FILTER SYSTEM

Information

  • Patent Application
  • 20200376415
  • Publication Number
    20200376415
  • Date Filed
    June 09, 2020
    4 years ago
  • Date Published
    December 03, 2020
    4 years ago
Abstract
A novel fluid filter includes a partially permeable elastic bag encapsulating a filtration medium, and providing pressure i prevent channeling. A receiver with one or more apertures tits at least partially within the filtration bag to receive treated fluid. A cover may be placed over a tube of the receiver to prevent filtration medium from exiting systems An upper portion of the filtration bag is impermeable, while the lower portion of the bag is permeable. The fluid path flows over the top and up through the lower section and through a major path through the filtration medium.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

The present disclosure is related generally to fluid filtration systems. More particularly, the present disclosure is related to in-line filter systems for potable water treatment.


2. Description of Related Prior Art

Multiple in-line water treatment systems have been devised for improving the nature, characteristics, taste, or safety of potable water. Many of these systems are built into a pressured water source, e.g. water supply, municipal water systems, etc. In-line water treatment systems may be used at the entry to a building, or home, or may be installed immediately prior to a dispensation outlet, such as under-sink, faucet, bathroom, kitchen, hose bib, etc. In-line systems typically interrupt the flow, to divert most or all incoming water through the filtration system. Filtration systems in the art may include single stage, or multiple stage, conditioning systems. Filters that can either remove certain attributes of the water (e.g. mechanically strain particles, bind chlorine, precipitate metals, etc.) or add characteristics to the water (modification of pH, add softeners, improve taste profile, etc.). Water is often passed through a filtration medium that can either remove or add features to the water. Once passing through the water treatment system, the water may then re-enter the water system for supply and use,


Water treatment filter systems include modular filters, as are known in the art. A single filter module may include a housing, the housing containing a filter. The container housing couples (often via levered threading) with a cap. The cap may perform much of the fluid management and includes both an inlet (to direct water into the filter), and an outlet (for water to re-enter the water supply line). Fluid passes through the cap into the container, through the filter, and up through a central passage in the bottom of the cap, wherein the cap directs the fluid through an exit back to the water line. The cap is typically directly plumbed to a source line.


Given the nature of in-line filter systems, two primary modes of filters are used. One method includes axial flow filters. Axial, or linear, filters force the fluid flow through a filtration medium wherein the incoming fluid enters the filter at a first end and exits through a different side. A benefit of axial flow filtration systems is that the fluid must pass through a large portion of, or take a longer path through, the filtration medium prior to exiting. This increases the exposure of each molecule of the fluid to potential interaction with the filtration medium, However, axial flow filters suffer a drawback of both pressure loss and slowing the flow velocity, Axial flow filters are more susceptible to channeling and bypassing within the filter as filtration media is subject to more force.


An alternative filter system commonly used in the art includes radial flow filters. Radial flow filters may include a cylinder, whereby fluid passing through the radial filter must only pass through a portion consisting of the radial length from any direction along a single plane transverse a longitudinal axis along the filter. Radial flow allows water to flow from the entire outside of the filter through to the core providing an order of magnitude more surface area contact than axial flow designs. With increased surface area, different mesh size carbon powders can be used in combination with other filtration media without suffering much reduction of pressure. The water moves slowly through a consistent (often solid block membrane), yet the flow rates remain high due to the greater exposed surface. The vast amount of surface area available in radial flow filters, paired with the minimal length of passage through the filter, or filtration medium, leads to low pressure loss and high-volume velocity. However, the drawback of radial flow filters is in the limited path through the media, and thus a reduced filtration process.


Therefore, there is a need for a filter system that can both retain a high velocity of fluid flow, while simultaneously enhancing filtration medium exposure. In order to provide a fast flow with optimal filtration, a new filter system that could increase surface area exposure over axial flow filter and at the same time improve the path length of the minimum path through the tiller would be particularly advantageous.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described with greater specificity and clarity with reference to the following drawings, in which:



FIG. 1 illustrates a perspective view of a filter receiver consistent with several embodiments of the present disclosure;



FIG. 2 illustrates a side view of the filter receiver as shown in FIG. 1;



FIG. 3 illustrates a cross-sectional side view of the filter receiver of FIG. 2;



FIG. 4 illustrates a perspective view of a filter receiver according to an embodiment of the present disclosure;



FIG. 5 illustrates a side view of an alternative filter receiver as shown in FIG. 4;



FIG. 6 illustrates a cross-sectional side view of a filter receiver as shown in FIGS. 4 and 5;



FIG. 7 illustrates a cross-sectional side view of a filtration module encapsulating the filter receiver as shown in FIGS. 4-6;



FIG. 8 illustrates aside view of a filter receiver with attached filtration medium bag consistent with an embodiment of the present disclosure;



FIG. 9 illustrates a cross-sectional side view of a filter receiver encapsulated in a container demonstrating fluid motion; and



FIG. 10 illustrates a cross-sectional side view of a filtration module encapsulating the filter receiver as shown in FIG. 7 and demonstrating fluid motion.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Described is a unique, novel, and non-obvious improvement on modular filtration systems and a water filter receiver, as typically seen in potable water industries. The invention includes using a waterproof material to direct fluid flow through a filtration medium while combating channeling via inwardly pressurized elastic filtration medium bag. The filtration system can be used with a proprietary, or a common, filter canister including a filtration element. The filtration clement may be replaceable or reusable. The container envisioned and described herein is provided for exemplary purposes only, and is not intended to limit how the present invention may be used. A preferred container would be a filter unit container that includes two pieces, a bottom housing and top cap. Candlewick-style filters may be used whereby the cap can cause entry of fluid in a (circular) ring positioned around a central aperture, the cap central aperture providing egress of treated fluid, Preferably, the cap can be used to couple with, and interrupt a water supply to provide inlet and outlet. The cap directs the flow of water supplied from the water source into the container wherein the water passes through, a fitter, and then out through an outlet in the cap back into the water fine. Alternatively, the present invention may include a unique candle wick top. A receiver can include a coupler directly to the water source (line), thus obviating the need for a separate cap. In this manner, the receiver may mate with both the water simply exit and seal against the housing.


The filter receiver is preferably coupled to the outlet, often on the underside of the cap, to provide for fluid to flow into canister housing, and then, from within the housing through the filter and filter receiver, (and back into the cap,) and then through outlet to return to the main line. In some embodiments, the filter receiver may connect to a filtration medium (i.e., the filter receiver may serve as an anchor or mounting point such that a filtration medium can couple to the filter receiver), wherein the filtration medium can surround a portion of the filter receiver. Fluid entering the system fills the space around the filter, passes through the filtration medium into the filter receiver, and then can be supplied thereafter through the cap.


Fluid flows through a filtration medium. The system combats channeling via an inwardly pressurized elastic filtration medium bag. This may be accomplished after water enters through the bag along the permeable sections, hot hon the underside and the lower sidewall(s) into the filtration medium while maintaining inward pressure via the bag on the filtration medium. The fluid then moves through the filtration medium and through the filter sleeve into the filter receiver. Fluid passes upwards through a hollow channel in the receiver to the mating end, where the receiver mates with the system cap. Fluid is then expelled into the outlet of the cap. FIGS. 9 and 10 are exemplary embodiments exhibiting a possible accomplishment of such a process. Further discussion on FIGS. 9 and 10 follows.


Referring now to FIGS. 1-3, a filter receiver 40 is shown. Filter receiver 40 generally includes a male coupler 42 that can mate with the underside of a filter system cap (not shown). In a preferred embodiment, male coupler 42 serves as a mounting coupler and may include angled, or levered, threads 42A to mate with a complementary female threaded coupling in underside of cap. Shield 44 may be placed below male coupler 42 and above remaining portions of filter receiver 40, such as tube 60. Shield 44 includes upper surface 45, upper surface 45 providing a physical flow obstacle to direct incoming fluid provided from a cap inlet. This advantageously prevents dislodging portions of the filter or filtration medium. Upper surface 45 allows water to flow thereof into the remaining space of a container housing (not shown) and around the filter. In addition, a gasket 39 (shown in FIGS. 7 and 9) may be included between shield upper surface 45 and cap underside 20 to provide a seal between receiver and cap. Similarly, shield lower surface 46 forces fluid to remain below shield 44 and causes pressure radially and linearly to cause fluid to pass through filtration medium (not shown) into a central tube 60.


Tube 60 includes numerous apertures 64. which may include circular apertures 64A arranged in an array as shown. In some embodiments, apertures 64 are approximately circular (i.e., within a standard measure of error, such as 5%). but in alternative embodiments apertures 64 may be any of a plurality of other shapes. For example, triangular or hexagonal apertures 64 may result in improved structural integrity of tube 60 or reduce material or manufacturing costs at the expense of flow efficacy. Elongated apertures 64B may also he included and arranged opposite one another one hundred-eighty degrees around tube 60. Depending upon the dimensions of the apertures 64 and tube 60, apertures 64 may not necessarily be evenly spaced; embodiments wherein apertures 64 are irregularly placed (i.e., misaligned and/or patternless) are considered herein, though they may be less effective. In some embodiments, apertures 64 are disposed in a “ringed” arrangement, as seen in FIGS. 4-7, although a “honeycomb” arrangement is also considered, as depicted in portions of FIGS. 1-3. It is contemplated that treated fluid will enter from outside filter receiver 40, through apertures 64, into tube interior 61 (such as a central cavity) to pass upwards through tube 60 and out upper access hole 67 through male coupler 42. Tube 60 preferably includes neck 62 whereby a filtration medium containing a filtration bag (not shown) can be affixed thereon. Tube 60 may include a lower aperture, such as lower access hole 66, to provide for fluid to pass through the bottom of tube 60. Alternative embodiments include a closed lower portion (such as a plate) in tube 60 to negate the use of lower hole 66 and force uses of apertures 64.


Neck 62 preferably includes a ridge, or a pair of ridges 63 (as shown), or ribs, whereby a cinch may be applied thereon and there between (not shown) to secure the filtration bag. A single rib may be used, in such instance, preferably above the cinching point. Given the directional threes applied to shield 44, shield supports 47 may be placed on the lower surface 46 to prevent buckling, bending, or otherwise movement of shield when force is supplied from incoming fluids. Shield supports 47 may be formed in any of a plurality of ways, as will be understood by those skilled in the art, such as triangular, curved, fluted, etc. In a preferred embodiment, four shield supports 47 are disposed in a ring, spaced evenly (i,e, every 90°), as shown in FIG. 2. Other embodiments including fewer or additional shield supports 47 are fully considered herein (e.g., two supports, three supports, five or more supports, etc.). In some embodiments, depending upon materials used and/or expected pressures, shield supports 47 may lot be necessary, as will be understood by those skilled in the art.


Referring now to an alternative embodiment of filter receiver 40 as shown in FIGS. 4-6, filter receiver 40 is shown. Alternative filter receiver 40 may include a single set of apertures 64 along tube 60 wherein apertures are arrayed as circular holes, as shown. Apertures 64 may be set in aligned formation as shown in FIGS. 4-6, or may otherwise be arrayed similarly to the circular array as shown in FIGS. 1-3 whereby a diagonal array is shown, or in any arrangement that will facilitate the movement of fluid from outside tube into central cavity.


A major feature of the alternative body shown in FIGS. 4-6 includes the shield 44 having an elongated upper surface 45. Shield 44 may be milled to resemble a shape of a conical section. This angled shield shape further deflects incoming fluid from above and outwards from the central tube longitudinal line. Fluid is thus directed down and out from upper surface 45 regardless of location of a cap inlet and inflowing fluid. Additionally, shield 44 may include straightened rim 48 to protect or otherwise contain filtration medium 70 and filtration medium bag 50. Alternative shield 44 may similarly include shield supports 47, analogous to those depicted in FIG. 2 and described above.


Referring now to FIG. 7, modular filter unit 10 is shown. Filter unit 10 includes cap 12. Cap 12 includes an inflow source of fluid provided through inlet 14 into container upper region 38. General container region 33 may serve in part as a sump. Fluid passes shield 44 and enters retaining bag 50 to pass through filtration medium 70, through cover 72, through apertures 64, into tube interior 61. Bag serves to separate filtration medium from container wall, and preferably provides a volumetric container space 33 between the bag and the wall to allow fluid to pressurize within container. As hag 50 may be waterproof and lower section 52 of bag 50 is more elastic than upper part, fluid may generally pool into lower section 52 before being forced through filtration medium 70. Fluid passes over bag impermeable upper section, and enters both radially (from sides) and linearly (from bottom) into bag through permeable lower section. Once through filtration medium within bag, fluid passes through optional cover 72 into tube 60. Fluid then passes out of tube 60 through an upper access hole (such as, for example, upper access hole 67 as seen in FIG. 6) into outlet 16 of cap 12, and out of cap 12 back into a supply line through outflow source. Cap 12 preferably includes cap top 18 exposed outside of module filter unit 10, cap top 18 providing access to couple and/or redirect the fluid supply. Cap 12 preferably comprises a water tight sealing segment


Cap under side 20 is preferably maintained within pressured filter unit 10, and preferably includes female coupling 22 that may include a boss 24 that can bold and mate with filter receiver 40 via filter receiver male coupler 42. Male coupler 42 provides for a twist-on for certain candle-style or other containers known in the art is preferably a pass-through hollow, and may be internally supported by a support bar (such as, for example, support bar 41 of FIG. 1). Alternative couplers that may substitute for male coupler 42 include metal fingers, or releases fit for known housings in this embodiment a of the container housing, cap 12 may mate with container 32 via threading 28, 38. In other embodiments, cap 12 may be installed into a water line, allows for direct emplacement of the container housing and/or filter intake cap 12. O-ring 43 may be provided to create seal between filter receiver 40 and cap 12. Furthermore, a gasket 39 may be used to secure boss 24 and/or other portions of cap underside 20 with shield 44. Shield ma include shelf 49 to provide mating surface for the gasket 39 against cap underside 20, or a mating feature in cap. Alternatively, gasket may provide direct mating with the supply flow (in embodiments where receiver obviates need for cap, and receiver mates directly with supply. Cap 12 includes sidewalls 26 with interior sidewall threads 28 complementary with rim threads 38 of container rim 36. Container interior wall 34 captures and forces the high pressure required to force fluid into filter receiver 40 from the container space 33 through filtration medium 70.


As seen In FIGS. 7 and 8, retention bag 50 is generally configured to couple with filter receiver 40. Retention bag 50 includes a cinch point 59 that be coupled via cinch 58 to neck 62 of tube 60. Cinch 58 preferably provides a fluid-tight seal to prevent fluid from entering around bag 50 and avoiding proper contact with filtration medium 70. Thus cinch 58 preferably includes a fluid-proof material. Preferred cinches include a Herbie clip heavy duty double-gripping nylon hose clamp, spring steel clips, zip ties, or other cinches known in the art to provide a seal over filter receivers. Bag 50 is generally bi-modal, in that it comprises bag upper section 52 and, bag lower section 54, wherein material properties of upper section 52 differ from those of lower section 54. Fluid cannot pass upper section 52 that is preferably impermeable to fluid. Retaining bag lower section 54 provides a permeable material, preferably an elastic mesh, wherein fluid may enter into retaining bag 50. Upper section 52 and lower section 54 are preferably fixed together at seam 56 circumscribing hag 50, Seam 56 may include a heat seal, and should also be impermeable to fluids. Seam is preferably of a minimum height, such as at least one-quarter inch in height, to ensure proper sealing of two separable bag sections. In alternative arrangements, seal merely provides to distinguish between reinforced (impermeable sections) and unreinforced (permeable sections) of a single bag, As can be seen in FIG. 8, bag 50 may be surrounded in a netting to exert compressive pressure onto bag 50 and its contents. It is preferable that retaining bag 50 is made of a compressible, elastic material, such as a compression fabric as is known in the apparel arts. Preferably, upper section 52 is made of an elastic material, but impermeable, preferably via coating with an impermeable material, such as a complete layer of polyurethane or similar coating. Wire netting 80 may be provided on the exterior of bag to provide additional support and form. Wire netting is preferably mostly inelastic, and may be woven to provide a net within which bag may be contained and/or shaped. Wire netting 80 may be a metal, or a stiff plastic, or the like.


Preferably, materials for bag lower, permeable section 54 include polyurethane elastomers, such as SPANDEX, or the like. Lower section 54 may be made of a two-way stretch material, and may be set at a fifty-micron mesh (particles greater than 50 microns would remain outside bag 50, and need to be flushed upon routine maintenance), Permeable layer may include a 5- to 100-micron rating so long as the size of the passages through the permeable layer serve the dual function of allowing fluid to flow into the filtration medium, while at the same time preventing catastrophic escape of the filtration medium out of bag 50. tipper section 52 if bag is preferably water-tight and impermeable. Water is intended to press against upper section 52 to provide some pressure against filtration medium, within bag. Furthermore, upper section 52 is preferably of an elastic material that too provides inward pressure on filtration medium. Upper section may also be made from a polyurethane elastomer, such as lower section, but with a water tight coating on the outside, through, and/or on the inside thereof. Bag 50 compresses the filtration medium 70 housed therein. For instance, filtration medium 70 may include a granulated activated carbon, employed to remove organic materials and chlorine, etc. Granulated carbon may be of ten to forty microns in size, limiting the permeable mesh size of the permeable layer. In some embodiments, retention bag 50 is made of a single permeable material, whereas in other embodiments, retention hag 50 may be made of two, three, or more sections each comprising a different permeability rating.


Referring now to FIGS. 9 and 10, fluid flow is designated by arrows. Fluid enters fitter via inlet 14 and exits via outlet 16. Fluid flows past shield 44 and fills container space 33. Shield 44 may be angled to resemble a shape of a conical section, preferably opening towards the lower end in the direction of the filtration medium and filtration bag, in one exemplary embodiment. This angled shield shape further deflects incoming fluid (from above) outwards from the central tube longitudinal line. Fluid is thus directed down and out from upper surface 45 regardless of location of a cap inlet and inflowing fluid. Fluid fills and pressurize the container space 33. The higher pressure of fluid in space forces fluid into bag, (through sleeve,) into receiver and out outlet. Fluid is prevented from entering impermeable upper section 52 of bag 50. Building pressure from water supply threes fluid through lower, section 54 of retaining bag 50 into and through filtration medium 70. Fluid passes from lower section 54 into and through filtration medium 70 where it meets cover 72. Cover 72 preferably encloses all of the apertures (such as apertures 64) so as to prevent filtration medium particles from exiting filter unit 10. Additional filtration may occur at cover 72. Cover 72 is intended primarily to prevent filtration medium 70 from entering into tube 60, but may also be made of a permeable material that can otherwise complement filtration process performed by filtration medium 70. Cover 72 may be made of a woven, or non-woven fabric, such as a polypropylene polyester, etc. In some embodiments, cover 72 may be made of a foam, or loam media matrix, such as foam-mounted Kinetic Degradation Fluxion (KDF), a foam slurry including KDF foam, or otherwise its is known in the art.


Cover 72 may include a smaller scale filtration, such as at 10 microns, to perform both steps of precluding passage of carbon granules of possible filtration medium 70, while allowing passage of fluids. In some embodiments, cover 72 will be prepared to capture fine material, or dust, cast by filtration medium 70; in other embodiments, it may be more permeable to allow dust to pass. (When cover 72 is adapted to allow passage of dust, it is preferred that a second module containing a fine particulate or sediment filter, such as bound andlor spun polypropylene thread into a high density filter, as are known in the art. Cover 72 may be made of a filtration medium compacted into a set form, such as impregnated KDF foam with 5-10 micron rating (for instance, for treatment regarding lead, soluble heavy metals, chlorine, chloramine, etc.). In such an embodiment, filtration medium 70 may be, a granulated activated granulated carbon andlor other similar filtration media known in the art, and such filter may be employed as a single stage, or part of a larger multi-stage system. Cover 72 may include a plate bottom 74 and radial sidewalk 76. Alternative embodiments of cover 72 may include a form of cover with portions exterior to the hollow tube, and a portion extending into the hollow tube, such as a rising post extending upward from the cover bottom and fitting snugly within the tube, to contact an interior wall(s) of tube. In such an extended cover system (not shown), the distance of fluid flow path through treatment cover is increased.


Fluid is forced to pass through the lower section 54 and through a length of filtration medium 70, whether radially, axially, both, or any other combination, prior to encountering cover 72. This pathway enhances the length through which fluid is exposed to filtration and thus is preferable to have at least a distance between lower section 54 and sleeve/cover plate bottom 74 to allow the fluid exposure to the filtration medium 70. Additionally, given that retaining bag 50 is made of a compression material, filtration medium 70 is under constant stress, not only from passing fluid, but also physical compression from retaining bag 50. As filtration medium 70 may break down, a volume required to house filtration medium 70 may be reduced. In prior art filtration systems using similar filtration medium, gaps, holes, or channels may be formed in the filtration medium as it deteriorates over time. By adding a compression fabric in retaining bag 50, any forming filtration medium channels, etc. are collapsed and thus advantageously prevented from providing free flow of fluid and therefore bypass of treatment.


After the fluid enters cover 72 through plate bottom 74 and/or sidewalk 76, the fluid then passes through apertures 64 in sidewalls of hollow tube of receiver, into tube interior 61 (such as a central cavity) to pass through tube 60 and out upper access hole 67. Tube 60 may include a lower aperture, such as, lower access hole 66, to provide for fluid to pass through the bottom of tube 60. Alternative embodiments include a closed lower portion (such as a plate) in tube 60 to negate the use of lower hole 66 and force use of apertures 64.


As used herein, “elastic material” refers to one of a plurality of materials generally considered by those skilled in the art to have a relatively high elasticity. Examples of elastic materials include SPANDEX, rubber, polyurethane elastomers, etc.


The following examples pertain to further embodiments. The following examples of the present disclosure may comprise subject material such as an apparatus and/or a system including a filtration receiver.


According to example 1, there is provided a fluid filtration system. The fluid filtration system may comprise a fluid inlet adapted to direct fluid into a containment housing, a filter adapted to receive, treat, and expel the fluid, said filter including a filtration medium encapsulated within a bi-modal filtration bag, said bi-modal filtration bag having an, upper fluid-impermeable layer, and a lower fluid-permeable layer sealed coupled to said upper impermeable layer via a seal, said filtration bag comprising an elastic material, a filter intake receiver comprising a hollow tube with a central cavity in fluid communication with a fluid outlet, said filtration bag coupled over at least a portion of said filter intake receiver.


Example 2 may include the elements of example 1, wherein said at least a portion of said filter intake receiver comprises apertures, adapted to allow passage of treated fluid into said hollow tube.


Example 3 may include the elements of example 2, further comprising a cover placed over said apertures, said cover set between said apertures and said filtration medium.


Example 4 may include the elements of example 3, wherein said cover is fluid-permeable.


Example 5 may include the elements of example 4, wherein said cover comprises additional treatment material.


Example 6 may include the elements of any of examples 1 to 5, wherein said filter intake receiver further comprises a shield set in the direct path from the fluid inlet and the filtration bag.


Example 7 may include the elements of any of examples 1 to 6, wherein said lower permeable layer comprises an elastic compression material.


Example 8 may include the elements of example 7, wherein said filtration medium comprises granules under compression stress at least in pan due to compression forces emplaced, by said lower permeable layer.


Example 9 may include the elements of any of examples 1 to 8, further comprising a cinch emplaced over at least a portion of said upper impermeable layer to affix said upper impermeable layer to a neck of said hollow tube.


According to example 10 there is provided a filter for the treatment of fluid. The filter may comprise a filter intake receiver, said filter intake receiver including a mounting coupler adapted to mate with a portion of a container, a hollow tube extending along a longitudinal axis, said hollow tube comprising at least one aperture, a filtration medium enclosed within a retaining bag, said retaining bag coupled to said filter intake receiver around said at least one aperture, wherein at least a portion of said retaining bag comprises a permeable material.


Example 11 may include the elements of example 10, wherein said retaining bag comprises a compression material, said compression material adapted to provide a compressing force on said filtration medium.


Example 12 may include the elements of any of examples 10 to 11, further comprising a cover set at least partially over and adjacent to said hollow tube., said. cover in direct proximity to said at least one aperture.


Example 13 may include the elements of example 12, wherein said cover comprises a permeable foam.


Example 14 may include the elements of any of examples 12 or 13, wherein said cover set on a first and a second side of said at least one aperture.


Example 15 may include the elements of any of examples 11 to 14, wherein said retaining bag further comprises an impermeable material.

Claims
  • 1. A fluid filtration system for processing fluids through a filter for removal of contaminants and enhancement with additives, said system comprising: a fluid inlet adapted to direct fluid into a space within a container;a filter within said container, said filter including: a filter intake receiver comprising a hollow tube with a central cavity in fluid communication with said fluid inlet and at least a fluid outlet;said hollow tube coupled to a mounting coupler along atop end of said filter intake receiver, andan at least partially permeable bag set around a lower portion of said hollow tube, said hag comprising a filtration medium disposed within said hag and outside said hollow tube.
  • 2. The apparatus of claim 1 wherein said hollow tube comprises a side all with at least one aperture adapted to allow passage of fluid into said hollow tube.
  • 3. The apparatus of claim 1 wherein said hollow tube comprises a lower end with at least one aperture adapted to allow passage of fluid into said hollow tube.
  • 4. The apparatus of claim 1 herein said filter intake receiver comprises a shield having an upper surface and a lower surface, said upper surface in fluid communication with said fluid inlet.
  • 4. The apparatus as set forth in claim 4 wherein said shield comprises a conical sectional shape.
  • 6. The apparatus as set forth in claim 5 wherein said shield conical sectional shape is circumferentially symmetric around a longitudinal axis of said hollow tube.
  • 7. The apparatus of claim 1 wherein said system further comprises a permeable sleeve form-fitted to an outside surface of said hollow rube.
  • 8. The apparatus of claim 7 wherein said permeable sleeve is set against a side wall of said hollow tube and occluding at least one aperture in said hollow tube.
  • 9. The apparatus of claim 7 wherein said permeable sleeve is set against a lower end of said hollow tube and occluding at least one aperture along the lower end in said hollow tube.
  • 10. The apparatus of claim 1 wherein said filtration medium disposed within said bag outside said hollow tube and separated from said space by said bag.
  • 11. A filter intake receiver set within a filtration system container, the container having a fluid intake and a fluid outlet, said filter intake receiver comprising: a mounting coupler along a first end, said mounting coupler adapted to mate with the fluid outlet;said mounting coupler coupled to a hollow tube extending along a longitudinal axis;said hollow tube comprising at least one aperture adapted to allow passage of fluid into said hollow tube.
  • 12. The fluid filtration system as set forth in claim 11 wherein said filter intake receiver comprises a shield.
  • 13. The filter intake receiver as set forth in claim 12 wherein said shield may comprise a conical sectional shape.
  • 14. The filter intake receiver as set forth in claim 13 further comprising a filtration bag mounted around a neck of said hollow tube above said at least one aperture, said filtration bag surrounding a filtration medium set between said hollow tube receiver and an interior surface of said bag.
  • 15. The filter intake receiver as set forth in claim 14 wherein at least a portion of said bag is set within said shield.
  • 16. The filter intake receiver as set forth in claim 11 further comprising a contiguous cover set under and around at least a sidewall of said hollow tube and occluding said at least one aperture.
  • 17. The filter intake receiver as set forth in claim 11 further comprising a filtration bag mounted around a neck of said hollow tube above said at least one aperture, said filtration bag surrounding a filtration medium set between said hollow tube receiver and an interior surface of said bag.
  • 18. A fluid filtration system comprising: a. a fluid inlet adapted to direct fluid into a container;b. a filter set within said container, said filter adapted to receive, treat, and expel the fluid, said filter including: i. a filtration medium encapsulated within a bi-modal filtration bag, said bi-modal filtration bag having an upper fluid-impermeable section, and a lower fluid-permeable section coupled to said upper fluid-impermeable section;wherein said bi-modal filtration bag is set within an interior of said container providing a space around said bi-modal filtration bag and interior wall of said container, said space adapted to contain pressurized fluid;ii. said lower fluid-permeable section comprising an elastic compression material adapted to provide a compressive force on said filtration medium while allowing passage of fluid from said space into said bag.
  • 19. The fluid filtration system as set forth in claim 18, farther comprising: a filter intake receiver set at least partially within said bag said receiver comprising a hollow tube with a central cavity in fluid communication with a fluid outlet: said filtration hag coupled over at least a portion of said filter intake receiver.
  • 20. The fluid filtration system as set forth in claim 18, wherein said bimodal filtration bag comprises a compressive flexible material.
  • 21. The fluid filtration system as set forth in claim 20, wherein said compressive flexible material comprises a polyurethane elastomer.
CLAIM OF PRIORITY

The present continuation-in-part application includes subject matter disclosed in and claims priority to U.S. patent application Ser. No. 16/423,637, filed May 28, 2019, entitled “Filter System” (now U.S. Pat. No. 10,675,564), incorporated herein by reference, which describes an invention made by the present inventors.

Continuation in Parts (1)
Number Date Country
Parent 16423637 May 2019 US
Child 16897080 US