Filtering induction device

Information

  • Patent Grant
  • 6707366
  • Patent Number
    6,707,366
  • Date Filed
    Monday, April 22, 2002
    22 years ago
  • Date Issued
    Tuesday, March 16, 2004
    21 years ago
Abstract
A filtering induction device is provided to improve the filter effect via the increase of an insertion loss resulting from stray capacitance. The induction device includes at least one core structure, and first and second flat coils that interlacing with each other. The first flat coil is used as an inductor, and the second flat coil is used as an electrode belonging to a capacitor formed between the circles of the first flat coil.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to an induction device, particularly to a high-efficiency induction device.




2. Description of the Prior Art




It is well known that an inductor may be applied to form a low-pass filter, and that the efficiency of the low-pass filter may be further improved by means of increasing the insertion loss resulting from the application of an additional capacitor.




In traditional technology, the combination of inductors and capacitors are realized by serially connecting one terminal of a substantial capacitor, i.e. a ceramic capacitor, to two inductors, thereby forming a three-terminal low-pass filter. As shown in FIG.


1


(


a


), a traditional low-pass filter is comprised of a ceramic capacitor


10


, two inductors


20


, and three terminals


31


,


32


,


33


. The two inductors are connected to one terminal of the ceramic capacitor


10


, thereby forming the equivalent circuit shown in FIG.


1


(


b


). This structure has the disadvantage of high cost and large volume and may not be fabricated to be a surface-mounted type (SMT) device.




Therefore, a SMT low-pass filter with low production cost is required in the industry.




SUMMARY OF THE INVENTION




The purpose of the present invention is to provide a filtering induction device.




The induction device provides an improved filter effect via the increase of an insertion loss resulting from stray capacitance. The induction device is comprised of a core structure, and first and second flat coils that interlacing with each other. The first flat coil is used as an inductor, and the second flat coil is used as an electrode board that belongs to a capacitor formed between the circles of the first flat coil.




The filtering induction device of the present invention is comprised of a core structure and two flat coils, a first flat coil and a second flat coil. The first flat coil is formed by winding a first conductive strip to form a spiral comprising at least one circle. The cross-section of the first conductive strip is a rectangle, and the first conductive strip is comprised of a first upper surface and a first lower surface. The circles each have the same first radius and are arranged layer by layer, wherein the first conductive strip is covered with an isolation material, such that the first flat coil is used as an inductor.




The structure of the second flat coil is similar to that of the first flat coil. The second flat coil is formed by winding a second conductive strip to form a spiral comprising at least one circle. The shape of the cross-section of the second conductive strip is a rectangle, and the second conductive strip is comprised of a second upper surface and a second lower surface. Particularly, the circles each have the same second radius and are arranged layer by layer, wherein the second conductive strip is covered with an isolation material or dielectric material. In this embodiment, the first and second radius may or may not equal.




According to theories about plate capacitors, because of the coverage of the isolation or dielectric material, the stray capacitance will be formed between the first upper surface and the first lower surface. Two capacitors can be formed by inserting an electrode board between these two surfaces. In this invention, the second flat coil is used to provide a plurality of equivalent electrode boards.




In the present invention, each circle of the second flat coil is inserted between opposite sections of the first upper surface and the first lower surface, such that the second upper surface is opposite to the first lower surface and the second lower surface is opposite to the first upper surface. In operation, the second flat coil is grounded with a terminal. Because the shapes of the first and second flat coils are both spirals, interlacing the two flat coils together would effectively compose a low-pass filter.




The coil assembly composed of the first and second flat coils is disposed in a core structure. The core structure, for example, is comprised of a core base and a core cover. By forming the core cover on the core base containing the coil assembly, the fabrication of the low-pass filter of the present invention is completed.











A BRIEF DESCRIPTION OF THE DRAWINGS




FIG.


1


(


a


) shows a traditional low-pass filter;




FIG.


1


(


b


) shows a circuit diagram of the traditional low-pass filter shown in FIG.


1


(


a


);




FIG.


2


(


a


) shows an exploded view of a low-pass filter according to the present invention;




FIG.


2


(


b


) shows a cross-section of the flat coil according to the present invention;




FIG.


3


(


a


) shows a schematic cross-section of the low-pass filter according to the present invention;




FIG.


3


(


b


) shows a circuit diagram of the low-pass filter according to the present invention;




FIG.


3


(


c


) shows an exploded view of the low-pass filter according to the present invention; and





FIG. 4

shows a chart illustrating the relation between frequency of input signal and the insertion loss thereof.











DETAIL DESCRIPTION OF THE EMBODIMENTS




The induction device according to the present invention has the improved effect of low-pass filter via the increase of an insertion loss resulting from stray capacitance. Furthermore, the induction device of the present invention is a thin surface-mounted device(SMD).




FIG.


2


(


a


) is a partial exploded view of the present invention, and FIG.


2


(


b


) is a cross-section of the first flat coil


100


. The present invention is comprised of a core structure


300


and two flat coils, the first flat coil


100


and the second flat coil


200


. The first flat coil


100


is formed by winding a first conductive strip to form a spiral comprising a plurality of circles. The cross-section of the first conductive strip is a rectangle, and the first conductive strip is comprised of a first upper surface


110


and a first lower surface


120


, as shown in the cross-section in FIG.


2


(


b


). Particularly, the circles each have the same first radius R


1


and are arranged layer by layer, such that the first upper surface


110


is substantially parallel and opposite to the first lower surface


120


. Furthermore, the first conductive strip is covered with an isolation material, such that the first flat coil


100


is used as an inductor.




The structure of the second flat coil


200


is similar to that of the first flat coil


100


. The second flat coil


200


is formed by winding a second conductive strip to form a spiral comprising a plurality of circles. The cross-section of the second conductive strip is a rectangle, and the second conductive strip is comprised of a second upper surface


210


and a second lower surface


220


. Particularly, the circles each have the same second radius R


2


and are arranged layer by layer, and the second conductive strip is covered with an isolation material or dielectric material (not shown). In this embodiment, the first and second radius, R


1


and R


2


, may or may not equal.




Furthermore, if the thickness of the first conductive strip is t and the number of windings is N, the thickness (or height) of the first flat coil


100


will be approximately tN. Similarly, if the thickness of the second conductive strip is t and the number of windings is N, the thickness (or height) of the second flat coil


200


will be approximately tN. In the figure, the gaps between circles are exaggerated for clearance.




In FIG.


2


(


b


), according to theories about plate capacitors, because of the coverage of the isolation or dielectric material, there will be stray capacitance Cs formed between the first upper surface


110


and the first lower surface


120


. Thus, two capacitors C can be formed by inserting an electrode board between the two surfaces. In the present invention, the second flat coil


200


is used to provide a plurality of equivalent electrode boards.




FIG.


3


(


a


) shows a schematic diagram illustrating the cross-section of the low-pass filter according to the present invention; FIG.


3


(


b


) shows a circuit diagram of the low-pass filter according to the present invention; and FIG.


3


(


c


) shows an exploded view of the low-pass filter according to the present invention. As shown in FIG.


3


(


a


), each circle of the second flat coil


200


is inserted between opposite sections of the first upper surface


110


and the first lower surface


120


, forming a coil assembly


150


. The insertion may be processed by winding the second flat coil


200


from one end into the first flat coil


100


along the circles. Thus, the second upper surface


210


is opposite to the first lower surface


120


and the second lower surface


220


is opposite to the first upper surface


110


. In operation, the second flat coil


200


is grounded with a terminal, as shown in the circuit diagram in FIG.


3


(


a


). Because the shapes of the first and second flat coils


100


,


200


are both spirals, interlacingly winding the two flat coils together will effectively composes a low-pass filter according to the present invention.




In FIG.


3


(


c


), the coil assembly


150


composed of the first and second flat coils


100


,


200


is disposed in a core structure. The core structure, as an example, is comprised of a core base


310


and a core cover


320


. Particularly, the core base


310


is shaped as a rectangular box, and is comprised of a bottom, four sidewalls, and a concavity


315


used to contain item. Wherein, one of the sidewalls is provided with three openings


330


, via which terminals of the first and second flat coils


100


,


200


may extend out from the core base


310


. Moreover, by disposing the core cover


320


on the core base


310


containing the coil assembly


150


, the fabrication of the low-pass filter of the present invention is completed.




In

FIG. 4

, the figure shows a comparison of the functional curves, frequency of input signals versus insertion losses, respectively belonging to a low-pass filter (i.e. the low-pass filtering induction device of the present invention) comprising only the first flat coil


100


, or comprising both the first and second flat coils


100


,


200


. Curve


400


shows the character of the first flat coil


100


, and curve


500


shows the character of a coil assembly comprising the first and second flat coil


100


,


200


. It is clear that the low-pass filtering induction device comprising the coil assembly has better performance than that only comprising the first flat coil


100


, for the curve


500


has a larger slope implying a larger insertion loss.




Accordingly, in the present invention, stray capacitance is applied to increase the insertion loss so as to improve the filter performance of low-pass filtering induction devices, thereby eliminating the substantial capacitors, such as ceramic capacitors, and greatly reducing the production cost. As well, because of the application of flat coils, the filtering induction device is rather flat and may be formed as a surface-mounted device (SMD). Furthermore, the spirit of the present invention is in the application of stray capacitance formed between conductors, so any specific shape does not limit the cross-section of the coil in the present invention. The coils may have cross-sections of any shape, such as circular.




While the invention has been described with reference to a preferred embodiment, the description is not intended to be construed in a limiting sense. It is therefore contemplated that the appended claims will cover any such modifications or embodiments as may fall within the scope of the invention defined by the following claims and their equivalents.



Claims
  • 1. A filtering induction device, comprising:a first flat coil formed by winding a first conductive strip to form a spiral having a plurality of circles, wherein the circles each have a first radius and are arranged layer by layer, wherein the first conductive strip has a first upper surface and a first lower surface, wherein the first conductive strip is covered with an isolation material and the first flat coil is used as an inductor; a second flat coil formed by winding a second conductive strip to form a spiral having a plurality of circles, wherein the circles each have a second radius and are arranged layer by layer, wherein each of the circles of the second conductive strip is wound between the first upper surface and the first lower surface, to serve as a capacitor; and a core structure coupled to the first flat coil and the second flat coil.
  • 2. The filtering induction device of claim 1, wherein the core structure is further comprised of:a core base adapted to contain the first and second flat coils; and a core cover disposed on the core base.
  • 3. The filtering induction device of claim 2, wherein a sidewall of the core base is provided with at least one opening, via which the first and second flat coils extending out from the core base.
  • 4. The filtering induction device of claim 1, wherein a terminal of the second flat coil is grounded.
  • 5. The filtering induction device of claim 1, wherein the thickness of the first flat coil is substantially equal to the product of the thickness of the first conductive strip times the number of the circles that the first conductive strip is wound.
  • 6. The filtering induction device of claim 1, wherein the thickness of the second flat coil is substantially equal to the product of the thickness of the second conductive strip times the number of the circles that the second conductive strip is wounded.
  • 7. The filtering induction device of claim 1, wherein the first conductive strip is wound such that the first upper surface substantially faces the first lower surface parellelly.
  • 8. The filtering induction device of claim 1, wherein the second conductive strip is wound such that the second upper surface substantially faces the second lower surface parellelly.
Priority Claims (1)
Number Date Country Kind
90206873 U Apr 2001 TW
US Referenced Citations (6)
Number Name Date Kind
4943793 Ngo et al. Jul 1990 A
5017902 Yerman et al. May 1991 A
5726615 Bloom Mar 1998 A
5912609 Usui et al. Jun 1999 A
6114932 Wester et al. Sep 2000 A
6222437 Soto et al. Apr 2001 B1