The present invention relates to filters used in air filtration generally and is more specifically related to pulse-jet filter elements and filter-cage assemblies, and to cartridge filters, of the type typically used in industrial applications.
Filter elements in use have cylindrical filter bags, mounted onto cylindrical wire cages, which are installed by means of snap-ring fittings in the housing. Air is drawn through the filter bags during the filtration process. In pulse-jet filter applications, the air flow direction is reversed during the cleaning cycle.
The filter bags are closed on the bottom and open on the top. The dust laden air is drawn through the filter bag from an exterior of the filter bag, and the dust particles are retained on the surface of the filter bag. The air-to-cloth ratio, dust particle size, electrostatic properties of dust and filter cloth, can velocity, dust retention and cake-release of a given filter material and the filtration surface texture determine the efficiency of a filter. Pulse-jet filter bags are limited by the length and circumference of the filter bags and the can velocity due to the small open space between the circular filter bags and bag housing. Improving efficiency by increasing the size of the filter housing, or increasing the number of filter bags, is expensive and is often impractical. The circular, sewed-on bottoms often protrude beyond the sides of the bags of the filter elements and become obstacles that catch and collect dust, which later impedes dust release in the cleaning cycle, and creates a negative impact on the can velocity at the bottom of the filter elements.
Similarly, cartridge filters have the disadvantage of being limited in temperature resistance and in length, which typically may not exceed two meters. High differential pressure causes the pleats to concave at the tips of the pleats, thereby reducing the effective filter area at this point. In addition, dust and other undesirable particles build up on the outside between the pleats and, in some cases, completely clog the cartridge filter. The extruding rim of the bottom plate of the cartridge filter is frequently an obstacle that catches and retains dust, preventing the collected dust from falling down into the hopper.
The filter has radially extending fingers or rays that yield a filter bag having a propeller-shaped cross section. The present invention significantly increases the filtration surface while using the same number of filter elements at the same gas volume, and also using the same bag diameter and bag length of conventional pulse-jet filter bags. Additionally, the structure of the invention reduces the air to cloth ratio, can velocity and differential pressures, which leads to significant efficiency gains with respect to emission values and energy consumption.
Radially extending portions of the filter elements lend a propeller shape to the device of the invention. The sides of the bag are formed to allow an easy collection of dust and the propeller-shaped bottom of the bag has no obstacles that accumulate falling dust, thus enhancing dust-cake release during the cleaning cycle. By substituting normal pulse-jet filter element bags with frusto-conical, propeller-shaped moulded bottom filter element bags in a jet-filter bag-housing, this invention substantially increases the filter capacity of the bag housing, while simultaneously significantly reducing energy consumption and operating costs. The number of filter elements, as well as space needed for the new filter housing, is substantially reduced.
a demonstrates additional open space gained between the bottoms of frusto-conical filter elements in comparison to using cylindrical filter elements.
In a preferred embodiment, the propeller-shaped filter bag 10 is placed over a frusto-conical propeller-shaped support cage 30. This support cage is preferred to be formed by supports 32 and pairs of laterally offset frusto-conical longitudinal wires 31 that form the frusto-conical cage.
a shows a foot print demonstrating the additional open space 41 gained when replacing 150 mm Ø pulse-jet filter bags previously known with 150/130 mm Ø frusto-conical propeller-shaped filter bags 10 having moulded propeller-shaped bottoms 15.
In the preferred embodiment shown in
Polyurethane, silicone or other mouldable material may be used to form the moulded bottom of the filter bags. The very top of a preferred filter bag is not propeller-shaped, but is cylindrical. Snap-band rings with double-beaded gasketing, felt strips, rings or other conventional installation methods may be employed for mounting the filter bags. The open top can therefore be made to fit any standard cell plate and gasketing size.
The filter media may be chosen from many materials used for industrial dust filtration, and may be needled felt, non-woven, woven material, warp-knitted, circular knitted fabric also out of micro-filament yarn and fibers, fiberglass and/or metal-fabrics, and others. The length and diameter of the filter bag is variable in accordance with the needs in line of the filter housing dimensions. A preferred filter bag of the invention comprises filter media which can withstand temperatures up to 280° C.
Interior venturis or special types of filter material (e.g. glass, woven, light-weight-spun-bond material) may make it desirable to deviate from the preferred pleat-free open top form and to use a box-pleat design sewed onto a tubular top
Bands on the exterior of the filter bag may be used to give the filter bag the multi-propeller-blade shape, and also prevent the filter bag from expanding too much during the pulse-jet cleaning cycle. The bands are placed horizontally around the filter bag at calculated intervals along the length of the bag. The smaller outer-circumference of the filter bag is created by matching marks on the band to proportionally-greater-distanced marked points on the bags. These marks are then joined together by sewing, stapling, or other techniques.
The filter bag must have an inside support, which may be a cage. To meet the needs of the individual application, this cage is preferred to be constructed of rigid materials such as steel or stainless steel, whereby all steel parts can be treated or coated as required. The cage may have, for each propeller-blade, a pair of wires forming a frusto-conical shape along the length of the cage from the riveting points of the supports, which are placed at regular intervals down the length of the cage. The filter material is preferred to touch the cage only along the edges of the wires, which minimizes mechanical abrasion and also allows full use of the filter material as a filtration surface.
The filter cages may be constructed as a single piece or they may be delivered in an assembly set, to be mounted together on the location site with fasteners such as rivets. Long cages may be constructed in two pieces, with tubular inner joints, to be assembled during installation.
The invention as disclosed in this embodiment may be used to replace cartridge filters, with the definitive advantage of having drop-off sides that have no obstacles to catch and retain dust and polluted particles. The cage with the preferred top flange is reusable when the frusto-conical, propeller-shaped fabric filter bag is replaced.
The filter bag according to the invention achieves a filtration surface which is 1.5 to 2 times as large as a conventional pulse-jet filter bag of the same top diameter and length. Moreover, when the resulting filter bag is stabilized by a frusto-conical, propeller-shaped support cage 30 and circular bands 12, the filter material 11 of the bag is moved more gently at lower pressure during the pulse-jet cleaning cycle. The frusto-propeller shaped design has less inner-bag air volume (as in comparison to conventional cylindrical filter bags) which reduces the compressed air and energy consumption needed during the pulse-jet cleaning cycle, permitting that the frusto-propeller-shaped filter bags and cartridges can be cleaned less aggressively in comparison to conventional pulse-jet filter bags.
The advantages gained in using the preferred filter are:
Thus the many aforementioned objects and advantages are most effectively attained. Although preferred embodiments of the invention have been disclosed, and described in detail herein, it should be understood that this invention is in no sense limited thereby and its scope is to be determined by that of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2774443 | Slayter | Dec 1956 | A |
2814357 | Bowman | Nov 1957 | A |
3853509 | Leliaert | Dec 1974 | A |
4084948 | MacFarland | Apr 1978 | A |
4259095 | Johnson, Jr. | Mar 1981 | A |
4291904 | Iversen et al. | Sep 1981 | A |
4336035 | Evenstad et al. | Jun 1982 | A |
4749485 | DeGraffenreid | Jun 1988 | A |
5066315 | Haberl et al. | Nov 1991 | A |
5118421 | Scarano | Jun 1992 | A |
5230726 | Smith et al. | Jul 1993 | A |
5858039 | Schumann et al. | Jan 1999 | A |
5902365 | Haggard | May 1999 | A |
5916435 | Spearman | Jun 1999 | A |
6547856 | Cartellone | Apr 2003 | B2 |
6833023 | Vandenberghe et al. | Dec 2004 | B1 |
7320717 | Koeberle | Jan 2008 | B2 |
7404838 | Pathak | Jul 2008 | B1 |
7481862 | Attassery | Jan 2009 | B2 |
7485592 | Kohli et al. | Feb 2009 | B2 |
7597773 | Kume et al. | Oct 2009 | B2 |
20020040569 | Reinhold | Apr 2002 | A1 |
20020129706 | Cartellone | Sep 2002 | A1 |
20020174770 | Badeau et al. | Nov 2002 | A1 |
20030177744 | Gerakios et al. | Sep 2003 | A1 |
20050138903 | Jensen et al. | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
09108519 | Apr 1997 | JP |
10-2006-0133937 | Dec 2006 | KR |
Number | Date | Country | |
---|---|---|---|
20110067370 A1 | Mar 2011 | US |