Information
-
Patent Grant
-
6707366
-
Patent Number
6,707,366
-
Date Filed
Monday, April 22, 200222 years ago
-
Date Issued
Tuesday, March 16, 200421 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Thomas, Kayden, Horstemeyer & Risley
-
CPC
-
US Classifications
Field of Search
US
- 336 65
- 336 83
- 336 192
- 336 200
- 336 232
- 361 3011
- 361 3062
- 361 3063
- 361 763
- 361 821
-
International Classifications
-
Abstract
A filtering induction device is provided to improve the filter effect via the increase of an insertion loss resulting from stray capacitance. The induction device includes at least one core structure, and first and second flat coils that interlacing with each other. The first flat coil is used as an inductor, and the second flat coil is used as an electrode belonging to a capacitor formed between the circles of the first flat coil.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an induction device, particularly to a high-efficiency induction device.
2. Description of the Prior Art
It is well known that an inductor may be applied to form a low-pass filter, and that the efficiency of the low-pass filter may be further improved by means of increasing the insertion loss resulting from the application of an additional capacitor.
In traditional technology, the combination of inductors and capacitors are realized by serially connecting one terminal of a substantial capacitor, i.e. a ceramic capacitor, to two inductors, thereby forming a three-terminal low-pass filter. As shown in FIG.
1
(
a
), a traditional low-pass filter is comprised of a ceramic capacitor
10
, two inductors
20
, and three terminals
31
,
32
,
33
. The two inductors are connected to one terminal of the ceramic capacitor
10
, thereby forming the equivalent circuit shown in FIG.
1
(
b
). This structure has the disadvantage of high cost and large volume and may not be fabricated to be a surface-mounted type (SMT) device.
Therefore, a SMT low-pass filter with low production cost is required in the industry.
SUMMARY OF THE INVENTION
The purpose of the present invention is to provide a filtering induction device.
The induction device provides an improved filter effect via the increase of an insertion loss resulting from stray capacitance. The induction device is comprised of a core structure, and first and second flat coils that interlacing with each other. The first flat coil is used as an inductor, and the second flat coil is used as an electrode board that belongs to a capacitor formed between the circles of the first flat coil.
The filtering induction device of the present invention is comprised of a core structure and two flat coils, a first flat coil and a second flat coil. The first flat coil is formed by winding a first conductive strip to form a spiral comprising at least one circle. The cross-section of the first conductive strip is a rectangle, and the first conductive strip is comprised of a first upper surface and a first lower surface. The circles each have the same first radius and are arranged layer by layer, wherein the first conductive strip is covered with an isolation material, such that the first flat coil is used as an inductor.
The structure of the second flat coil is similar to that of the first flat coil. The second flat coil is formed by winding a second conductive strip to form a spiral comprising at least one circle. The shape of the cross-section of the second conductive strip is a rectangle, and the second conductive strip is comprised of a second upper surface and a second lower surface. Particularly, the circles each have the same second radius and are arranged layer by layer, wherein the second conductive strip is covered with an isolation material or dielectric material. In this embodiment, the first and second radius may or may not equal.
According to theories about plate capacitors, because of the coverage of the isolation or dielectric material, the stray capacitance will be formed between the first upper surface and the first lower surface. Two capacitors can be formed by inserting an electrode board between these two surfaces. In this invention, the second flat coil is used to provide a plurality of equivalent electrode boards.
In the present invention, each circle of the second flat coil is inserted between opposite sections of the first upper surface and the first lower surface, such that the second upper surface is opposite to the first lower surface and the second lower surface is opposite to the first upper surface. In operation, the second flat coil is grounded with a terminal. Because the shapes of the first and second flat coils are both spirals, interlacing the two flat coils together would effectively compose a low-pass filter.
The coil assembly composed of the first and second flat coils is disposed in a core structure. The core structure, for example, is comprised of a core base and a core cover. By forming the core cover on the core base containing the coil assembly, the fabrication of the low-pass filter of the present invention is completed.
A BRIEF DESCRIPTION OF THE DRAWINGS
FIG.
1
(
a
) shows a traditional low-pass filter;
FIG.
1
(
b
) shows a circuit diagram of the traditional low-pass filter shown in FIG.
1
(
a
);
FIG.
2
(
a
) shows an exploded view of a low-pass filter according to the present invention;
FIG.
2
(
b
) shows a cross-section of the flat coil according to the present invention;
FIG.
3
(
a
) shows a schematic cross-section of the low-pass filter according to the present invention;
FIG.
3
(
b
) shows a circuit diagram of the low-pass filter according to the present invention;
FIG.
3
(
c
) shows an exploded view of the low-pass filter according to the present invention; and
FIG. 4
shows a chart illustrating the relation between frequency of input signal and the insertion loss thereof.
DETAIL DESCRIPTION OF THE EMBODIMENTS
The induction device according to the present invention has the improved effect of low-pass filter via the increase of an insertion loss resulting from stray capacitance. Furthermore, the induction device of the present invention is a thin surface-mounted device(SMD).
FIG.
2
(
a
) is a partial exploded view of the present invention, and FIG.
2
(
b
) is a cross-section of the first flat coil
100
. The present invention is comprised of a core structure
300
and two flat coils, the first flat coil
100
and the second flat coil
200
. The first flat coil
100
is formed by winding a first conductive strip to form a spiral comprising a plurality of circles. The cross-section of the first conductive strip is a rectangle, and the first conductive strip is comprised of a first upper surface
110
and a first lower surface
120
, as shown in the cross-section in FIG.
2
(
b
). Particularly, the circles each have the same first radius R
1
and are arranged layer by layer, such that the first upper surface
110
is substantially parallel and opposite to the first lower surface
120
. Furthermore, the first conductive strip is covered with an isolation material, such that the first flat coil
100
is used as an inductor.
The structure of the second flat coil
200
is similar to that of the first flat coil
100
. The second flat coil
200
is formed by winding a second conductive strip to form a spiral comprising a plurality of circles. The cross-section of the second conductive strip is a rectangle, and the second conductive strip is comprised of a second upper surface
210
and a second lower surface
220
. Particularly, the circles each have the same second radius R
2
and are arranged layer by layer, and the second conductive strip is covered with an isolation material or dielectric material (not shown). In this embodiment, the first and second radius, R
1
and R
2
, may or may not equal.
Furthermore, if the thickness of the first conductive strip is t and the number of windings is N, the thickness (or height) of the first flat coil
100
will be approximately tN. Similarly, if the thickness of the second conductive strip is t and the number of windings is N, the thickness (or height) of the second flat coil
200
will be approximately tN. In the figure, the gaps between circles are exaggerated for clearance.
In FIG.
2
(
b
), according to theories about plate capacitors, because of the coverage of the isolation or dielectric material, there will be stray capacitance Cs formed between the first upper surface
110
and the first lower surface
120
. Thus, two capacitors C can be formed by inserting an electrode board between the two surfaces. In the present invention, the second flat coil
200
is used to provide a plurality of equivalent electrode boards.
FIG.
3
(
a
) shows a schematic diagram illustrating the cross-section of the low-pass filter according to the present invention; FIG.
3
(
b
) shows a circuit diagram of the low-pass filter according to the present invention; and FIG.
3
(
c
) shows an exploded view of the low-pass filter according to the present invention. As shown in FIG.
3
(
a
), each circle of the second flat coil
200
is inserted between opposite sections of the first upper surface
110
and the first lower surface
120
, forming a coil assembly
150
. The insertion may be processed by winding the second flat coil
200
from one end into the first flat coil
100
along the circles. Thus, the second upper surface
210
is opposite to the first lower surface
120
and the second lower surface
220
is opposite to the first upper surface
110
. In operation, the second flat coil
200
is grounded with a terminal, as shown in the circuit diagram in FIG.
3
(
a
). Because the shapes of the first and second flat coils
100
,
200
are both spirals, interlacingly winding the two flat coils together will effectively composes a low-pass filter according to the present invention.
In FIG.
3
(
c
), the coil assembly
150
composed of the first and second flat coils
100
,
200
is disposed in a core structure. The core structure, as an example, is comprised of a core base
310
and a core cover
320
. Particularly, the core base
310
is shaped as a rectangular box, and is comprised of a bottom, four sidewalls, and a concavity
315
used to contain item. Wherein, one of the sidewalls is provided with three openings
330
, via which terminals of the first and second flat coils
100
,
200
may extend out from the core base
310
. Moreover, by disposing the core cover
320
on the core base
310
containing the coil assembly
150
, the fabrication of the low-pass filter of the present invention is completed.
In
FIG. 4
, the figure shows a comparison of the functional curves, frequency of input signals versus insertion losses, respectively belonging to a low-pass filter (i.e. the low-pass filtering induction device of the present invention) comprising only the first flat coil
100
, or comprising both the first and second flat coils
100
,
200
. Curve
400
shows the character of the first flat coil
100
, and curve
500
shows the character of a coil assembly comprising the first and second flat coil
100
,
200
. It is clear that the low-pass filtering induction device comprising the coil assembly has better performance than that only comprising the first flat coil
100
, for the curve
500
has a larger slope implying a larger insertion loss.
Accordingly, in the present invention, stray capacitance is applied to increase the insertion loss so as to improve the filter performance of low-pass filtering induction devices, thereby eliminating the substantial capacitors, such as ceramic capacitors, and greatly reducing the production cost. As well, because of the application of flat coils, the filtering induction device is rather flat and may be formed as a surface-mounted device (SMD). Furthermore, the spirit of the present invention is in the application of stray capacitance formed between conductors, so any specific shape does not limit the cross-section of the coil in the present invention. The coils may have cross-sections of any shape, such as circular.
While the invention has been described with reference to a preferred embodiment, the description is not intended to be construed in a limiting sense. It is therefore contemplated that the appended claims will cover any such modifications or embodiments as may fall within the scope of the invention defined by the following claims and their equivalents.
Claims
- 1. A filtering induction device, comprising:a first flat coil formed by winding a first conductive strip to form a spiral having a plurality of circles, wherein the circles each have a first radius and are arranged layer by layer, wherein the first conductive strip has a first upper surface and a first lower surface, wherein the first conductive strip is covered with an isolation material and the first flat coil is used as an inductor; a second flat coil formed by winding a second conductive strip to form a spiral having a plurality of circles, wherein the circles each have a second radius and are arranged layer by layer, wherein each of the circles of the second conductive strip is wound between the first upper surface and the first lower surface, to serve as a capacitor; and a core structure coupled to the first flat coil and the second flat coil.
- 2. The filtering induction device of claim 1, wherein the core structure is further comprised of:a core base adapted to contain the first and second flat coils; and a core cover disposed on the core base.
- 3. The filtering induction device of claim 2, wherein a sidewall of the core base is provided with at least one opening, via which the first and second flat coils extending out from the core base.
- 4. The filtering induction device of claim 1, wherein a terminal of the second flat coil is grounded.
- 5. The filtering induction device of claim 1, wherein the thickness of the first flat coil is substantially equal to the product of the thickness of the first conductive strip times the number of the circles that the first conductive strip is wound.
- 6. The filtering induction device of claim 1, wherein the thickness of the second flat coil is substantially equal to the product of the thickness of the second conductive strip times the number of the circles that the second conductive strip is wounded.
- 7. The filtering induction device of claim 1, wherein the first conductive strip is wound such that the first upper surface substantially faces the first lower surface parellelly.
- 8. The filtering induction device of claim 1, wherein the second conductive strip is wound such that the second upper surface substantially faces the second lower surface parellelly.
Priority Claims (1)
Number |
Date |
Country |
Kind |
90206873 U |
Apr 2001 |
TW |
|
US Referenced Citations (6)