The invention relates to a filtering apparatus having a plurality of filter elements, which can be accommodated in a filter housing having a filter inlet for fluid to be filtered and a filter outlet for the filtered fluid, wherein at least one of the filter elements can be backwashed by means of a backwashing device for cleaning its effective filter surface during the filtration operation, said backwashing device comprising a pressure control device for supporting the backwashing.
A filtering apparatus of the same generic type is disclosed in DE 10 2007 054 737 A1. Such a filtering apparatus permits a continuous filtration operation, wherein filter elements that are to be regenerated are backwashed one after the other, while the filtration is continued through the remaining filter elements, so that the filtration operation is not interrupted at any time.
With the known filtering apparatus, the backwashing operation does not take place exclusively in such a manner that the system pressure applied in the filtering apparatus allows a substream of the filtrate to flow through the filter element to be cleaned in the reverse direction during the respective backwashing phase in order to release the dirt from the filter element and discharge it, but instead a vacuum is created by means of a pressure control device on the respective filter element being backwashed in an effort to also remove even more stubborn soiling. Therefore, not only is the system pressure in effect for the backwashing but also a higher pressure gradient is available under the influence of the pressure control for releasing the soiling.
With the known filtering apparatus, the pressure control device has a cut-off element by means of which the fluid connection between the fluid to be filtered, flowing into the filter housing and the respective filter element to be backwashed can be cut off. This results in an interruption in flow in the case of the fluid flow entering the filter element before the backwashing operation, so that the velocity of flow prevailing in the cut-off operation causes a suction effect as a hydrodynamic effect. Therefore, not only is the system pressure available for the backflow of filtrate on the clean side of the respective filter element but also the backflow of filtrate is reinforced by the follow-up suction effect which is available because of the dynamic effect resulting from the cutoff of the flow entering from the dirty side.
However, the size of the hydrodynamic effect achieved by the cut-off process depends on the velocity of flow and therefore is limited accordingly. In areas of use where stubborn soiling that is difficult to release from the filter surface is to be expected, there is therefore the risk that the backwashing effect, which is hydrodynamically supported, is not completely satisfactory.
In view of these problems, the object of the present invention is to make available a filtering apparatus in which an especially effective backwashing effect, supported by pressure control, can be achieved.
According to the invention, this object is achieved by a filtering apparatus having the features of patent claim 1 as a whole.
One important feature of the invention is thus that the pressure control device has a hydraulic accumulator, in which its one fluid chamber can be filled with a quantity of cleaned fluid while the apparatus is operating in filtration operation and can be connected by means of a backwashing guide to the clean side of the respective filter element to be cleaned for a backwashing operation. In the case of a pressure application of the additional fluid chamber of the hydraulic accumulator, the resulting movement of the separation element of the hydraulic accumulator leads to ejection of the filling quantity of fluid, which reaches the filter element to be cleaned as flushing fluid by means of the backwashing guide.
Through the choice of the level of the gas pressure used in the hydraulic accumulator for the movement of the separation element, it is possible to optimally adapt the velocity of flow of the flushing fluid reaching the filter element through the backwashing guide to the given conditions, i.e., to select it so that the best possible flushing effect is achieved in adaptation to the type of filter medium. In particular in the case of relatively pressure-resistant filter elements such as conical or cylindrical slotted-sieve tube elements, it is possible to work with a high pressure level and thus with high velocities of flow in the hydraulic accumulator so that even stubborn soiling can be reliably released from the filter surface.
In advantageous exemplary embodiments, the additional fluid chamber of the hydraulic accumulator can be connected to a compressed gas source for the backwashing operation by means of a valve control device. In many cases, the use of compressed air may be especially advantageous, for example, when the filtering apparatus is operated in combination with installations or equipment in which a compressed air supply is provided.
The additional fluid chamber of the hydraulic accumulator for the backwashing operation can preferably be connected to a compressed gas source by means of a valve control device. In especially advantageous exemplary embodiments, the arrangement here is made so that a flushing gas tank situated outside of the filter housing is provided as the compressed gas source. Without any negative effect on the compactness of the filtering apparatus, a large gas volume kept on hand for the respective backwashing operations can thus be made available through a tank precharged with compressed air, for example.
The valve control device may have a fast-opening valve in a flushing gas line leading from the compressed gas source to the hydraulic accumulator in an especially advantageous manner. Due to a very rapid application of pressure, a greatly accelerated movement of the separation element of the hydraulic accumulator can therefore be achieved, so that a pressure surge is generated for the backwashing operation, thereby releasing even stubborn soiling from the filter surface.
A pneumatically operable diaphragm valve may advantageously be provided as a very fast-opening valve in the flushing gas line.
In especially advantageous exemplary embodiments, the hydraulic accumulator and backwashing guide are connected to one another and arranged in a rotatable manner in the filter housing, where they can be rotated by means of a rotational drive for adjustment movements between filtration operation and backwashing. Such an arrangement permits an especially simple and compact design in that a drive, preferably in the form of an electric geared motor is mounted on a readily accessible free end of the hydraulic accumulator; by means of this drive, the hydraulic accumulator can be adjusted to rotational positions in which the backwashing guide forms the fluid connection to the filter element to be cleaned.
In a particularly advantageous manner, the hydraulic accumulator may be a piston accumulator which can rotate about the cylinder axis together with the backwashing guide arranged on one end of the cylinder. In comparison with other accumulator deigns such as a diaphragm accumulator, a spring accumulator, a bellows accumulator or the like, the piston accumulator is characterized not only by a particularly robust design but also by a good ratio between design size and the capacity for holding cleaned fluid, which corresponds to the total displacement of the piston and thus corresponds approximately to the total volume of the accumulator cylinder.
In a particularly advantageous manner, the filter elements may be accommodated in their own element chamber. These element chambers are arranged in the filter housing on a circular line concentrically surrounding the cylinder axis. With this concentric arrangement, the connection of the individual element chambers to the rotatable backwashing guide can have a particularly simple design.
In a particularly advantageous manner, the hydraulic accumulator may be situated between the element chambers surrounding it in such a way that the fluid chambers of the hydraulic accumulator are located between the chamber connections of the element chambers situated at the ends of the filter elements. Such an arrangement in which the hydraulic accumulator is integrated between the respective inlet and outlet of the element chambers permits an especially compact design of the overall apparatus with an especially advantageous ratio between the required design height and the achievable size of the usable filter surface area.
In particularly advantageous exemplary embodiments, an input space having the filter inlet and forming the crude side in the filtration operation and a separate output space forming the clean side in the filtration operation and connected to the filter outlet are present in the filter housing between the hydraulic accumulator and the surrounding element chambers, the first space of which is connected to the chamber connection on the crude side and the second space of which is connected to the chamber connection of the element chambers in filtration operation on the clean side.
This arrangement may advantageously also be such that an overflow space connected to the clean side chamber connections of the element chambers is provided in the filter housing and is connected to the output space; in a rotational position of the hydraulic accumulator corresponding to the filtration operation, the first fluid chamber of this output space can be filled with cleaned fluid through a filling hole provided in the wall of the backwashing guide.
On the other hand, in other rotational positions of the hydraulic accumulator, which correspond to the backwashing of an element chamber, the backwashing guide is connected to the chamber connection of the element chamber to be backwashed on the clean side, so that a backwashing arm, which is arranged on the end of the cylinder of the hydraulic accumulator opposite the backwashing guide and which can be rotated together with the hydraulic accumulator, connects the chamber connection of the element chamber to be backwashed on the crude side to a backwashing line for the outflow of a backwashing quantity at the same time.
A motor-operated backwashing valve may be arranged in the fluid connection between the backwashing arm and the backwashing line, this preferably being a ball valve that can be rotated by means of a pneumatic drive.
The present invention is explained in greater detail below on a basis of exemplary embodiments depicted in the drawings, which show:
Of these,
The piston accumulator 19 is rotatable about its cylinder axis between the input space 21 and the output space 23, wherein a sealed rotational bearing 31 is provided on a housing shoulder 33 separating the input space 21 from the output space 23. Another sealed rotational bearing 35 is situated on a bottom part 37 which seals the housing at the bottom. For adjusting the piston accumulator 29 to the desired rotational positions, the piston accumulator 19 is coupled by means of a driveshaft 39 to the drive part 5, which is an electric geared motor with an integrated rotational position sensor. As can be seen in particular with the rotational position of the piston accumulator 19 shown in
During the filtration operation as illustrated in
On the other hand, if the piston accumulator 19 is in the rotational position shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2011 100 518.1 | May 2011 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/001773 | 4/26/2012 | WO | 00 | 12/5/2013 |