A portion of the disclosure of this patent document contains material which is subject to copyright protection. This patent document may show and/or describe matter which is or may become trade dress of the owner. The copyright and trade dress owner has no objection to the facsimile reproduction by anyone of the patent disclosure as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright and trade dress rights whatsoever.
This disclosure relates to radio frequency filters using acoustic wave resonators, and specifically to filters for use in communications equipment.
A radio frequency (RF) filter is a two-port device configured to pass some frequencies and to stop other frequencies, where “pass” means transmit with relatively low signal loss and “stop” means block or substantially attenuate. The range of frequencies passed by a filter is referred to as the “pass-band” of the filter. The range of frequencies stopped by such a filter is referred to as the “stop-band” of the filter. A typical RF filter has at least one pass-band and at least one stop-band. Specific requirements on a passband or stop-band depend on the specific application. For example, a “pass-band” may be defined as a frequency range where the insertion loss of a filter is better than a defined value such as 1 dB, 2 dB, or 3 dB. A “stop-band” may be defined as a frequency range where the rejection of a filter is greater than a defined value such as 20 dB, 30 dB, 40 dB, or greater depending on application.
RF filters are used in communications systems where information is transmitted over wireless links. For example, RF filters may be found in the RF front-ends of cellular base stations, mobile telephone and computing devices, satellite transceivers and ground stations, IoT (Internet of Things) devices, laptop computers and tablets, fixed point radio links, and other communications systems. RF filters are also used in radar and electronic and information warfare systems.
RF filters typically require many design trade-offs to achieve, for each specific application, the best compromise between performance parameters such as insertion loss, rejection, isolation, power handling, linearity, size and cost. Specific design and manufacturing methods and enhancements can benefit simultaneously one or several of these requirements.
Performance enhancements to the RF filters in a wireless system can have broad impact to system performance. Improvements in RF filters can be leveraged to provide system performance improvements such as larger cell size, longer battery life, higher data rates, greater network capacity, lower cost, enhanced security, higher reliability, etc. These improvements can be realized at many levels of the wireless system both separately and in combination, for example at the RF module, RF transceiver, mobile or fixed sub-system, or network levels.
The desire for wider communication channel bandwidths will inevitably lead to the use of higher frequency communications bands. The current LTE™ (Long Term Evolution) specification defines frequency bands from 3.3 GHz to 5.9 GHz. These bands are not presently used. Future proposals for wireless communications include millimeter wave communication bands with frequencies up to 28 GHz.
High performance RF filters for present communication systems commonly incorporate acoustic wave resonators including surface acoustic wave (SAW) resonators, bulk acoustic wave (BAW) resonators, film bulk acoustic wave resonators (FBAR), and other types of acoustic resonators. However, these existing technologies are not well-suited for use at the higher frequencies proposed for future communications networks.
Throughout this description, elements appearing in figures are assigned three-digit or four-digit reference designators, where the two least significant digits are specific to the element and the one or two most significant digit is the figure number where the element is first introduced. An element that is not described in conjunction with a figure may be presumed to have the same characteristics and function as a previously-described element having the same reference designator.
Description of Apparatus
Transversely-excited film bulk acoustic resonators (XBARs) were initially described in U.S. Pat. No. 10,491,192.
The XBAR 100 is made up of a thin film conductor pattern formed on a surface of a piezoelectric plate 110 having a front surface 112 and a back surface 114. The front and back surfaces are essentially parallel. “Essentially parallel” means parallel to the extent possible within normal manufacturing tolerances. The piezoelectric plate is a thin single-crystal layer of a piezoelectric material such as lithium niobate, lithium tantalate, lanthanum gallium silicate, gallium nitride, or aluminum nitride. The piezoelectric plate is cut such that the orientation of the X, Y, and Z crystalline axes with respect to the front and back surfaces is known and consistent. In the examples presented in this patent, the piezoelectric plates are Z-cut, which is to say the Z axis is normal to the front surface 112 and back surface 114. However, XBARs may be fabricated on piezoelectric plates with other crystallographic orientations including rotated Z-cut and rotated YX-cut.
The back surface 114 of the piezoelectric plate 110 is attached to a surface 122 of the substrate 120 except for a portion of the piezoelectric plate 110 that forms a diaphragm 115 spanning a cavity 140 formed in the substrate 120. The portion of the piezoelectric plate that spans the cavity is referred to herein as the “diaphragm” due to its physical resemblance to the diaphragm of a microphone. As shown in
The substrate 120 provides mechanical support to the piezoelectric plate 110. The substrate 120 may be, for example, silicon, sapphire, quartz, or some other material or combination of materials. The back surface 114 of the piezoelectric plate 110 may be attached to the substrate 120 using a wafer bonding process. Alternatively, the piezoelectric plate 110 may be grown on the substrate 120 or otherwise attached to the substrate. The piezoelectric plate 110 may be attached directly to the substrate or may be attached to the substrate 120 via one or more intermediate material layers.
The cavity 140 is an empty space within a solid body of the resonator 100. The cavity 140 may be a hole completely through the substrate 120 (as shown in Section A-A and Section B-B) or a recess in the substrate 120 (as shown subsequently in
The conductor pattern of the XBAR 100 includes an interdigital transducer (IDT) 130. An IDT is an electrode structure for converting between electrical and acoustic energy in piezoelectric devices. The IDT 130 includes a first plurality of parallel elongated conductors, commonly called “fingers”, such as finger 136, extending from a first busbar 132. The IDT 130 includes a second plurality of fingers extending from a second busbar 134. The first and second pluralities of parallel fingers are interleaved. The interleaved fingers overlap for a distance AP, commonly referred to as the “aperture” of the IDT. The center-to-center distance L between the outermost fingers of the IDT 130 is the “length” of the IDT.
The term “busbar” refers to the conductors that interconnect the first and second sets of fingers in an IDT. As shown in
The first and second busbars 132, 134 serve as the terminals of the XBAR 100. A radio frequency or microwave signal applied between the two busbars 132, 134 of the IDT 130 excites a primary acoustic mode within the piezoelectric plate 110. As will be discussed in further detail, the primary acoustic mode is a bulk shear mode where acoustic energy propagates along a direction substantially orthogonal to the surface of the piezoelectric plate 110, which is also normal, or transverse, to the direction of the electric field created by the IDT fingers. Thus, the XBAR is considered a transversely-excited film bulk wave resonator.
The IDT 130 is positioned on the piezoelectric plate 110 such that at least the fingers of the IDT 130 are disposed on the diaphragm 115 of the piezoelectric plate that spans, or is suspended over, the cavity 140. As shown in
For ease of presentation in
A front-side dielectric layer 214 may be formed on the front side of the piezoelectric plate 110. The “front side” of the XBAR is the surface facing away from the substrate. The front-side dielectric layer 214 has a thickness tfd. The front-side dielectric layer 214 is formed between the IDT fingers 238. Although not shown in
The IDT fingers 238 may be one or more layers of aluminum, a substantially aluminum alloy, copper, a substantially copper alloy, beryllium, gold, molybdenum, or some other conductive material. Thin (relative to the total thickness of the conductors) layers of other metals, such as chromium or titanium, may be formed under and/or over the fingers to improve adhesion between the fingers and the piezoelectric plate 110 and/or to passivate or encapsulate the fingers. The busbars (132, 134 in
Dimension p is the center-to-center spacing or “pitch” of the IDT fingers, which may be referred to as the pitch of the IDT and/or the pitch of the XBAR. Dimension w is the width or “mark” of the IDT fingers. The IDT of an XBAR differs substantially from the IDTs used in surface acoustic wave (SAW) resonators. In a SAW resonator, the pitch of the IDT is one-half of the acoustic wavelength at the resonance frequency. Additionally, the mark-to-pitch ratio of a SAW resonator IDT is typically close to 0.5 (i.e., the mark or finger width is about one-fourth of the acoustic wavelength at resonance). In an XBAR, the pitch p of the IDT is typically 2 to 20 times the width w of the fingers. In addition, the pitch p of the IDT is typically 2 to 20 times the thickness ts of the piezoelectric slab 110. The width of the IDT fingers in an XBAR is not constrained to one-fourth of the acoustic wavelength at resonance. For example, the width of XBAR IDT fingers may be 500 nm or greater, such that the IDT can be fabricated using optical lithography. The thickness tm of the IDT fingers may be from 100 nm to about equal to the width w. The thickness of the busbars (132, 134 in
An acoustic resonator based on shear acoustic wave resonances can achieve better performance than current state-of-the art film-bulk-acoustic-resonators (FBAR) and solidly-mounted-resonator bulk-acoustic-wave (SMR BAW) devices where the electric field is applied in the thickness direction. In such devices, the acoustic mode is compressive with atomic motions and the direction of acoustic energy flow in the thickness direction. In addition, the piezoelectric coupling for shear wave XBAR resonances can be high (>20%) compared to other acoustic resonators. High piezoelectric coupling enables the design and implementation of microwave and millimeter-wave filters with appreciable bandwidth.
In the exemplary filter 500, the three series resonators 510A, B, C and the two shunt resonators 520A, B of the filter 500 are formed on a single plate 530 of piezoelectric material bonded to a silicon substrate (not visible). Each resonator includes a respective IDT (not shown), with at least the fingers of the IDT disposed over a cavity in the substrate. In this and similar contexts, the term “respective” means “relating things each to each”, which is to say with a one-to-one correspondence. In
Each of the resonators 510A, 510B, 510C, 520A, 520B in the filter 500 has a resonance where the admittance of the resonator is very high and an anti-resonance where the admittance of the resonator is very low. The resonance and anti-resonance occur at a resonance frequency and an anti-resonance frequency, respectively, which may be the same or different for the various resonators in the filter 500. In over-simplified terms, each resonator can be considered a short-circuit at its resonance frequency and an open circuit at its anti-resonance frequency. The input-output transfer function will be near zero at the resonance frequencies of the shunt resonators and at the anti-resonance frequencies of the series resonators. In a typical filter, the resonance frequencies of the shunt resonators are positioned below the lower edge of the filter's passband and the anti-resonance frequencies of the series resonators are position above the upper edge of the passband.
A second dielectric layer 655, having a thickness t2, may be deposited over both the shunt and series resonator. The second dielectric layer 655 serves to seal and passivate the surface of the filter 600. The second dielectric layer may be the same material as the first dielectric layer or a different material. The second dielectric layer may be a laminate or composite of two or more different dielectric materials. Further, as will be described subsequently, the thickness of the second dielectric layer may be locally adjusted to fine-tune the frequency of the filter 600A. Thus, the second dielectric layer can be referred to as the “passivation and tuning layer”.
The resonance frequency of an XBAR is roughly proportional to the inverse of the total thickness of the diaphragm including the piezoelectric plate 610 and the dielectric layers 650, 655. The diaphragm of the shunt resonator is thicker than the diaphragm of the series resonator by the thickness t1 of the dielectric frequency setting layer 650. Thus, the shunt resonator will have a lower resonance frequency than the series resonator. The difference in resonance frequency between series and shunt resonators is determined by the thickness t1.
Lithium niobate and lithium tantalate are preferred piezoelectric materials for use in XBARs. The term “lithium niobate XBAR” means an XBAR with a lithium niobate diaphragm. Similarly, the term “lithium tantalate XBAR” means an XBAR with a lithium tantalate diaphragm. Lithium niobate XBARs have very high electromechanical coupling, which results in a large difference between the resonance and anti-resonance frequencies of a lithium niobate XBAR. Lithium niobate XBARs are suitable for use in bandpass filters for ultra-wide communications bands such as band N77 (3400 to 4300 MHz) and band N79 (4400 to 5000 MHz). However, lithium niobate has a temperature coefficient of frequency (TCF) of about −80 to −100 ppm/C° (parts per million per degree Celsius). The passband of filters using lithium niobate XBARs may shift in frequency by more than 1% over the operating temperature range of a communications device.
Lithium tantalate XBARs have lower electromechanical coupling than lithium niobate XBARs, which results in a smaller difference between the resonance and anti-resonance frequencies of a lithium tantalate XBAR. It is not practical to design filters for band N77 or band N79 using only lithium tantalate XBARs. However, the TCF of lithium tantalate XBARs is roughly half of the TCF of lithium niobate XBARs. Typically, the TCF of lithium niobate is about 80 ppm per degree Celsius; the TCF of lithium niobate is about 40 ppm per degree Celsius.
Using both lithium niobate XBARs and lithium tantalate XBARs in the same filter provides for the best features of each technology. Such filters can have the wide bandwidth enabled by the large electromechanical coupling of lithium niobate XBARs and the low TCF of lithium tantalate XBARs.
As previously explained, the input-output transfer function of a filter will be near zero at the resonance frequencies of the shunt resonators and at the anti-resonance frequencies of the series resonators. In other words, each shunt resonator creates a “transmission zero” at its resonance frequency. Shunt resonators P2 and P3 (dashed curves 830, 835) create transmission zeros proximate the lower edge of the filter passband. In particular, the resonator represented by the dashed curve 830 (it does not matter whether this is P2 or P3) creates a transmission zero immediately adjacent to the lower edge of the passband. “Immediately adjacent” means “adjacent with nothing else (i.e. no other transmission zero) intervening”. This resonator defines, or sets, the lower edge of the passband. Typically, a single shunt resonator defines the lower edge of a filter's passband and a single series resonator defines the upper edge of the passband. In some cases, two or more resonators may create transmission zeros at the same frequency and jointly define the upper or lower band edge.
For the filter 700, the TCF of the lower edge of the passband will be approximately equal to the TCF of the resonator that defines the lower band edge (i.e. the resonator that creates the transmission zero immediately adjacent to the band edge). Since resonators P2 and P3 are lithium tantalate XBARs, the TCF of the lower edge of the passband will be about equal to the TCF of lithium tantalate. The benefit of using a lithium tantalate XBAR to define the lower edge of the passband is illustrated in
The input-output transfer function of the filter 1000 will be near zero at the anti-resonance frequencies of the series resonators. In other words, each series resonator creates a “transmission zero” at its anti-resonance frequency. At least one of the lithium tantalate series resonators S2, S3, S4 defines the upper edge of the passband of the filter by creating at least one transmission zeros immediately adjacent the upper edge of the filter passband. In some cases, two or more series resonators may create transmission zeros at the same frequency and jointly define the band edge. The TCF of the upper edge of the passband will be approximately equal to the TCF of the resonator that creates the immediately adjacent transmission zero. Since the band edge is defined by one or more of the lithium tantalate XBAR series resonators S2, S3, S4, the TCF of the upper edge of the passband will be about equal to the TCF of lithium tantalate. The benefit of using a lithium tantalate XBAR to define the upper edge of the passband is illustrated in
The lower band edge of the bandpass filter 1200 is defined by one or more of the lithium tantalate XBAR shunt resonators P2, P3. Thus, the change in the frequency of the lower band edge with temperature will be similar to that of the filter 700 as shown in
Electrical connections 1350 between the lithium tantalate XBARs on the first chip 1310 and the lithium niobate XBARs on the second chip 1320 are shown as bold lines. The connections 1350 are made, for example, by conductors on a circuit card to which the first and second chips are mounted. In this context, the term “circuit card” means an essentially planar structure containing conductors to connect the first and second chips to each other and to a system external to the band-pass filter 1300. The circuit card may be, for example, a single-layer or multi-layer printed wiring board, a low temperature co-fired ceramic (LTCC) card, or some other type of circuit card. Traces on the circuit card can have very low resistance such that losses in the traces are negligible. The inductance of the electrical connections 1350 between the series and shunt resonators can be compensated in the design of the acoustic wave resonators. In some cases, the inductance of the electrical connections 1350 can be exploited to improve the performance of the filter, for example by lowering the resonance frequency of one or more shunt resonators to increase the filter bandwidth.
The filters 700, 1000, and 1200 are exemplary. A bandpass filter may have more or fewer than nine resonators, more or fewer than four shunt resonators, and more or fewer than five series resonators. A filter using both lithium tantalate XBARs and lithium niobate XBARs will have at least one lithium tantalate XBAR, which may be shunt resonator or a series resonator, and at least one lithium niobate XBAR, which may be shunt resonator or a series resonator. One or both of the upper band edge and the lower band edge may be defined by lithium tantalate XBARs.
Description of Methods
The flow chart of
The piezoelectric plate may be lithium niobate or lithium tantalate. The piezoelectric plate may be Z-cut, rotated Z-cut, or rotated YX-cut, or some other cut. The substrate may preferably be silicon. The substrate may be some other material that allows formation of deep cavities by etching or other processing.
In one variation of the process 1400, one or more cavities are formed in the substrate at 1410A, before the piezoelectric plate is bonded to the substrate at 1420. A separate cavity may be formed for each resonator in a filter device. The one or more cavities may be formed using conventional photolithographic and etching techniques. Typically, the cavities formed at 1410A will not penetrate through the substrate, and the resulting resonator devices will have a cross-section as shown in
At 1420, the piezoelectric plate is bonded to the substrate. The piezoelectric plate and the substrate may be bonded by a wafer bonding process. Typically, the mating surfaces of the substrate and the piezoelectric plate are highly polished. One or more layers of intermediate materials, such as an oxide or metal, may be formed or deposited on the mating surface of one or both of the piezoelectric plate and the substrate. One or both mating surfaces may be activated using, for example, a plasma process. The mating surfaces may then be pressed together with considerable force to establish molecular bonds between the piezoelectric plate and the substrate or intermediate material layers.
A conductor pattern, including IDTs of each XBAR, is formed at 1430 by depositing and patterning one or more conductor layer on the front side of the piezoelectric plate. The conductor layer may be, for example, aluminum, an aluminum alloy, copper, a copper alloy, or some other conductive metal. Optionally, one or more layers of other materials may be disposed below (i.e. between the conductor layer and the piezoelectric plate) and/or on top of the conductor layer. For example, a thin film of titanium, chrome, or other metal may be used to improve the adhesion between the conductor layer and the piezoelectric plate. A conduction enhancement layer of gold, aluminum, copper or other higher conductivity metal may be formed over portions of the conductor pattern (for example the IDT bus bars and interconnections between the IDTs).
The conductor pattern may be formed at 1430 by depositing the conductor layer and, optionally, one or more other metal layers in sequence over the surface of the piezoelectric plate. The excess metal may then be removed by etching through patterned photoresist. The conductor layer can be etched, for example, by plasma etching, reactive ion etching, wet chemical etching, and other etching techniques.
Alternatively, the conductor pattern may be formed at 1430 using a lift-off process. Photoresist may be deposited over the piezoelectric plate. and patterned to define the conductor pattern. The conductor layer and, optionally, one or more other layers may be deposited in sequence over the surface of the piezoelectric plate. The photoresist may then be removed, which removes the excess material, leaving the conductor pattern.
At 1440, a front-side dielectric layer or frequency setting dielectric layer may be formed by depositing one or more layers of dielectric material on the front side of the piezoelectric plate. The one or more dielectric layers may be deposited using a conventional deposition technique such as sputtering, evaporation, or chemical vapor deposition. The one or more dielectric layers may be deposited over the entire surface of the piezoelectric plate, including on top of the conductor pattern. Alternatively, one or more lithography processes (using photomasks) may be used to limit the deposition of the dielectric layers to selected areas of the piezoelectric plate, such as only between the interleaved fingers of the IDTs. Masks may also be used to allow deposition of different thicknesses of dielectric materials on different portions of the piezoelectric plate.
In a second variation of the process 1400, one or more cavities are formed in the back side of the substrate at 1410B. A separate cavity may be formed for each resonator in a filter device. The one or more cavities may be formed using an anisotropic or orientation-dependent dry or wet etch to open holes through the back-side of the substrate to the piezoelectric plate. In this case, the resulting resonator devices will have a cross-section as shown in
In a third variation of the process 1400, one or more cavities in the form of recesses in the substrate may be formed at 1410C by etching the substrate using an etchant introduced through openings in the piezoelectric plate. A separate cavity may be formed for each resonator in a filter device. The one or more cavities formed at 1410C will not penetrate through the substrate, and the resulting resonator devices will have a cross-section as shown in
In all variations of the process 1400, the filter device is completed at 1460. Actions that may occur at 1460 include depositing an encapsulation/passivation layer such as SiO2 or Si3O4 over all or a portion of the device; forming bonding pads or solder bumps or other means for making connection between the device and external circuitry; excising individual devices from a wafer containing multiple devices; other packaging steps; and testing. Another action that may occur at 1460 is to tune the resonant frequencies of the resonators within the device by adding or removing metal or dielectric material from the front side of the device. After the filter device is completed, the process ends at 1495.
At 1520, a first chip containing one or more XBAR resonators with lithium tantalate diaphragms is fabricated. The first chip may be fabricated using the process 1400 with a lithium tantalate piezoelectric plate. The first chip contains a subset of the resonators of the filter device, which may include series resonators and/or shunt resonators. The first chip may be a portion of a first large multi-chip wafer such that multiple copies of the first chip are produced during each repetition of the step 1520. In this case, individual chips may be excised from the wafer and tested as part of the action at 1520.
At 1530, a second chip containing one or more XBAR resonators with lithium niobate diaphragms is fabricated. The second chip may be fabricated using the process 1400 using a lithium niobate piezoelectric plate. The second chip contains a subset of the resonators of the filter device, which may include series resonators and/or shunt resonators. The second chip may be a portion of a second large multi-chip wafer such that multiple copies of the second chip are produced during each repetition of the step 1530. In this case, individual chips may be excised from the wafer and tested as part of the action at 1530.
At 1540, a circuit card is fabricated. The circuit card may be, for example, a printed wiring board or an LTCC card or some other form of circuit card. The circuit card may include one or more conductors for making at least one electrical connection between a resonator on the first chip and a resonator on the second chip. The circuit may be a portion of large substrate such that multiple copies of the circuit card are produced during each repetition of the step 1540. In this case, individual circuit cards may be excised from the substrate and tested as part of the action at 1540. Alternatively, individual circuit cards may be excised from the substrate after chips have been attached to the circuit cards at 1550, or after the devices are packaged at 1560.
At 1550, individual first and second chips are assembled to a circuit card (which may or may not be a portion of a larger substrate) using known processes. For example, the first and second chips may be “flip-chip” mounted to the circuit card using solder or gold bumps or balls to make electrical, mechanical, and thermal connections between the chips and the circuit card. The first and second chips may be assembled to the circuit card in some other manner.
The filter device is completed at 1560. Completing the filter device at 1560 includes packaging and testing. Completing the filter device at 1560 may include excising individual circuit card/chip assemblies from a larger substrate before or after packaging.
Closing Comments
Throughout this description, the embodiments and examples shown should be considered as exemplars, rather than limitations on the apparatus and procedures disclosed or claimed. Although many of the examples presented herein involve specific combinations of method acts or system elements, it should be understood that those acts and those elements may be combined in other ways to accomplish the same objectives. With regard to flowcharts, additional and fewer steps may be taken, and the steps as shown may be combined or further refined to achieve the methods described herein. Acts, elements and features discussed only in connection with one embodiment are not intended to be excluded from a similar role in other embodiments.
As used herein, “plurality” means two or more. As used herein, a “set” of items may include one or more of such items. As used herein, whether in the written description or the claims, the terms “comprising”, “including”, “carrying”, “having”, “containing”, “involving”, and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of”, respectively, are closed or semi-closed transitional phrases with respect to claims. Use of ordinal terms such as “first”, “second”, “third”, etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements. As used herein, “and/or” means that the listed items are alternatives, but the alternatives also include any combination of the listed items.
This patent claims priority from provisional patent application 63/040,440, filed Jun. 17, 2020, entitled FILTER USING LITHIUM NIOBATE AND LITHIUM TANTALATE XBARS. This application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5446330 | Eda et al. | Aug 1995 | A |
5552655 | Stokes et al. | Sep 1996 | A |
5726610 | Allen et al. | Mar 1998 | A |
5853601 | Krishaswamy | Dec 1998 | A |
6377140 | Ehara et al. | Apr 2002 | B1 |
6516503 | Ikada et al. | Feb 2003 | B1 |
6540827 | Levy et al. | Apr 2003 | B1 |
6707229 | Martin | Mar 2004 | B1 |
6710514 | Ikada et al. | Mar 2004 | B2 |
7345400 | Nakao et al. | Mar 2008 | B2 |
7463118 | Jacobsen | Dec 2008 | B2 |
7535152 | Ogami et al. | May 2009 | B2 |
7684109 | Godshalk et al. | Mar 2010 | B2 |
7728483 | Tanaka | Jun 2010 | B2 |
7868519 | Umeda | Jan 2011 | B2 |
7941103 | Iwamoto | May 2011 | B2 |
8278802 | Lee et al. | Oct 2012 | B1 |
8294330 | Abbott et al. | Oct 2012 | B1 |
8344815 | Yamanaka | Jan 2013 | B2 |
8816567 | Zuo et al. | Aug 2014 | B2 |
8829766 | Milyutin et al. | Sep 2014 | B2 |
8932686 | Hayakawa et al. | Jan 2015 | B2 |
9093979 | Wang | Jul 2015 | B2 |
9130145 | Martin et al. | Sep 2015 | B2 |
9219466 | Meltaus et al. | Dec 2015 | B2 |
9276557 | Nordquist et al. | Mar 2016 | B1 |
9369105 | Li | Jun 2016 | B1 |
9425765 | Rinaldi | Aug 2016 | B2 |
9525398 | Olsson | Dec 2016 | B1 |
9640750 | Nakanishi et al. | May 2017 | B2 |
9748923 | Kando et al. | Aug 2017 | B2 |
9762202 | Thalmayr et al. | Sep 2017 | B2 |
9780759 | Kimura et al. | Oct 2017 | B2 |
9837984 | Khlat et al. | Dec 2017 | B2 |
10079414 | Guyette | Sep 2018 | B2 |
10187039 | Komatsu et al. | Jan 2019 | B2 |
10200013 | Bower | Feb 2019 | B2 |
10211806 | Bhattacharjee | Feb 2019 | B2 |
10284176 | Solal | May 2019 | B1 |
10491192 | Plesski et al. | Nov 2019 | B1 |
10601392 | Plesski et al. | Mar 2020 | B2 |
10637438 | Garcia et al. | Apr 2020 | B2 |
10644674 | Takamine | May 2020 | B2 |
10756697 | Plesski et al. | Aug 2020 | B2 |
10790802 | Yantchev et al. | Sep 2020 | B2 |
10797675 | Plesski | Oct 2020 | B2 |
10826462 | Plesski | Nov 2020 | B2 |
10868512 | Garcia | Dec 2020 | B2 |
10917070 | Plesski | Feb 2021 | B2 |
20020079986 | Ruby et al. | Jun 2002 | A1 |
20020158714 | Kaitila et al. | Oct 2002 | A1 |
20020189062 | Lin et al. | Dec 2002 | A1 |
20030080831 | Naumenko et al. | May 2003 | A1 |
20030199105 | Kub et al. | Oct 2003 | A1 |
20040100164 | Murata | May 2004 | A1 |
20040261250 | Kadota et al. | Dec 2004 | A1 |
20050185026 | Noguchi et al. | Aug 2005 | A1 |
20050218488 | Matsuo | Oct 2005 | A1 |
20050264136 | Tsutsumi et al. | Dec 2005 | A1 |
20060179642 | Kawamura | Aug 2006 | A1 |
20070182510 | Park | Aug 2007 | A1 |
20070188047 | Tanaka | Aug 2007 | A1 |
20070194863 | Shibata et al. | Aug 2007 | A1 |
20070267942 | Matsumoto et al. | Nov 2007 | A1 |
20080246559 | Ayaz | Oct 2008 | A1 |
20100064492 | Tanaka | Mar 2010 | A1 |
20100123367 | Tai et al. | May 2010 | A1 |
20110018389 | Fukano et al. | Jan 2011 | A1 |
20110018654 | Bradley et al. | Jan 2011 | A1 |
20110109196 | Goto | May 2011 | A1 |
20110278993 | Iwamoto | Nov 2011 | A1 |
20120286900 | Kadota et al. | Nov 2012 | A1 |
20130234805 | Takahashi | Sep 2013 | A1 |
20130271238 | Onda | Oct 2013 | A1 |
20130278609 | Stephanou et al. | Oct 2013 | A1 |
20130321100 | Wang | Dec 2013 | A1 |
20140130319 | Iwamoto | May 2014 | A1 |
20140145556 | Kadota | May 2014 | A1 |
20140151151 | Reinhardt | Jun 2014 | A1 |
20140152145 | Kando et al. | Jun 2014 | A1 |
20140173862 | Kando et al. | Jun 2014 | A1 |
20140225684 | Kando et al. | Aug 2014 | A1 |
20150042417 | Onodera et al. | Feb 2015 | A1 |
20150319537 | Perois et al. | Nov 2015 | A1 |
20150333730 | Meltaus | Nov 2015 | A1 |
20160028367 | Shealy | Jan 2016 | A1 |
20160182009 | Bhattacharjee | Jun 2016 | A1 |
20170063332 | Gilbert et al. | Mar 2017 | A1 |
20170179928 | Raihn et al. | Jun 2017 | A1 |
20170214381 | Bhattacharjee | Jul 2017 | A1 |
20170214387 | Burak et al. | Jul 2017 | A1 |
20170222617 | Mizoguchi | Aug 2017 | A1 |
20170222622 | Solal et al. | Aug 2017 | A1 |
20170370791 | Nakamura et al. | Dec 2017 | A1 |
20180005950 | Watanabe | Jan 2018 | A1 |
20180026603 | Iwamoto | Jan 2018 | A1 |
20180033952 | Yamamoto | Feb 2018 | A1 |
20180062615 | Kato et al. | Mar 2018 | A1 |
20180062617 | Yun et al. | Mar 2018 | A1 |
20180123016 | Gong | May 2018 | A1 |
20180191322 | Chang et al. | Jul 2018 | A1 |
20190068164 | Houlden et al. | Feb 2019 | A1 |
20190123721 | Takamine | Apr 2019 | A1 |
20190131953 | Gong | May 2019 | A1 |
20190273480 | Lin | Sep 2019 | A1 |
20190348966 | Campanella-Pineda | Nov 2019 | A1 |
20200036357 | Mimura | Jan 2020 | A1 |
20200235719 | Yantchev et al. | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
2016017104 | Feb 2016 | WO |
2018003273 | Jan 2018 | WO |
Entry |
---|
T. Takai, H. Iwamoto, et al., “I.H.P.Saw Technology and its Application to Microacoustic Components (Invited). ” 2017 EEE International Ultrasonics Symposium, Sep. 6-9, 2017. pp. 1-8. |
R. Olsson III, K. Hattar et al. “A high electromechanical coupling coefficient SH0 Lamb wave lithiumniobate micromechanical resonator and a method for fabrication” Sensors and Actuators A: Physical, vol. 209, Mar. 1, 2014, pp. 183-190. |
M Kadota, S Tanaka, “Wideband acoustic wave resonators composed of hetero acoustic layer structure,” Japanese Journal of Applied Physics, vol. 57, No. 7S1. Published Jun. 5, 2018. 5 pages. |
Y. Yang, R. Lu et al. “Towards Ka Band Acoustics: Lithium Niobat Asymmetrical Mode Piezoelectric MEMS Resonators”, Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign, May 2018. pp. 1-2. |
Y. Yang, A. Gao et al. “5 GHZ Lithium Niobate MEMS Resonators With High FOM of 153”, 2017 IEEE 30th International Conference in Micro Electro Mechanical Systems (MEMS). Jan. 22-26, 2017. pp. 942-945. |
USPTO/ISA, International Search Report and Written Opinion for PCT Application No. PCT/US2019/036433 dated Aug. 29, 2019. |
USPTO/ISA, International Search Report and Written Opinion for PCT Application No. PCT/US2019/058632 dated Jan. 17, 2020. |
G. Manohar, “Investigation of Various Surface Acoustic Wave Design Configurations for Improved Sensitivity.” Doctoral dissertation, University of South Florida, USA, Jan. 2012, 7 pages. |
Ekeom, D. & Dubus, Bertrand & Volatier, A.. (2006). Solidly mounted resonator (SMR) FEM-BEM simulation. 1474-1477 10 1109/ULTSYM.2006 371. |
Mizutaui, K. and Toda, K., “Analysis of lamb wave propagation characteristics in rotated Y-cut X-propagation LiNbO3 plates.” Electron. Comm. Jpn. Pt. I, 69, No. 4 (1986): 47-55. doi:10.1002/ecja.4410690406. |
Naumenko et al., “Optimal orientations of Lithium Niobate for resonator SAW filters”, 2003 IEEE Ultrasonics Symposium-pp. 2110-2113. (Year: 2003). |
Buchanan “Ceramit Materials for Electronics” 3rd Edition, first published in 2004 by Marcel Dekker, Inc. pp. 496 (Year 2004). Jan. 2004. |
Sorokin et al. Study of Microwave Acoustic Attenuation in a Multi-frequency Bulk Acoustic Resonator Based on a Synthetic Diamond Single Crystal Published in Acoustical Physics, vol. 61, No. 6, 2015 p. 675 (Year 2015) Jan. 2015. |
Zou, Jie “High-Performance Aluminum Nitride Lamb Wave Resonators for RF Front-End Technology” University of California, Berkeley, Summer 2015, p. 63 (Year 2015) Jan. 2015. |
Santosh, G. , Surface acoustic wave devices on silicon using patterned and thin film ZnO, Ph D. thesis, Feb. 2016, Indian Institute of technology Guwahati, Assam, India Feb. 2016. |
Kadota et al. “5.4 Ghz Lamb Wave Resonator on LiNbO3 Thin Crystal Plate and Its Application,” published in Japanese Journal of Applied Physics 50 (2011) 07HD11. (Year: 2011) 2011. |
USPTO/ISA, International Search Report and Written Opinion for PCT Application No. PCT/US2020/45654 dated Oct. 29, 2020. 2020. |
Safari et al. “Piezoelectric for Transducer Applications” published by Elsevier Science Ltd., pp. 4 (Year: 2000). 2020. |
Moussa et al. Review on Triggered Liposomal Drug Delivery with a Focus on Ultrasound 2015, Bentham Science Publishers, pp. 16 (Year 2005) 2005. |
Acoustic Properties of Solids ONDA Corporation 592 Weddell Drive, Sunnyvale, CA 94089, Apr. 11, 2003, pp. 5 (Year 2003). 2003. |
Bahreyni, B. Fabrication and Design of Resonant Microdevices Andrew William, Inc. 2018, NY (Year 2008). 2008. |
Material Properties of Tibtech Innovations, © 2018 Tibtech Innovations (Year 2018). 2018. |
Namdeo et al. “Simulation on Effects of Electrical Loading due to Interdigital Transducers in Surface Acoustic Wave Resonator”, published in Procedia Engineering 64 (2013) of Science Direct pp. 322-330 (Year: 2013) 2013. |
Rodriguez-Madrid et al., “Super-High-Frequency SAW Resonators on AIN/Diamond”, IEEE Electron Device Letters, vol. 33, No. 4, Apr. 2012, pp. 495-497. Year: 2012) 2012. |
Webster Dictionary, Meaning of “diaphragm” Merriam Webster since 1828. 1828. |
A. C. Guyette, “Theory and Design of Intrinsically Switched Multiplexers With Optimum Phase Linearity,” in IEEE Transactions on Microwave Theory and Techniques, vol. 61, No. 9, pp. 3254-3264, Sep. 2013, doi: 10.1109/TMTT.2013.2274963. Sep. 2013. |
Yanson Yang, Ruochen Lu, Songbin Gong, High Q Antisymmetric Mode Lithium Niobate MEMS Resonators With Spurious Mitigation, Journal of Microelectromechanical Systems, vol. 29, No. 2, Apr. 2020. Apr. 2, 2020. |
Yu-Po Wong, Luyan Qiu, Naoto Matsuoka, Ken-ya Hashimoto, Broadband Piston Mode Operation for First-order Antisymmetric Mode Resonators, 2020 IEEE International Ultrasonics Symposium, Sep. 2020. Sep. 2020. |
Number | Date | Country | |
---|---|---|---|
20210399718 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
63040440 | Jun 2020 | US |