquid to be filtered into said second annular space, and a central opening provided in a central area of said inlet plate corresponding to said cylindrical space for communicating with said cylindrical space to thereby permit the flow of liquid to be filtered into said cylindrical space, said at least one plate opening located between the circumference of said central area and said circumferential edge; said first and second terminal plates each having a closed surface to prevent the flow of liquid from said second annular space therethrough; said filter element being collapsible so that said inlet plate and said terminal plates are moveable toward and away from each other; whereby when said filter element is carried within said filter housing said inlet plate will be oriented to receive liquid to be filtered which enters said filter housing so that liquid will pass through said at least one plate opening into the annular space between said second and third filter sleeves and through said central opening into said cylindrical space for passing through said filter sleeves to effect filtration of impurities or particles therefrom.
- 54. The collapsible filter element according to claim 53, wherein said inlet plate further comprises a planar surface for receiving liquid to be filtered, said at least one plate opening and said central opening being arranged through said planar surface, said inlet plate having first, second and third depending flanges to which said first, second and third sleeves are respectively connected.
- 55. The collapsible filter element according to claim 54, wherein said second terminal plate having a closed annular planar surface and an outer flange at the outer circumferential edge of said planar surface depending from said planar surface and an inner flange at the inner circumferential edge of said planar surface.
CROSS REFERENCE TO RELATED APPLICATION
[0001] This application is a continuation-in-part of copending application Ser. No. 09/481,604 filed Jan. 12, 2000, which was a continuation of application Ser. No. 09/115,118 filed Jul. 14, 1998 (now U.S. Pat. No. 6,030,531) which claimed the priority of provisional application Ser. No. 60/057,759, filed Sep. 2, 1997, the contents of which is incorporated herein by reference.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60057759 |
Sep 1997 |
US |
Divisions (1)
|
Number |
Date |
Country |
Parent |
09864717 |
May 2001 |
US |
Child |
10266790 |
Oct 2002 |
US |
Continuations (1)
|
Number |
Date |
Country |
Parent |
09115118 |
Jul 1998 |
US |
Child |
09481604 |
Jan 2000 |
US |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
09481604 |
Jan 2000 |
US |
Child |
09864717 |
May 2001 |
US |