The invention relates to the field of antenna feed networks in a wireless communication system, in particular to a feed network for an antenna array with integrated filtering, power splitting and phase shifting.
A feed network for an antenna is usually formed by passive devices such as power splitters, phase shifters, couplers etc., and is used in an antenna system with multiple radiating elements to meet the amplitude and phase distributions required for feeding each radiating element. In addition to the feed network, the antenna also needs to be cascaded with a filter to filter out other unwanted signals to avoid interference.
In conventional designs, power splitters, phase shifters, and filters are independently designed. Further, the power splitters, phase shifters, and other devices are cascaded to form a feed network, and then cascaded with the filters. This approach will bring unavoidable cascading mismatch problems, resulting in an increase in the overall circuit insertion loss, performance degradation, and a larger circuit volume. In addition, the antenna needs to take into account co-channel interference and optimal coverage. During beamforming, the amplitude distribution and phase distribution of each output of the feed network need to be adjusted through optimization. Among them, the adjustment of the phase distribution is more important. In order to better meet the phase distribution required by the antenna beamforming electrical downtilt, the feed network may flexibly adjust the phase difference of each output signal, and may have better applicability.
In order to overcome the shortcomings and deficiencies of the prior art, the present invention provides a feed network for an antenna array with integrated filtering, power splitting and phase shifting, to avoid cascading mismatch between circuits with different functions in conventional designs and to reduce insertion loss and circuit volume, and to improve overall performance. In addition, by moving the position of the phase-adjusting dielectric substrate, the phase difference between the output signals can be conveniently controlled to meet the phase distribution requirements for antenna radiation unit.
The object of the present invention may be achieved by the following technical solutions:
A feed network for an antenna array with integrated filtering, power splitting and phase shifting, comprising upper and lower metal floors, metal connecting posts, coaxial feed terminals, a suspended dielectric substrate, suspended strip lines and two phase-adjusting dielectric substrates;
The upper and lower metal floors share a common ground through the metal connecting posts, the suspended strip lines are provided on the suspended dielectric substrate, the suspended dielectric substrate is positioned horizontally between the two phase-adjusting dielectric substrates, the two phase-adjusting dielectric substrates are positioned horizontally between the upper and lower metal floors;
The suspended strip lines comprise a one-to-three filtering power splitting unit, two one-to-two unequal filtering power splitting units, two first phase-shifting lines and two second phase-shifting lines, the two phase-adjusting dielectric substrates cover the one-to-three filtering power splitting unit, part of the two first phase-shifting lines and the two second phase-shifting lines.
The two one-to-two unequal filtering power splitting units are arranged symmetrically on both sides of the one-to-three filtering power splitting unit, three output terminals of the one-to-three filtering power splitting unit output in-phase signals with equal amplitude, two of the output terminals are respectively connected to the first phase-shifting lines on both sides, and another output terminal is connected to a coaxial feed terminal;
Input terminals of the one-to-two filtering power splitting units are connected to the first phase-shifting lines, two output terminals output in-phase signals with unequal amplitude, which are respectively connected to the second phase-shifting lines and coaxial feed terminals.
A matching impedance of the three output terminals of the one-to-three filtering power splitting unit is 50 Ohm.
A matching impedance of the input terminals of the one-to-two filtering power splitting units is a corresponding characteristic impedance of the first phase-shifting lines without covering the phase-adjusting dielectric substrate, a matching impedance of the output terminals connected to coaxial feed terminals is 50 Ohm, a matching impedance of the other output terminals is a corresponding characteristic impedance of the second phase-shifting lines without covering the area of the phase-adjusting dielectric substrate.
The two phase-adjusting dielectric substrates are provided with two spaced apart rectangular grooves at both ends as matching units, by adjusting a width and a spacing of the rectangular grooves, a matching is achieved between two corresponding characteristic impedances when the first and second phase-shifting lines are uncovered or covered by the phase-adjusting dielectric substrate.
The line width of the first and second phase-shifting lines is set to a width with 50 Ohm characteristic impedance when covered by the phase-adjusting dielectric substrate.
The one-to-three filtering power splitting unit is formed by four open stub-loaded structures to provide a filtering function.
The one-to-two unequal filtering power splitting unit are formed by three open stub-loaded structures to provide a filtering function.
The output power ratio of the one-to-two unequal filtering power splitting unit is −1.6 dB:−5.1 dB.
There are six coaxial feed terminals and metal connecting posts, and the coaxial feed terminals comprise coaxial wires, inner conductors of the coaxial wires are soldered to a circuit of the suspended dielectric substrate through via holes of the metal connecting posts, and outer conductors of the coaxial wires are in contact with the metal connecting posts for grounding.
The feed network simultaneously provides three functions of filtering, power splitting and phase shifting.
The beneficial effects of the invention:
1. Compared with conventional designs by cascading multiple independently designed circuits with different functions, the integrated design of the three functional circuits with filtering, power splitting and phase shifting avoids cascading mismatch, reduces circuit insertion loss, and improves overall performance while reducing circuit volume.
2. By moving the position of the phase-adjusting dielectric substrates, the phase difference between the different output terminals of the feed network can be conveniently controlled to meet the phase distribution requirements for the antenna beamforming electrical downtilt.
The present invention will be further described in detail below in conjunction with examples and figures, but the embodiments of the present invention are not limited thereto.
As shown in
The upper and lower metal floors achieve common ground by six metal connecting posts arranged between the two layers of metal floors. The six metal connecting posts are arranged in a line. The upper and lower metal floors are placed horizontally.
The six coaxial feed terminals P1 to P6 are provided by soldering inner conductors of the coaxial wires to a circuit of the suspended dielectric substrate through through-holes of the metal connecting posts, and outer conductors of the coaxial wires are in contact with the metal connecting posts for grounding.
As shown in
Two phase-adjusting dielectric substrates are provided with two spaced-apart rectangular grooves, which are used to change the characteristic impedance of suspended strip lines in the corresponding area. Among them, the strip lines corresponding to the rectangular grooves are high-impedance lines. The corresponding strip lines between the two grooves are low-impedance lines. The three partial strip lines form a stepped impedance structure, as the matching unit 9. By adjusting the width and spacing of the two rectangular grooves, the electrical length of each part of the stepped impedance structure is changed so that a matching is achieved between two corresponding characteristic impedances when the first and second phase-shifting lines are uncovered or covered by the phase-adjusting dielectric substrate. At the same time, by moving the phase-adjusting dielectric substrate, the areas of the first and second phase-shifting lines on the left and right sides covered by the dielectric substrate are changed, thereby changing the equivalent electrical length of the first and second phase-shifting lines on the left and right sides to provide different phase differences between the output terminals.
The one-to-three filtering power splitting unit 7 provides filtering functions through four open stub-loaded structures. The input terminal is connected to the coaxial feed terminal P1. The three outputs are in-phase with equal amplitude, and they are all matched to 50 Ohm. One of the outputs is connected to the coaxial feed terminal P2 and the other two outputs are connected to one end of the two first phase-shifting lines lps1.
As shown in
The matching impedance is 50 Ohm. The other is connected to one end of the second phase-shifting lines lps2. The other end of the second phase-shifting lines lps2 is connected to the coaxial feed terminal P3 or P5. The matching impedance is a corresponding characteristic impedance of the second phase-shifting lines without covering the area of the phase-adjusting dielectric substrate. Among them, the line width of the first and second phase-shifting lines is set to a width with 50 Ohm characteristic impedance when covered by the phase-adjusting dielectric substrate.
In this example, the operating frequency of the feed network of the present invention is 1.4 to 2.7 GHz. The thickness of the board used for the processing of the suspended dielectric substrate is 0.2 mm. The relative dielectric constant is 3.38. The loss tangent is 0.0027. The thickness of the board used in the processing of the phase-adjusting dielectric substrate is 3.048 mm. The relative dielectric constant is 2.94. The loss tangent is 0.0012. The distance between the upper and lower metal floors is 6.4 mm. The corresponding size of the feed network marked in
w0=4.3 mm, w1=1.4 mm, w2=0.9 mm, w3=0.7 mm, w4=2.3 mm, w5=3.8 mm, w6=4.8 mm, w7=1.2 mm, w8=3.0 mm, w9=2.6 mm, w10=2.2 mm, w11=2.5 mm, w12=8.4 mm, w13=2 mm, w14=3.5 mm, w15=6.6 mm, w16=7.6 mm, ws1=2.8 mm, ws2=1.1 mm, ws3=2.4 mm, ws4=3 mm, ws5=3.3 mm, ws6=2.4 mm, ws7=3.8 mm, wp=9.2 mm, I0=7 mm, I1=6.6 mm, I2=9.8 mm, I3=8.6 mm, I4=13.8 mm, I5=2.9 mm, I6=16 mm, I7=15.2 mm, I8=18.2 mm, I9=7.8 mm, I10=10.8 mm, I11=6 mm, I12=13.1 mm, I13=26.6 mm, I14=23.5 mm, I15=30.2 mm, I16=22.6 mm, Is1=8.2 mm, Is2=11.1 mm, Is3=11.3 mm, Is4=11.8 mm, Is5=17.4 mm, Is6=20.6 mm, Is7=17.3 mm, lp=4 mm, lps1=119 mm, lps2=105 mm, lx=256.4 mm, lx1=18 mm, lx2=10.8 mm, lx3=7.1 mm, ly=51 mm, ly1=36.1 mm.
Shown in
Shown in
In summary, the present invention provides a feed network for an antenna array with integrated filtering, power splitting and phase shifting, which integrates multiple functions of filtering, power splitting and phase shifting. Among them, by moving the positions of phase-adjusting dielectric substrates, the phase difference of the signals between the output terminals can be easily controlled. The circuit of the invention has various advantages such as low loss, high integration and small volume, and is suitable for many radio frequency systems.
The above examples are preferred embodiments of the present invention, but the embodiments of the present invention are not limited by the examples. Any other changes, modifications, substitutions, combinations, simplifications, made without departing from the spirit and principles of the present invention, should be equivalent replacement methods, are included in the scope of protection of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
201910388869.0 | May 2019 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2020/078706 | 3/11/2020 | WO | 00 |