Embodiments of the subject matter described herein relate generally to systems and processes that use a common network-based platform to support applications executing on behalf of multiple tenants, and more particularly, embodiments of the subject matter relate to techniques, protocols, methodologies, and related graphical user interfaces for filtering objects within a virtual application.
Modern software development is evolving away from the client-server model toward network-based processing systems that provide access to data and services via the Internet or other networks. In contrast to traditional systems that host networked applications on dedicated server hardware, a “cloud” computing model allows applications to be provided over the network “as a service” supplied by an infrastructure provider. The infrastructure provider typically abstracts the underlying hardware and other resources used to deliver a customer-developed application so that the customer no longer needs to operate and support dedicated server hardware. The cloud computing model can often provide substantial cost savings to the customer over the life of the application because the customer no longer needs to provide dedicated network infrastructure, electrical and temperature controls, physical security and other logistics in support of dedicated server hardware.
Multi-tenant cloud-based architectures have been developed to improve collaboration, integration, and community-based cooperation between customer tenants without sacrificing data security. Generally speaking, multi-tenancy refers to a system wherein a single hardware and software platform simultaneously supports multiple user groups (also referred to as “organizations” or “tenants”) from a common data store. The multi-tenant design provides a number of advantages over conventional server virtualization systems. First, the multi-tenant platform operator can often make improvements to the platform based upon collective information from the entire tenant community. Additionally, because all users in the multi-tenant environment execute applications within a common processing space, it is relatively easy to grant or deny access to specific sets of data for any user within the multi-tenant platform, thereby improving collaboration and integration between applications and the data managed by the various applications. The multi-tenant architecture therefore allows convenient and cost effective sharing of similar application features between multiple sets of users.
In certain situations, a user or operator of a client device accessing a virtual application in the multi-tenant system might desire to view a certain subset of the objects within that virtual application that the user has access to by filtering the objects using multiple filtering criteria. However, traditional systems lack developed filtering mechanisms, and in some situations, may require the user manually filter the objects in the desired manner, thereby making the desired filtering cumbersome or otherwise impractical.
A more complete understanding of the subject matter may be derived by referring to the detailed description and claims when considered in conjunction with the following figures, wherein like reference numbers refer to similar elements throughout the figures.
The exemplary embodiments presented here relate to various techniques for filtering objects and related graphical user interfaces to support such filtering that can be implemented in the context of any computer-implemented system, such as a software-based system, a database system, a multi-tenant environment, or the like. Moreover, the described subject matter could be implemented in connection with two or more separate and distinct computer-implemented systems that cooperate and communicate with one another. That said, in exemplary embodiments, the subject matter described herein is implemented in conjunction with a virtual customer relationship management (CRM) application in a multi-tenant environment.
Turning now to
A “tenant” or an “organization” generally refers to a group of users that shares access to common data within the database 130. Tenants may represent customers, customer departments, business or legal organizations, and/or any other entities that maintain data for particular sets of users within the multi-tenant system 100. Although multiple tenants may share access to the server 102 and the database 130, the particular data and services provided from the server 102 to each tenant can be securely isolated from those provided to other tenants. The multi-tenant architecture therefore allows different sets of users to share functionality without necessarily sharing any of the data 132.
The database 130 is any sort of repository or other data storage system capable of storing and managing the data 132 associated with any number of tenants. The database 130 may be implemented using any type of conventional database server hardware. In various embodiments, the database 130 shares processing hardware 104 with the server 102. In other embodiments, the database 130 is implemented using separate physical and/or virtual database server hardware that communicates with the server 102 to perform the various functions described herein.
The data 132 may be organized and formatted in any manner to support the application platform 110. In various embodiments, the data 132 is suitably organized into a relatively small number of large data tables to maintain a semi-amorphous “heap”-type format. The data 132 can then be organized as needed for a particular virtual application 128. In various embodiments, conventional data relationships are established using any number of pivot tables 134 that establish indexing, uniqueness, relationships between entities, and/or other aspects of conventional database organization as desired.
Further data manipulation and report formatting is generally performed at run-time using a variety of metadata constructs. Metadata within a universal data directory (UDD) 136, for example, can be used to describe any number of forms, reports, workflows, user access privileges, business logic and other constructs that are common to multiple tenants. Tenant-specific formatting, functions and other constructs may be maintained as tenant-specific metadata 138 for each tenant, as desired. Rather than forcing the data 132 into an inflexible global structure that is common to all tenants and applications, the database 130 is organized to be relatively amorphous, with the pivot tables 134 and the metadata 138 providing additional structure on an as-needed basis. To that end, the application platform 110 suitably uses the pivot tables 134 and/or the metadata 138 to generate “virtual” components of the virtual applications 128 to logically obtain, process, and present the relatively amorphous data 132 from the database 130.
The server 102 is implemented using one or more actual and/or virtual computing systems that collectively provide the dynamic application platform 110 for generating the virtual applications 128. The server 102 operates with any sort of conventional processing hardware 104, such as a processor 105, memory 106, input/output features 107 and the like. The processor 105 may be implemented using one or more of microprocessors, microcontrollers, processing cores and/or other computing resources spread across any number of distributed or integrated systems, including any number of “cloud-based” or other virtual systems. The memory 106 represents any non-transitory short or long term storage capable of storing programming instructions for execution on the processor 105, including any sort of random access memory (RAM), read only memory (ROM), flash memory, magnetic or optical mass storage, and/or the like. The server 102 typically includes or cooperates with some type of computer-readable media, where a tangible computer-readable medium has computer-executable instructions stored thereon. The computer-executable instructions, when read and executed by the server 102 and/or processor 105, cause the server 102 and/or processor 105 to perform certain tasks, operations, functions, and processes described in more detail herein. In this regard, the memory 106 may represent one suitable implementation of such computer-readable media. Alternatively or additionally, the server 102 could receive and cooperate with computer-readable media (not separately shown) that is realized as a portable or mobile component or platform, e.g., a portable hard drive, a USB flash drive, an optical disc, or the like.
The input/output features 107 represent conventional interfaces to networks (e.g., to the network 145, or any other local area, wide area or other network), mass storage, display devices, data entry devices and/or the like. In a typical embodiment, the application platform 110 gains access to processing resources, communications interfaces and other features of the processing hardware 104 using any sort of conventional or proprietary operating system 108. As noted above, the server 102 may be implemented using a cluster of actual and/or virtual servers operating in conjunction with each other, typically in association with conventional network communications, cluster management, load balancing and other features as appropriate.
The application platform 110 is any sort of software application or other data processing engine that generates the virtual applications 128 that provide data and/or services to the client devices 140. The virtual applications 128 are typically generated at run-time in response to queries received from the client devices 140. For the illustrated embodiment, the application platform 110 includes a bulk data processing engine 112, a query generator 114, a search engine 116 that provides text indexing and other search functionality, and a runtime application generator 120. Each of these features may be implemented as a separate process or other module, and many equivalent embodiments could include different and/or additional features, components or other modules as desired.
The runtime application generator 120 dynamically builds and executes the virtual applications 128 in response to specific requests received from the client devices 140. The virtual applications 128 created by tenants are typically constructed in accordance with the tenant-specific metadata 138, which describes the particular tables, reports, interfaces and/or other features of the particular application. In various embodiments, each virtual application 128 generates dynamic web content that can be served to a browser or other client program 142 associated with its client device 140, as appropriate.
The runtime application generator 120 suitably interacts with the query generator 114 to efficiently obtain multi-tenant data 132 from the database 130 as needed. In a typical embodiment, the query generator 114 considers the identity of the user requesting a particular function, and then builds and executes queries to the database 130 using system-wide metadata 136, tenant specific metadata 138, pivot tables 134, and/or any other available resources. The query generator 114 in this example therefore maintains security of the common database 130 by ensuring that queries are consistent with access privileges granted to the user that initiated the request.
The data processing engine 112 performs bulk processing operations on the data 132 such as uploads or downloads, updates, online transaction processing, and/or the like. In many embodiments, less urgent bulk processing of the data 132 can be scheduled to occur as processing resources become available, thereby giving priority to more urgent data processing by the query generator 114, the search engine 116, the virtual applications 128, etc.
In operation, developers use the application platform 110 to create data-driven virtual applications 128 for the tenants that they support. Such virtual applications 128 may make use of interface features such as tenant-specific screens 124, universal screens 122 or the like. Any number of tenant-specific and/or universal objects 126 may also be available for integration into tenant-developed virtual applications 128. The data 132 associated with each virtual application 128 is provided to the database 130, as appropriate, and stored until it is requested or is otherwise needed, along with the metadata 138 that describes the particular features (e.g., reports, tables, functions, etc.) of that particular tenant-specific virtual application 128. For example, a virtual application 128 may include a number of objects 126 accessible to a tenant, wherein for each object 126 accessible to the tenant, information pertaining to its object type along with values for various fields associated with that respective object type are maintained as metadata 138 in the database 130. In this regard, the object type defines the structure (e.g., the formatting, functions and other constructs) of each respective object 126 and the various fields associated therewith. In an exemplary embodiment, each object type includes one or more fields for indicating the relationship of a respective object of that object type to one or more objects of a different object type (e.g., master-detail, lookup relationships, or the like). For example, in a CRM application, the opportunity object type includes one or more fields for indicating which objects of other object types (e.g., accounts, activities, or the like, along with custom and/or tenant-specific object types) are associated with a respective opportunity object. In other words, the opportunity object type includes one or more fields indicating which, if any, objects of other object types are associated that respective opportunity object. For convenience, but without limitation, the field(s) of an object type that indicates the relationship(s) of a respective object of that object type to objects of other object types may alternatively be referred to herein as the object-association field(s).
As described in greater detail below in the context of
Still referring to
Referring now to
Referring again to
Still referring to
Additionally, the object filtering process 200 also provides, presents, or otherwise displays a third GUI element to enable a user to indicate or otherwise select a desired filtering operation from a plurality of possible filtering operations (task 206). In this regard, the selected filtering operation defines the relationship or association between the secondary filtering criterion to the primary filtering criterion that will be applied to each of the objects 126 of the virtual application 128 that are accessible to the user of the client device 140 to obtain the filtered set of objects. For example, in accordance with one or more embodiments, the application platform 110 and/or processor 105 are cooperatively configured to cause a third GUI element, such as a drop-down list or the like, that is adapted to allow selection between an associative filtering operation and a dissociative filtering operation within the virtual application 128 on the client device 140, as described in greater detail below in the context of
In an exemplary embodiment, after selection of the desired filtering criteria and the desired filtering operation, the object filtering process 200 continues by determining whether a user desires to utilize one or more additional filtering criteria associated with the selected secondary filtering criterion to qualify the secondary filtering criterion (task 208). For example, as described in greater detail below in the context of
Still referring to
In some embodiments, the object filtering process 200 may automatically identify the subset of the objects 126 associated with the virtual application 128 in response to receiving indication of the primary filtering criterion (e.g., automatically in response to the user selecting the desired primary filtering criterion). In other embodiments, the object filtering process 200 may identify the subset of the objects 126 associated with the virtual application 128 that satisfy the primary filtering criterion only in response to determining that a user does not desired to further qualify the selected secondary filtering criterion. For example, as described in greater detail below in the context of
After identifying an initial subset of the objects associated with the virtual application that satisfy the primary filtering criterion, the object filtering process 200 continues by identifying a subset of the initial subset of objects based on the selected filtering operation, the selected secondary filtering criterion, and any qualifying filtering criteria for the secondary filtering criterion (task 214). As described above, when an associative filtering operation is selected by the user, the application platform 110 and query generator 114 filters the initial subset of objects to identify any objects satisfying the primary filtering criterion that are also associated with one or more other objects of the virtual application 128 that satisfy the secondary filtering criterion. Conversely, when a dissociative filtering operation is selected by the user, the application platform 110 and query generator 114 filters the initial subset of objects and removes any objects satisfying the primary filtering criterion that are also associated with one or more other objects of the virtual application 128 that satisfy the secondary filtering criterion. For example, as described above and in greater detail below, the primary filtering criterion may be a primary object type and the secondary filtering criterion may be secondary object type from a plurality of possible object types that may be associated with objects of the primary object type. If the user selected a dissociative filtering operation, the application platform 110 and query generator 114 are cooperatively configured to remove, from the initial subset of objects of the primary object type, each respective object that is associated with an object of the secondary object type to obtain the filtered set of objects of the primary object type. Conversely, if the user selected an associative filtering operation, the application platform 110 and query generator 114 are cooperatively configured to identify or otherwise select, from the initial subset of objects of the primary object type, each respective object that is associated with an object of the secondary object type to obtain the filtered set of objects of the primary object type.
As described above, in some embodiments, a user may select additional filtering criterion associated with the secondary filtering criterion to qualify the secondary filtering criterion (tasks 208. 210). For example, in response to a user selecting a GUI element to indicate a desire to add an additional filtering criterion associated with the secondary filtering criterion, the object filtering process 200 may cause a GUI element, such as a drop-down list or the like, to be presented or otherwise displayed within the virtual application 128 on the client device 140 that enables selection of a field associated with the selected secondary object type to be used to qualify the secondary object type. The object filtering process 200 may also display, present, or otherwise provide one or more GUI elements adapted to allow the user to specify or otherwise limit values for the selected field to a particular value or a range thereof. After a user has indicated the desired value (or range thereof) for the selected field, the object filtering process 200 identifies the filtered set of objects satisfying the selected primary filtering criterion based on the selected secondary filtering criterion taking into account the qualifying filtering criterion (task 214). For example, as described in greater detail below, the qualifying filtering criterion may be a specific value (or a range thereof) for a field associated with the selected secondary object type that may be associated with objects of the primary object type. When an associative filtering operation is selected by the user, the application platform 110 and query generator 114 filters the initial subset of objects and selects objects of the primary object type that are associated with an object of the secondary object type having a value for the selected field that is equal to the specified value for the selected field (or within the specified range of values for the selected field) to create the filtered set of objects having the primary object type. Conversely, when a dissociative filtering operation is selected by the user, the application platform 110 and query generator 114 filters the initial subset of objects and removes any object that are associated with an object of the secondary object type having a value for the selected field that is equal to the specified value for the selected field (or within the specified range of values for the selected field) to create the filtered set of objects having the primary object type.
Still referring to
As illustrated in
Referring now to
As illustrated in
As illustrated in
Turning now to
As illustrated in
As described above, in some embodiments, a user may not desire to use any additional qualifying filtering criteria for the secondary object type (e.g., task 210). In this regard, as illustrated, the application platform 110 and/or virtual application 128 may present a GUI element 412, such as a button, that when activated, selected, or otherwise manipulated, causes the application platform 110 and/or virtual application 128 to complete the object filtering process 200 by identifying the filtered set of objects using the selected filtering operation with the primary and secondary object types and providing a report containing the filtered set to the user (e.g., tasks 212, 214, 216). For example, in response to receiving indication of a desire to complete the object filtering process 200 without any additional qualifying filtering criteria (e.g., in response to a user manipulating or otherwise selecting button 412), the data processing engine 112 and/or query generator 114 query the database 130 to identify or otherwise select all of the “opportunity” objects available to the virtual application 128 that are not associated with an “activity” object to create the filtered set of “opportunity” objects. In some embodiments, the data processing engine 112 and/or query generator 114 may identify all of the “opportunity” objects available to the virtual application 128 to obtain an initial set of “opportunity” objects, and then remove any “opportunity” objects that are associated with an “activity” object to obtain the filtered set of “opportunity” objects. After evaluating all of the objects 126 available to the virtual application 128 to obtain the filtered set of objects, the application platform 110 and/or virtual application 128 provides a report to the user by presenting or otherwise displaying a table, list, or the like, in the lower portion 304 of the display 300 that includes only those “opportunity” objects that are not associated with an “activity” object 126. Conversely, if the user were to select the associative filtering operation (e.g., the “with” filtering operation) as the desired filtering operation instead of the dissociative filtering operation (e.g., the “without” filtering operation), the data processing engine 112 and/or query generator 114 would query the database 130 identify all of the “opportunity” objects available to the virtual application 128 that are associated with an “activity” object for inclusion in the filtered set of “opportunity” objects, which would then be presented in the lower portion 304 of the display 300.
Referring now to
In response a user manipulating or otherwise selecting the drop-down list element 704, the virtual application 128 may present or otherwise display a drop-down menu 802 that lists each of the possible operators that may be utilized to limit the selected field to a particular value (or a range thereof), such as, for example, less than, greater than, less than or equal to, greater than or equal to, equal to, not equal to, and the like. In this regard,
Referring now to
Referring again to
It should be noted that various possible combinations of cross filters may be implemented by a user to achieve a desired report. Additionally, it should be noted that the cross filters operations may be applied in various different manners to achieve a desired logical combination of cross filters. For example, in response to the user manipulating button 306 to add a second cross filter, the object filtering process 200 may present or otherwise display one or more GUI elements adapted to allow the user to define the logical relationship between the first cross filter and the second cross filter. For example, as described above, the cross filters may be combined to perform a logical conjunction operation (or logical “AND” operation), such that the report presented to the user contains only objects that satisfy both cross filters (e.g., only “account” objects that are associated with an “opportunity” object and also are not associated with an “activity” object). In other embodiments, the cross filters may be combined to perform a logical disjunction operation (or logical “OR” operation), such that the report presented to the user contains only objects that satisfy either cross filter (e.g., “account” objects that are associated with an “opportunity” object and “account” objects that are not associated with an “activity” object). Accordingly, the subject matter described herein is not intended to be limited to any particular logical relationship between multiple cross filters.
Additionally, it should be noted that in some embodiments, one or more filtering criteria may be utilized to qualify the primary object type in a similar manner as described above in the context of qualifying the secondary object type (e.g., task 210). In such embodiments, the object filtering process 200 may present or otherwise display one or more GUI elements adapted to allow the user to limit or otherwise qualify the primary object type across one or more fields associated therewith. For example, referring to the exemplary embodiment described above in the context of
The foregoing detailed description is merely illustrative in nature and is not intended to limit the embodiments of the subject matter or the application and uses of such embodiments. As used herein, the word “exemplary” means “serving as an example, instance, or illustration.” Any implementation described herein as exemplary is not necessarily to be construed as preferred or advantageous over other implementations. Thus, although several exemplary embodiments have been presented in the foregoing description, it should be appreciated that a vast number of alternate but equivalent variations exist, and the examples presented herein are not intended to limit the scope, applicability, or configuration of the invention in any way. To the contrary, various changes may be made in the function and arrangement of the various features described herein without departing from the scope of the claims and their legal equivalents.
Techniques and technologies may be described herein in terms of functional and/or logical block components, and with reference to symbolic representations of operations, processing tasks, and functions that may be performed by various computing components or devices. Such operations, tasks, and functions are sometimes referred to as being computer-executed, computerized, software-implemented, or computer-implemented. In this regard, it should be appreciated that the various block components shown in the figures may be realized by any number of hardware, software, and/or firmware components configured to perform the specified functions. For example, an embodiment of a system or a component may employ various integrated circuit components, e.g., memory elements, digital signal processing elements, logic elements, look-up tables, or the like, which may carry out a variety of functions under the control of one or more microprocessors or other control devices.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or embodiments described herein are not intended to limit the scope, applicability, or configuration of the claimed subject matter in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the described embodiment or embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope defined by the claims, which includes known equivalents and foreseeable equivalents at the time of filing this patent application.
This application is a continuation of U.S. application Ser. No. 13/089,887, filed Apr. 19, 2011, which claims the benefit of U.S. Provisional Patent Application No. 61/419,779, filed Dec. 3, 2010, the entire contents of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5421008 | Banning et al. | May 1995 | A |
5428776 | Rothfield | Jun 1995 | A |
5577188 | Zhu et al. | Nov 1996 | A |
5608872 | Schwartz et al. | Mar 1997 | A |
5649104 | Carleton et al. | Jul 1997 | A |
5715450 | Ambrose et al. | Feb 1998 | A |
5761419 | Schwartz et al. | Jun 1998 | A |
5819038 | Carleton et al. | Oct 1998 | A |
5821937 | Tonelli et al. | Oct 1998 | A |
5831610 | Tonelli et al. | Nov 1998 | A |
5838965 | Kavanagh et al. | Nov 1998 | A |
5841437 | Fishkin et al. | Nov 1998 | A |
5842203 | D'Elena et al. | Nov 1998 | A |
5873096 | Lim et al. | Feb 1999 | A |
5909678 | Bergman et al. | Jun 1999 | A |
5918159 | Fomukong et al. | Jun 1999 | A |
5963938 | Wilson et al. | Oct 1999 | A |
5963953 | Cram et al. | Oct 1999 | A |
6092083 | Brodersen et al. | Jul 2000 | A |
6161149 | Achacoso et al. | Dec 2000 | A |
6169534 | Raffel et al. | Jan 2001 | B1 |
6178425 | Brodersen et al. | Jan 2001 | B1 |
6189011 | Lim et al. | Feb 2001 | B1 |
6216135 | Brodersen et al. | Apr 2001 | B1 |
6233617 | Rothwein et al. | May 2001 | B1 |
6266669 | Brodersen et al. | Jul 2001 | B1 |
6285998 | Black et al. | Sep 2001 | B1 |
6295527 | McCormack et al. | Sep 2001 | B1 |
6295530 | Ritchie et al. | Sep 2001 | B1 |
6324568 | Diec | Nov 2001 | B1 |
6324693 | Brodersen et al. | Nov 2001 | B1 |
6336137 | Lee et al. | Jan 2002 | B1 |
D454139 | Feldcamp | Mar 2002 | S |
6367077 | Brodersen et al. | Apr 2002 | B1 |
6389380 | Bankes | May 2002 | B1 |
6393605 | Loomans | May 2002 | B1 |
6405220 | Brodersen et al. | Jun 2002 | B1 |
6434550 | Warner et al. | Aug 2002 | B1 |
6446089 | Brodersen et al. | Sep 2002 | B1 |
6535909 | Rust | Mar 2003 | B1 |
6549908 | Loomans | Apr 2003 | B1 |
6553563 | Ambrose et al. | Apr 2003 | B2 |
6560461 | Fomukong et al. | May 2003 | B1 |
6574635 | Stauber et al. | Jun 2003 | B2 |
6577726 | Huang et al. | Jun 2003 | B1 |
6601087 | Zhu et al. | Jul 2003 | B1 |
6604117 | Lim et al. | Aug 2003 | B2 |
6604128 | Diec | Aug 2003 | B2 |
6609150 | Lee et al. | Aug 2003 | B2 |
6621834 | Scherpbier et al. | Sep 2003 | B1 |
6654032 | Zhu et al. | Nov 2003 | B1 |
6665648 | Brodersen et al. | Dec 2003 | B2 |
6665655 | Warner et al. | Dec 2003 | B1 |
6684438 | Brodersen et al. | Feb 2004 | B2 |
6711565 | Subramaniam et al. | Mar 2004 | B1 |
6724399 | Katchour et al. | Apr 2004 | B1 |
6728702 | Subramaniam et al. | Apr 2004 | B1 |
6728960 | Loomans | Apr 2004 | B1 |
6732095 | Warshavsky et al. | May 2004 | B1 |
6732100 | Brodersen et al. | May 2004 | B1 |
6732111 | Brodersen et al. | May 2004 | B2 |
6754681 | Brodersen et al. | Jun 2004 | B2 |
6763351 | Subramaniam et al. | Jul 2004 | B1 |
6763501 | Zhu et al. | Jul 2004 | B1 |
6768904 | Kim | Jul 2004 | B2 |
6772229 | Achacoso et al. | Aug 2004 | B1 |
6782383 | Subramaniam et al. | Aug 2004 | B2 |
6804330 | Jones et al. | Oct 2004 | B1 |
6816855 | Hartel et al. | Nov 2004 | B2 |
6826565 | Ritchie et al. | Nov 2004 | B2 |
6826582 | Chatterjee et al. | Nov 2004 | B1 |
6826745 | Coker et al. | Nov 2004 | B2 |
6829615 | Schirmer et al. | Dec 2004 | B2 |
6829655 | Huang et al. | Dec 2004 | B1 |
6842748 | Warner | Jan 2005 | B1 |
6850895 | Brodersen et al. | Feb 2005 | B2 |
6850949 | Warner et al. | Feb 2005 | B2 |
6915308 | Evans et al. | Jul 2005 | B1 |
6925608 | Neale et al. | Aug 2005 | B1 |
7003730 | Dettinger et al. | Feb 2006 | B2 |
7062502 | Kesler | Jun 2006 | B1 |
7069231 | Cinarkaya et al. | Jun 2006 | B1 |
7181758 | Chan | Feb 2007 | B1 |
7185000 | Brown et al. | Feb 2007 | B1 |
7289976 | Kihneman et al. | Oct 2007 | B2 |
7340411 | Cook | Mar 2008 | B2 |
7346526 | Daughtrey et al. | Mar 2008 | B2 |
7356482 | Frankland et al. | Apr 2008 | B2 |
7383513 | Goldberg et al. | Jun 2008 | B2 |
7395511 | Robertson et al. | Jul 2008 | B1 |
7401094 | Kesler | Jul 2008 | B1 |
7412455 | Dillon | Aug 2008 | B2 |
7508789 | Chan | Mar 2009 | B2 |
7509591 | Thorn et al. | Mar 2009 | B1 |
7580932 | Plastina et al. | Aug 2009 | B2 |
7620655 | Larsson et al. | Nov 2009 | B2 |
7644371 | Robertson et al. | Jan 2010 | B2 |
7665030 | Sauermann et al. | Feb 2010 | B2 |
7698160 | Beaven et al. | Apr 2010 | B2 |
7774366 | Fisher et al. | Aug 2010 | B2 |
7779039 | Weissman et al. | Aug 2010 | B2 |
7962446 | Subramaniam et al. | Jun 2011 | B2 |
8001157 | Bier | Aug 2011 | B2 |
8015495 | Achacoso et al. | Sep 2011 | B2 |
8019752 | Ferrari et al. | Sep 2011 | B2 |
8024327 | Tunkelang et al. | Sep 2011 | B2 |
8082301 | Ahlgren et al. | Dec 2011 | B2 |
8095413 | Beaven | Jan 2012 | B1 |
8095594 | Beaven et al. | Jan 2012 | B2 |
8140572 | Ballard et al. | Mar 2012 | B1 |
8156205 | Forsberg et al. | Apr 2012 | B1 |
8185429 | Howard | May 2012 | B2 |
8185562 | Koch et al. | May 2012 | B2 |
8255791 | Koren | Aug 2012 | B2 |
8275836 | Beaven et al. | Sep 2012 | B2 |
8296332 | Boley et al. | Oct 2012 | B2 |
8312038 | Ceballos et al. | Nov 2012 | B2 |
8332772 | Janzen et al. | Dec 2012 | B2 |
8365138 | Iborra et al. | Jan 2013 | B2 |
8386471 | Collins et al. | Feb 2013 | B2 |
8457545 | Chan | Jun 2013 | B2 |
8484111 | Frankland et al. | Jul 2013 | B2 |
8527499 | Beringer et al. | Sep 2013 | B2 |
20010044791 | Richter et al. | Nov 2001 | A1 |
20010049681 | Bova | Dec 2001 | A1 |
20020022986 | Coker et al. | Feb 2002 | A1 |
20020029161 | Brodersen et al. | Mar 2002 | A1 |
20020029376 | Ambrose et al. | Mar 2002 | A1 |
20020035577 | Brodersen et al. | Mar 2002 | A1 |
20020042264 | Kim | Apr 2002 | A1 |
20020042843 | Diec | Apr 2002 | A1 |
20020046209 | De Bellis | Apr 2002 | A1 |
20020072951 | Lee et al. | Jun 2002 | A1 |
20020078103 | Gorman et al. | Jun 2002 | A1 |
20020082892 | Raffel et al. | Jun 2002 | A1 |
20020129352 | Brodersen et al. | Sep 2002 | A1 |
20020140731 | Subramaniam et al. | Oct 2002 | A1 |
20020143997 | Huang et al. | Oct 2002 | A1 |
20020162090 | Parnell et al. | Oct 2002 | A1 |
20020165742 | Robins | Nov 2002 | A1 |
20020198697 | Datig | Dec 2002 | A1 |
20030004971 | Gong et al. | Jan 2003 | A1 |
20030018705 | Chen et al. | Jan 2003 | A1 |
20030018830 | Chen et al. | Jan 2003 | A1 |
20030066031 | Laane | Apr 2003 | A1 |
20030066032 | Ramachandran et al. | Apr 2003 | A1 |
20030069936 | Warner et al. | Apr 2003 | A1 |
20030070000 | Coker et al. | Apr 2003 | A1 |
20030070004 | Mukundan et al. | Apr 2003 | A1 |
20030070005 | Mukundan et al. | Apr 2003 | A1 |
20030074418 | Coker | Apr 2003 | A1 |
20030120675 | Stauber et al. | Jun 2003 | A1 |
20030151633 | George et al. | Aug 2003 | A1 |
20030159136 | Huang et al. | Aug 2003 | A1 |
20030187921 | Diec | Oct 2003 | A1 |
20030189600 | Gune et al. | Oct 2003 | A1 |
20030204427 | Gune et al. | Oct 2003 | A1 |
20030206192 | Chen et al. | Nov 2003 | A1 |
20030225730 | Warner et al. | Dec 2003 | A1 |
20030227487 | Hugh | Dec 2003 | A1 |
20040001092 | Rothwein et al. | Jan 2004 | A1 |
20040010489 | Rio | Jan 2004 | A1 |
20040015981 | Coker et al. | Jan 2004 | A1 |
20040027388 | Berg et al. | Feb 2004 | A1 |
20040128001 | Levin et al. | Jul 2004 | A1 |
20040186860 | Lee et al. | Sep 2004 | A1 |
20040193510 | Catahan, Jr. et al. | Sep 2004 | A1 |
20040199489 | Barnes-Leon et al. | Oct 2004 | A1 |
20040199536 | Barnes Leon et al. | Oct 2004 | A1 |
20040199543 | Braud et al. | Oct 2004 | A1 |
20040249854 | Barnes-Leon et al. | Dec 2004 | A1 |
20040260534 | Pak et al. | Dec 2004 | A1 |
20040260659 | Chan et al. | Dec 2004 | A1 |
20040268299 | Lei et al. | Dec 2004 | A1 |
20050004911 | Goldberg et al. | Jan 2005 | A1 |
20050015368 | Payton et al. | Jan 2005 | A1 |
20050050555 | Exley et al. | Mar 2005 | A1 |
20050091098 | Brodersen et al. | Apr 2005 | A1 |
20050223022 | Weissman et al. | Oct 2005 | A1 |
20060021019 | Hinton et al. | Jan 2006 | A1 |
20060026145 | Beringer et al. | Feb 2006 | A1 |
20060095403 | Chen et al. | May 2006 | A1 |
20060224959 | McGuire et al. | Oct 2006 | A1 |
20070013709 | Charles et al. | Jan 2007 | A1 |
20070106639 | Subramaniam et al. | May 2007 | A1 |
20070118844 | Huang et al. | May 2007 | A1 |
20070157173 | Klein et al. | Jul 2007 | A1 |
20070208697 | Subramaniam et al. | Sep 2007 | A1 |
20070208992 | Koren | Sep 2007 | A1 |
20070260593 | Delvat | Nov 2007 | A1 |
20070260628 | Fuchs et al. | Nov 2007 | A1 |
20080021883 | Alstrin et al. | Jan 2008 | A1 |
20080059416 | Forbes et al. | Mar 2008 | A1 |
20080249972 | Dillon | Oct 2008 | A1 |
20090007021 | Hayton | Jan 2009 | A1 |
20090031236 | Robertson et al. | Jan 2009 | A1 |
20090037848 | Tewari et al. | Feb 2009 | A1 |
20090063415 | Chatfield et al. | Mar 2009 | A1 |
20090100342 | Jakobson | Apr 2009 | A1 |
20090177744 | Marlow et al. | Jul 2009 | A1 |
20090282045 | Hsieh et al. | Nov 2009 | A1 |
20090307604 | Giles et al. | Dec 2009 | A1 |
20100070496 | Ghosh | Mar 2010 | A1 |
20110037766 | Judy et al. | Feb 2011 | A1 |
20110078085 | Clement | Mar 2011 | A1 |
20110218958 | Warshavsky et al. | Sep 2011 | A1 |
20110225506 | Casalaina et al. | Sep 2011 | A1 |
20110225525 | Chasman et al. | Sep 2011 | A1 |
20110247051 | Bulumulla et al. | Oct 2011 | A1 |
20120042218 | Cinarkaya et al. | Feb 2012 | A1 |
20120110087 | Culver et al. | May 2012 | A1 |
20120144325 | Mital et al. | Jun 2012 | A1 |
20120216225 | Britt | Aug 2012 | A1 |
20130218948 | Jakobson | Aug 2013 | A1 |
20130218949 | Jakobson | Aug 2013 | A1 |
20130218966 | Jakobson | Aug 2013 | A1 |
20130247216 | Cinarkaya et al. | Sep 2013 | A1 |
20140359537 | Jackobson et al. | Dec 2014 | A1 |
20150006289 | Jakobson et al. | Jan 2015 | A1 |
20150007050 | Jakobson et al. | Jan 2015 | A1 |
20150095162 | Jakobson et al. | Apr 2015 | A1 |
20150142596 | Jakobson et al. | May 2015 | A1 |
20150172563 | Jakobson et al. | Jun 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20130246951 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
61419779 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13089887 | Apr 2011 | US |
Child | 13874427 | US |