The use of RFID tags has become prevalent, especially in the management of assets, particularly those applications associated with inventory management. For example, the use of RFID tags permits the monitoring of the production line and the movement of assets or components through the supply chain.
To further illustrate this concept, a manufacturing entity may adhere RFID tags to components as they enter the production facility. These components are then inserted into the production flow, forming sub-assemblies in combination with other components, and finally resulting in a finished product. The use of RFID tags allows the personnel within the manufacturing entity to track the movement of the specific component throughout the manufacturing process. It also allows the entity to be able to identify the specific components that comprise any particular assembly or finished product.
In addition, the use of RFID tags has also been advocated within the drug and pharmaceutical industries. In February 2004, the United States Federal and Drug Administration issued a report advocating the use of RFID tags to label and monitor drugs. This is an attempt to provide pedigree and to limit the infiltration of counterfeit prescription drugs into the market and to consumers.
Since their introduction, RFID tags have been used in many applications, such as to identify and provide information for process control in filter products. U.S. Pat. No. 5,674,381, issued to Den Dekker in 1997, discloses the use of “electronic labels” in conjunction with filtering apparatus and replaceable filter assemblies. Specifically, the patent discloses a filter having an electronic label that has a read/write memory and an associated filtering apparatus that has readout means responsive to the label. The electronic label is adapted to count and store the actual operating hours of the replaceable filter. The filtering apparatus is adapted to allow use or refusal of the filter, based on this real-time number. The patent also discloses that the electronic label can be used to store identification information about the replaceable filter.
A patent application by Baker et al, published in 2005 as U.S. Patent Application Publication No. US2005/0205658, discloses a process equipment tracking system. This system includes the use of RFID tags in conjunction with process equipment. The RFID tag is described as capable of storing “at least one trackable event”. These trackable events are enumerated as cleaning dates, and batch process dates. The publication also discloses an RFID reader that is connectable to a PC or an internet, where a process equipment database exists. This database contains multiple trackable events and can supply information useful in determining “a service life of the process equipment based on the accumulated data”. The application includes the use of this type of system with a variety of process equipment, such as valves, pumps, filters, and ultraviolet lamps.
Another patent application, filed by Jornitz et al and published in 2004 as U.S. Patent Application Publication No. 2004/0256328, discloses a device and method for monitoring the integrity of filtering installations. This publication describes the use of filters containing an onboard memory chip and communications device, in conjunction with a filter housing. The filter housing acts as a monitoring and integrity tester. That application also discloses a set of steps to be used to insure the integrity of the filtering elements used in multi-round housings. These steps include querying the memory element to verify the type of filter that is being used, its limit data, and its production release data.
U.S. Pat. No. 6,936,160, issued to Moscaritolo in 2005, describes a wireless MEMS sensing device, for use with filtering elements. Moscaritolo describes a MEMS device, having at least two different sensors in a single assembly package. The patent discloses use of this MEMS device in the end cap of a filter, preferably for measuring differential pressure of a fluid, thereby allowing it to monitor the operating conditions within the housing. Related patents also describe the use of this MEMS device to estimate and predict a filter's life.
Despite the improvements that have occurred through the use of RFID tags, there are additional areas that have not been satisfactorily addressed. For example, there are a number of applications, such as in-situ filter integrity testing and filter life monitoring via transmembrane pressure changes, in which real time monitoring of the pressure at various points within the filter housing would be extremely beneficial.
The shortcomings of the prior art are overcome by the present invention, which describes a system and method for accurately measuring the pressure and/or flow at various points within a filter housing. In one embodiment, a sensor, capable of measuring the pressure at a specific point is used. In a second embodiment, a differential pressure sensor, capable of measuring the difference in pressure between two points, is employed. In a third embodiment, a gas flow meter is incorporated into the nose of a filter for directly measuring the flow of gas through that point in the filter. Similarly, a differential pressure sensor or a liquid flow sensor can be incorporated in a TFF module to measure the flow of critical fluids, like cleaning fluids, within a system. These sensors are in communication with a communications device so that the combination is able to measure and transmit the pressure measurement, while the filter is in use. This system can comprise a single component, integrating both the communication device and the pressure sensor. Alternatively, the system can comprise separate sensor and transmitter components, in communication with one another. The transmitter component can utilize either wired or wireless communication. In yet another embodiment, a storage element can be added to the system, thereby allowing the device to store a set of pressure values.
The use of this device is beneficial to many applications. For example, the ability to monitor transmembrane pressure across each filter individually in a multiple filter configuration improves the reliability and validity of an integrity test. This also allows the integrity of each filtering element to be individually determined in situ. The ability to monitor the transmembrane pressure within the filter housing also enables the plugging of multi-layer filters to be monitored, allowing the life of the filter to be estimated.
The pressure sensor 30 is preferably a differential sensor, and is mounted on, or preferably embedded in, the end cap of the filter element 10. The sensor is positioned such that it is capable of measuring both the upstream and downstream pressure. In some applications, the temperature of the filter element may exceed 145° C., therefore a sensor that is stable at these temperatures should be employed. Similarly, a transmitter capable of withstanding this temperature should be employed. Finally, the temperature with the housing 20 may cycle from lower temperatures to higher temperatures and back, therefore the pressure sensor should be able to withstand temperature cycling.
There are multiple embodiments of this pressure sensor. For example, this sensor can be constructed using micro-electro-mechanical system (MEMS) technology, a piezoelectric element, a conductive or resistive polymer, including elastomers and inks, or a transducer. While a differential pressure sensor is preferred, since it is the difference between the upstream pressure and the downstream pressure that is of interest, separate pressure sensors, one on either side of the filter, may also be employed. These examples are intended to be illustrative of some of the types of sensors that can be used; this is not intended to be an exhaustive list of all such suitable pressure sensors.
The pressure sensor 30 is in communication with a transmitter 40, which can be either wired or wireless. Mechanisms for transmitting wireless signals outside the housing have been disclosed and are known in the art. United States Patent Application Publication 2004/0256328 describes the use of an antenna to relay information between transponders located on the filter housing to a monitoring and test unit external to the housing.
For flow measuring applications, such as those shown in
A transmitter 40 is also located near, or integrated with, the sensor 30. In one embodiment, the transmitter 40 and the pressure sensor 30 are encapsulated in a single integrated component. Alternatively, the transmitter 40 and the sensor 30 can be separated, and in communication with each other, such as via electrical signals. Various types of communication are possible, such as wired and wireless. Various wireless communication devices are possible, although the use of an RFID tag is preferred. An active RFID tag allows regular communication with the reader. Alternatively, a passive RFID tag can be used, whereby the energy to transmit and sense the temperature is obtained from the electromagnetic field transmitted by the RFID reader.
Optionally, a storage element 50 can be used in conjunction with the transmitter 40 and the pressure sensor 30. This storage element 50, which is preferably a random access memory (RAM) or FLASH EPROM device, can be used to store a set of pressure readings, such as may be generated by regular sampling of the sensor.
This allows the rate at which the transmitter 40 sends data to be different from the rate at which the pressure is sampled. For example, the pressure may be sampled 10 times per second, while the data is transmitted only once per second.
A wireless receiver, 60, optionally located outside the filter housing 20, is used to communicate with the wireless transmitter. In the preferred embodiment, an RFID reader or base station is used. The reader can be configured such that it queries the transmitter at regular intervals. Alternatively, the reader can be manually operated so that readings are made when requested by the equipment operator. In another embodiment, the wireless receiver 60 also includes a storage element. This reduces the complexity required of the device within the housing. In this embodiment, the wireless receiver queries the wireless transmitter/pressure sensor at preferably regular intervals. It receives from the wireless transmitter the current pressure sensor measurement as determined at that time. The wireless receiver 60 then stores this value in its storage element. The capacity of the storage element can vary, and can be determined based on a variety of factors. These include, but are not limited to, the rate at which measurements are received, the rate at which the stored data is processed, and the frequency with which this storage element is in communication with its outside environment.
As an example, consider a filter element having a wireless transmitter 40, such as an RFID tag, coupled with a pressure sensor 30. In this embodiment, the RFID tag is passive, that is, it only sends data upon receipt of a query from the wireless receiver, or base station. Upon receipt of that query, the transmitter transmits the value currently available from the pressure sensor 30. In one scenario, the wireless receiver, which is coupled to a computing device, such as a computer, then stores these values, optionally with an associated timestamp, such as in a log file. In a different scenario, if the wireless receiver is separated from the computer, the receiver will need to store a number of pressure measurements internally, until such time as it is connected to the main computing and/or storage device. In this case, a storage element needs to be integrated with the receiver.
In another embodiment, a wireless transmitter and receiver are not used; rather, the output of the pressure sensor is hard wired to the outside of the housing.
Having defined the physical structure of the present invention, there are a number of applications in which it is beneficial. The following is meant to illustrate some of those applications, however it is not intended as a recitation of all such applications.
In one embodiment, the present invention is used in conjunction with in situ Integrity Testing. This process allows the operator to certify the integrity of the filters within the filter housing at the customer site without additional equipment. Specifically, a gas, typically air, is pressurized to a predetermined pressure upstream of a liquid wetted filter contained within an air tight housing. The pressure within the housing will decay over time as a result of diffusional and potentially convective flow of gas through the filter. The rate of pressure decay is used to establish the integrity of the filter element. In one embodiment, as shown in
For multi-round systems, multiple pressure sensors can be introduced, so as to be able to determine the diffusion rate for each individual filtering element. Currently, systems where multiple filters are used in parallel are difficult to test. In this situation, the specifications are multiplied by the number of filters in the housing. Therefore, the ability to detect defects is significantly reduced, because the errors are also multiplied. Additionally, if a defect is found, it is not easily discernible which filter was defective and each would need to be tested individually. The use of pressure or flow sensors in each filter improves the sensitivity of the test and allows each filter to be independently tested. In addition, the preferred bubblepoint integrity test, which measures gas flow over a broad range of increasing pressures, can be measured on each filter individually; a test protocol which is not possible currently.
In one embodiment, a plastic filter housing is utilized, allowing the wireless transmitter to transmit pressure data through the housing at any time.
The present invention also enables the monitoring of transmembrane pressure. This monitoring of transmembrane pressure has several benefits and applications. For example, the preferred start up procedure for microfiltration (MF) filters is to ramp the operating pressure, rather than opening to full operating pressure immediately. This approach avoids air locks within the filter and increases the filter's useful life. Internal pressure sensors can be utilized to monitor the pressure within the housing and thus, affect the proper ramp of operating pressure. In the preferred embodiment, a differential pressure sensor is located in the end cap of each filtering element, thereby allowing both the upstream and downstream pressure to be observed. In one embodiment, the pressure readings are transmitted via an RFID tag through the plastic housing to an external wireless receiver.
Once the assembly has reached its operating pressure, the internal pressure sensors allow continued monitoring of the filters. For example, plugging of the filter will lead to a reduction in flow rate and thus a corresponding reduction in pressure on the downstream side of the filter. Based on the rate at which the transmembrane pressure changes, an estimate of the useful life of the filter can be made. If the pressure is sampled on a continuous basis, any aberrant pressure fluctuations are observable and these can be accounted for in estimating the remaining useful life of the filter.
The above procedure is also applicable to multi-element filter arrangements. In the preferred embodiment, a pressure sensor is used to measure the upstream and downstream pressure of each filtering element by affixing the sensor to the end cap of each filter. The pressure measurements allow the operator to understand better the operation of each filter within the filter housing individually. For example, if a pressure drop were detected between the upstream and downstream sides of a filtering element, it typically would indicate a plugging or fouling of that element. As explained above, the rate at which the transmembrane pressure changes allows an estimation of useful filter life to be made. Similarly, if the pressure across each filter is sampled on a continuous basis, any aberrant pressure fluctuations are observable and these can be accounted for in estimating the remaining useful life of that particular filter.
Additionally, the present invention may be used to monitor specific operating parameters, such as transmembrane pressure, in tangential flow filtration (TFF) devices. These devices are typically used in milti-filter, module, configurations. Traditionally, the pressure drops between modules in TFF devices are not monitored. This monitoring can be performed by introducing pressure sensors between modules, as shown in
Number | Name | Date | Kind |
---|---|---|---|
2131509 | Goepel et al. | Sep 1938 | A |
3698556 | Emmett et al. | Oct 1972 | A |
3877893 | Sweny et al. | Apr 1975 | A |
4052176 | Child et al. | Oct 1977 | A |
4211075 | Ludecke et al. | Jul 1980 | A |
4272109 | Ahlstone | Jun 1981 | A |
4552572 | Galstaun | Nov 1985 | A |
4568364 | Galstaun | Feb 1986 | A |
4840648 | Grunewald et al. | Jun 1989 | A |
4957515 | Hegarty | Sep 1990 | A |
5040805 | Ozora | Aug 1991 | A |
5121929 | Cobb | Jun 1992 | A |
5240476 | Hegarty | Aug 1993 | A |
5240612 | Grangeon et al. | Aug 1993 | A |
5246235 | Heinzen | Sep 1993 | A |
5256294 | Van Reis | Oct 1993 | A |
5367910 | Woodward et al. | Nov 1994 | A |
5476592 | Simard | Dec 1995 | A |
5540448 | Heinzen | Jul 1996 | A |
5560278 | Lark | Oct 1996 | A |
5581017 | Bejtlich, III | Dec 1996 | A |
5581019 | Minor et al. | Dec 1996 | A |
5624537 | Turner et al. | Apr 1997 | A |
5674381 | Den Dekker | Oct 1997 | A |
5683119 | Emmons et al. | Nov 1997 | A |
5786528 | DiLeo et al. | Jul 1998 | A |
5947689 | Schick | Sep 1999 | A |
6003872 | Nord | Dec 1999 | A |
6077435 | Beck et al. | Jun 2000 | A |
6090187 | Kumagai | Jul 2000 | A |
6090356 | Jahnke et al. | Jul 2000 | A |
6265973 | Brammall et al. | Jul 2001 | B1 |
6296770 | Wilcox et al. | Oct 2001 | B1 |
6333699 | Zierolf | Dec 2001 | B1 |
6350382 | Schick | Feb 2002 | B1 |
6365395 | Antoniou | Apr 2002 | B1 |
6471853 | Moscaritolo | Oct 2002 | B1 |
6485703 | Cote et al. | Nov 2002 | B1 |
6595523 | Heinzen | Jul 2003 | B1 |
6615639 | Heinzen | Sep 2003 | B1 |
6649829 | Garber et al. | Nov 2003 | B2 |
6652740 | Schoess | Nov 2003 | B2 |
6694727 | Crawley et al. | Feb 2004 | B1 |
6853203 | Beylich et al. | Feb 2005 | B2 |
6897374 | Garber et al. | May 2005 | B2 |
6936160 | Moscaritolo et al. | Aug 2005 | B2 |
6983504 | Grummert et al. | Jan 2006 | B2 |
7009409 | Davie et al. | Mar 2006 | B2 |
7048775 | Jornitz et al. | May 2006 | B2 |
7198303 | Brophy, III et al. | Apr 2007 | B2 |
7264649 | Johnson et al. | Sep 2007 | B1 |
7398692 | Hiroki et al. | Jul 2008 | B2 |
7594425 | Lewnard et al. | Sep 2009 | B2 |
20010006485 | Kubiak et al. | Jul 2001 | A1 |
20010042684 | Essalik et al. | Nov 2001 | A1 |
20010042707 | Niers et al. | Nov 2001 | A1 |
20020093431 | Zierolf | Jul 2002 | A1 |
20020096467 | Cappia et al. | Jul 2002 | A1 |
20020144938 | Hawkins et al. | Oct 2002 | A1 |
20030042688 | Davie et al. | Mar 2003 | A1 |
20030047517 | Schoess | Mar 2003 | A1 |
20030090390 | Snider et al. | May 2003 | A1 |
20030116487 | Petersen | Jun 2003 | A1 |
20030168408 | Rajagopalan et al. | Sep 2003 | A1 |
20030179002 | Beylich et al. | Sep 2003 | A1 |
20040079686 | Moscaritolo et al. | Apr 2004 | A1 |
20040112529 | Karlsson et al. | Jun 2004 | A1 |
20040130438 | Garber | Jul 2004 | A1 |
20040135684 | Steinthal et al. | Jul 2004 | A1 |
20040172210 | Rothfuss et al. | Sep 2004 | A1 |
20040188331 | Moscaritolo | Sep 2004 | A1 |
20040239521 | Zierolf | Dec 2004 | A1 |
20040256328 | Jornitz et al. | Dec 2004 | A1 |
20050039749 | Emerson | Feb 2005 | A1 |
20050156487 | Tseng et al. | Jul 2005 | A1 |
20050211934 | Garber et al. | Sep 2005 | A1 |
20050224577 | Rozenblat et al. | Oct 2005 | A1 |
20050247114 | Kahn et al. | Nov 2005 | A1 |
20060060512 | Astle et al. | Mar 2006 | A1 |
20070193361 | Coffey et al. | Aug 2007 | A1 |
20070241510 | DiLeo | Oct 2007 | A1 |
20080041165 | Coffey et al. | Feb 2008 | A1 |
20080258401 | Cotton | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
1619277 | May 2005 | CN |
641 246 | Jan 1937 | DE |
41 06 080 | Jun 1991 | DE |
101 51 270 | Oct 2001 | DE |
202 15 056 | Mar 2003 | DE |
0 518 250 | Dec 1992 | EP |
0 638 798 | Aug 1994 | EP |
0 640 822 | Nov 1996 | EP |
0 700 313 | Nov 1996 | EP |
1 106 962 | Jun 2001 | EP |
1 340 976 | Sep 2003 | EP |
1 473 069 | Nov 2004 | EP |
2 303 082 | Feb 1997 | GB |
6-67458 | Mar 1994 | JP |
6-79147 | Mar 1994 | JP |
2002-519880 | Jul 2002 | JP |
2002-538519 | Nov 2002 | JP |
2002-539441 | Nov 2002 | JP |
9-24209 | Oct 2010 | JP |
20020499 | Mar 2002 | NO |
1 259 869 | Jun 1993 | RU |
8502783 | Jul 1985 | WO |
9411721 | May 1994 | WO |
9967851 | Dec 1999 | WO |
0040322 | Jul 2000 | WO |
0050849 | Aug 2000 | WO |
0054841 | Sep 2000 | WO |
0116030 | Mar 2001 | WO |
02078823 | Oct 2002 | WO |
02088618 | Nov 2002 | WO |
03037483 | May 2003 | WO |
2004016334 | Feb 2004 | WO |
2004082743 | Sep 2004 | WO |
2004085027 | Oct 2004 | WO |
2005031195 | Apr 2005 | WO |
2005091959 | Oct 2005 | WO |
2005102401 | Nov 2005 | WO |
2006026253 | Mar 2006 | WO |
2008008426 | Jan 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20070240492 A1 | Oct 2007 | US |