Filtration sealing system

Abstract
A filtration sealing system is provided for sealing a filter element in a housing at a mating interface therebetween. The sealing system includes a keyed interface. A replacement filter element is provided for such filtration sealing system, with the replacement filter element including a keyed interface.
Description
BACKGROUND AND SUMMARY

The invention relates to filtration sealing systems, including filter elements, housings, and replacement filter elements.


Filtration sealing systems are known for sealing a filter element in a housing at a mating interface therebetween. The present invention arose during continuing development efforts in filtration sealing technology, including in the preferred embodiment directed toward improvements in one or more of the following: a system permitting installation or replacement of only an authorized filter element; a system permitting installation or replacement of a filter element only in a given orientation; improved dimensional stability of a gasket and/or housing in sealing relation along a border, a system providing one-way-only fit of a filter element in the housing; replacement filter elements for the above systems; improved sealing along housing ports.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an exploded perspective view of a filter element in a housing.



FIG. 2 is a perspective view of a component of FIG. 1 and illustrating the present invention.



FIG. 3 is a perspective view of a component of FIG. 1 and illustrating the present invention.



FIG. 4 is an enlarged view of a portion of FIG. 2.



FIG. 5 is an enlarged view of a portion of FIG. 3.



FIG. 6 is an elevation view of an alternate embodiment of a component of FIG. 1 in accordance with the invention.



FIG. 7 is an elevation view of an alternate embodiment of a component of FIG. 1 in accordance with the invention.



FIG. 8 is a sectional view illustrating mating of the components of FIGS. 6 and 7.



FIG. 9 is like FIG. 8 and shows another embodiment.



FIG. 10 is like FIG. 9 and shows another embodiment.



FIG. 11 is like FIG. 1 and further illustrates the embodiment of FIG. 9.



FIG. 12 is like FIG. 1 and further illustrates the embodiment of FIG. 10.



FIG. 13 is like FIG. 1 and shows another embodiment.



FIG. 14 is like FIG. 6 and shows another embodiment.



FIG. 15 is an exploded sectional view of a portion of a component of FIG. 1 and illustrating the present invention.





DETAILED DESCRIPTION


FIG. 1 shows a filtration sealing system 20 for sealing a filter element 22 in a housing 24 at a mating interface such as 26 therebetween, to be described. The housing is provided by mating housing sections 28 and 30 mounted and attached to each other in any suitable manner, such as clamps, bolts (e.g. as shown in dashed line at 32), and so on. The housing has an inlet port 34 for receiving fluid to be filtered, e.g. gas (including air) or liquid, which fluid flows through filter element 22 and is discharged as clean filtered fluid at outlet port 36.


The sealing system includes a keyed interface as shown at 38 in FIG. 2 and 40 in FIG. 3. FIG. 2 is a perspective view of upper housing section 28 turned over to view the underside thereof. FIG. 3 is a perspective view of filter element 22 having a border 42 which may be composed of gasket material itself or may have a gasket added thereto. Keyed interface 38, 40 permits installation or replacement of only an authorized filter element 22 mating to the mating interface. The keyed interface permits installation or replacement of the filter element only in a given orientation. Filter element 22 and housing section 28 have borders mating with each other at a gasket 42 therebetween and providing the noted mating interface. The gasket and at least one of the housing and the filter element engage each other in detent relation providing the noted keyed interface. In the embodiment of FIGS. 2, 3 gasket 42 extends along an extension direction along a perimeter. The gasket has one or more humped arches such as 44, FIGS. 3, 5, spaced along the perimeter and extending transversely of the noted extension direction. Housing section 28 has one or more concave recessed slits such as 46, FIGS. 2, 4, spaced along the border along the perimeter and extending transversely of the noted extension direction and complementary receiving respective humped arches 44 therein. The arches and slits may be regularly or irregularly spaced, and may be symmetric or non-symmetric around the perimeter. In one embodiment, gasket 42 is in-molded to and integral with filter element 22. The one or more concave recessed slits 46 are in the housing border. The plurality of humped arches 44 and the plurality of concave recessed slits 46 are in complemental detent relation engagement and are selectively spaced along the perimeter to provide dimensional stability of the housing at the gasket in sealing relation along the border. At least one of the sides, shape and spacing of at least the set of one or more humped arches 44 and the set of one or more concave recessed slits 46 is selectively configured to allow a one-way fit of the filter element in the housing to ensure correct installation every time.



FIGS. 6-8 show a further embodiment and use like reference numerals from above where appropriate to facilitate understanding. At least two gaskets are provided, including a first gasket 50 on the filter element, and a second gasket 52 on the housing. The gaskets engage each other in keyed relation and sealing engagement. The filter element and the housing have borders 40 and 38 mating with each other at two-part gasket 50, 52 therebetween and providing the mating interface. The two-part gasket is provided by at least first gasket 50 and second gasket 52. Gasket 50 has a gasket-engagement surface 54 for engaging gasket 52. Gasket 52 has a gasket-engagement surface 56 for engaging gasket 50. The gasket-engagement surfaces 54 and 56 engage each other in keyed relation providing the keyed interface. The two-part gasket extends along an extension direction along a perimeter. Gasket 50 extends along the extension direction to a beveled end 54 tapered along a first taper along the extension direction. Gasket 52 extends along the extension direction to a beveled end 56 tapered along a second taper along the extension direction. The first and second tapers are opposite and complemental to each other, FIG. 8. The beveled ends at 54 and 56 engage each other in sealed relation at the keyed interface.


In one embodiment, the first gasket includes first and second gasket segments 50 and 58 opposite each other across the perimeter. The second gasket includes third and fourth gasket segments 52 and 60 opposite each other across the perimeter. First gasket segment 50 is between fourth and third gasket segments 60 and 52 along the extension direction along the perimeter. Third gasket segment 52 is between first and second gasket segments 50 and 58 along the extension direction along the perimeter. Second gasket segment 58 is between third and fourth gasket segments 52 and 60 along the perimeter. Fourth gasket segment 60 is between second and first gasket segments 58 and 50 along the extension direction along the perimeter. First gasket segment 50 extends along the extension direction between distally opposite first and second beveled ends 62 and 54 tapered along opposing first and second tapers along the extension direction. Second gasket segment 58 extends along the extension direction between distally opposite third and fourth beveled ends 64 and 66 tapered along opposing third and fourth tapers along the extension direction. Third gasket segment 52 extends along the extension direction between distally opposite fifth and sixth beveled ends 56 and 68 tapered along opposing fifth and sixth tapers along the extension direction. Fourth gasket segment 60 extends along the extension direction between distally opposite seventh and eighth beveled ends 72 and 70 tapered along opposing seventh and eighth tapers along the extension direction. The first and eighth beveled ends engage each other in sealed relation. The second and fifth beveled ends engage each other in sealed relation. The third and sixth beveled ends engage each other in sealed relation. The fourth and seventh beveled ends engage each other in sealed relation.


In some embodiments, the two-part gasket includes only first and second gaskets, with the first gasket extending along the extension direction between distally opposite first and second beveled ends tapered along opposing first and second tapers along the extension direction, and with the second gasket extending along the extension direction between distally opposite third and fourth beveled ends tapered along opposing third and fourth tapers along the extension direction, and with the first and third beveled ends engaging each other in sealed relation, and with the second and fourth beveled ends engaging each other in sealed relation.



FIGS. 9-12 show further embodiments and use like reference numerals from above where appropriate to facilitate understanding. The filter element and the housing have respective borders 40 and 38 mating with each other at the noted mating interface and extending along an extension direction along a perimeter, FIG. 11. The mating interface has a width extending along a radial direction relative to the perimeter. The mating interface has a length extending along the noted extension direction. The borders have facing surfaces at the mating interface, including a first facing surface 80 on the filter element, and a second facing surface 82 on the housing. At least one of the first and second facing surfaces extends non-rectilinearly along the noted extension direction along the noted length to provide the keyed interface, FIG. 11. In the preferred embodiment, each of the first and second facing surfaces 80 and 82 extends non-rectilinearly along the noted extension direction along the noted length to provide the keyed interface, with one of the facing surfaces, e.g. 82, receiving the other of the facing surfaces, e.g. 80, in nested relation. In FIGS. 9 and 11, the keyed interface has a V-shape in a cross-sectional plane taken transversely to the noted radial direction. In such embodiment, each of the first and second facing surfaces 80 and 82 has the noted V-shape in the noted cross-sectional plane taken transversely to the noted radial direction, with the V-shape of one of the facing surfaces, e.g. 82, being a concave V-shape relative to the interface, and with the V-shape of the other of the facing surfaces, e.g. 80, being a convex V-shape relative to the interface, the one facing surface of concave V-shape receiving the other facing surface of convex V-shape in nested relation. In FIGS. 10 and 12, the keyed interface 40a, 38a, at facing surfaces 80a and 82a has an arcuate shape in a cross-sectional plane taken transversely to the noted radial direction. In the preferred embodiment, each of the first and second facing surfaces 80a and 82a has the arcuate shape in the noted cross-sectional plane taken transversely to the noted radial direction, with the arcuate shape of one of the facing surfaces, e.g. 82a, being a concave arcuate shape relative to the interface, and with the arcuate shape of the other of the facing surfaces, e.g. 80a, being a convex arcuate shape relative to the interface, and with the one facing surface of concave arcuate shape receiving the other facing surface of convex arcuate shape in nested relation.



FIG. 13 shows another embodiment having one or more mounting pin locators such as 81, 83 along the borders, providing in one embodiment one or more given or specific orientations of the filter element and the housing. In another embodiment, the one or more mounting pin locators provide one-way-only fit of the filter element in the housing. In another embodiment, the one or more mounting pin locators provide replacement of only an authorized replacement filter element.


In further embodiments, the filter element and the housing have borders 40 and 38 mating with each other at a seal at the mating interface and extending along the extension direction along a perimeter defining an engagement plane, with each border and the seal having a non-symmetrical shape in the noted engagement plane, such as non-symmetrical shape 88 in FIG. 14, or other non-non-symmetrical shapes. In one embodiment, the seal is provided by a gasket 89, and the gasket follows a non-symmetrical profile. In a further embodiment, the non-symmetrical profile of gasket 89 reduces volume of the housing. In one embodiment, the border has a portion with a heart shape segment, for example as shown at 89. The borders on the filter element and the housing are complemental to each other in the engagement plane, which in combination with non-symmetry provides one-way-only fit of the filter element in the housing. In a further embodiment, the filter element and the housing have borders mating with each other at the mating interface and extending along the extension direction along a perimeter defining an engagement plane and are configured to provide one-way-only fit of the filter element in the housing.


Further in the preferred embodiment, a replacement filter element 22 is provided for the noted filtration sealing system wherein the replacement filter element includes the noted keyed interface. The filter element includes a keyed border providing the keyed interface.


Further in the preferred embodiment, a filtration sealing system is provided for a filter having a filter element in a housing having at least two sections, the filter element being a first member, the housing sections including second and third members, wherein at least two of the noted members meet at a mating interface, and with the sealing system being a keyed said interface.


The preferred embodiment of the invention further provides a filtration sealing system for a filter having a filter element in a housing having a housing port 36, FIG. 15, connected to a flow conduit 90 for fluid flow therebetween along a flow direction (downwardly in FIG. 15). Port 36 has a length extending along the flow direction, and a width transverse to such length. The width of the port varies along the length of the port, preferably providing a lead-in for assembly into the flow conduit. The port extends longitudinally along a longitudinal axis 92 along the length and has a tapering sidewall 94 which tapers as it extends longitudinally. Tapering sidewall 94 provides the noted varying width. Port 36 tapers frustoconically along tapering sidewall 94. The tapering sidewall has one or more sealing tabs 96 engaging flow conduit 90 in mechanical wiper sealing relation. Conduit 90 may be a resilient flexible material, e.g. rubber, which may stretch as it fits over and around sidewall 94 and sealing tab 96, or conduit 90 may have a frustoconical taper complemental to the frustoconical taper of sidewall 94.


In a further embodiment, the gasket and the housing are configured such that a new gasket may optionally be supplied every time the filter element is replaced. In a further embodiment, the gasket and the housing are configured such that a new gasket must be replaced every time the filter element is replaced. This reduces concern of the gasket taking a compression set over time at the housing and leaking when it interfaces with the filter element. The housing may be provided with one or more snap-fit slits or grooves for receiving the replaceable gasket.


In the foregoing description, certain terms have been used for brevity, clearness, and understanding. No unnecessary limitations are to be inferred therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes and are intended to be broadly construed. The different configurations, systems, and method steps described herein may be used alone or in combination with other configurations, systems and method steps. It is to be expected that various equivalents, alternatives and modifications are possible within the scope of the appended claims.

Claims
  • 1. A filter element configured for positioning between a first housing section and a second housing section of a housing, the filter element comprising: filter media; anda filter element border extending from the filter media in an x-y plane, the filter element border comprising a first axial sealing surface, a second axial sealing surface, and circumferential surface extending between the first axial sealing surface and the second axial sealing surface, the second axial sealing surface being opposite the first axial sealing surface, the first axial sealing surface providing a mating interface for engagement with a surface of the first housing section, the second axial sealing surface providing a mating interface for engagement with a surface of the second housing section,one of the first axial sealing surface of the filter element border and the second axial sealing surface of the filter element border comprising one or more axial projections projecting in a z-direction that is perpendicular to the x-y plane such that the one or more axial projections are part of the one of the first axial sealing surface and the second axial sealing surface, each of the one or more axial projections positioned and configured to engage a respective axial recess of one of the first housing section border and the second housing section border when the filter element is installed within the housing such that fluid flow across the filter element border is blocked,the circumferential surface of the filter element border comprising a radially extending recess in the x-y plane, the circumferential surface of the filter element border positioned and configured to engage an inner housing surface of one of the first housing section border and the second housing section border, the circumferential surface of the filter element border complementary with the inner housing surface.
  • 2. The filter element of claim 1, wherein the one or more axial projections comprises a plurality of axial projections.
  • 3. The filter element of claim 2, wherein the plurality of axial projections are spaced at regular intervals along the filter element border.
  • 4. The filter element of claim 2, wherein the plurality of axial projections are spaced at irregular intervals along the filter element border.
  • 5. The filter element of claim 2, wherein the plurality of axial projections comprise a plurality of humped arches.
  • 6. The filter element of claim 1, wherein the radially extending recess defines a heart shape segment in the filter element border.
  • 7. The filter element of claim 1, wherein the radially extending recess is positioned so as to result in the filter element border possessing a non-symmetrical shape in the x-y plane.
  • 8. The filter element of claim 1, wherein the filter element border comprises a gasket that is formed integral with a remainder of the filter element.
  • 9. The filter element of claim 8, wherein the one or more axial projections comprises a plurality of axial projections formed in the gasket.
  • 10. The filter element of claim 9, wherein the plurality of axial projections are spaced at regular intervals along the filter element border.
  • 11. The filter element of claim 9, wherein the plurality of axial projections are spaced at irregular intervals along the filter element border.
  • 12. The filter element of claim 9, wherein the plurality of axial projections comprise a plurality of humped arches formed in the gasket.
  • 13. The filter element of claim 1, wherein the positioning of the radially extending recess within the filter element border provides for a one-way-only fit of the filter element within the housing.
  • 14. The filter element of claim 1, wherein the filter media comprises a racetrack-shaped cross-section.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 15/706,138, filed Sep. 15, 2017, which is a Continuation of U.S. patent application Ser. No. 15/236,213, filed Aug. 12, 2016, now U.S. Pat. No. 9,782,708, which is a continuation of U.S. patent application Ser. No. 14/052,057, filed Oct. 11, 2013, now U.S. Pat. No. 9,623,351, which is a continuation of U.S. patent application Ser. No. 13/299,419, filed Nov. 18, 2011, now U.S. Pat. No. 9,415,333, which is a continuation of U.S. patent application Ser. No. 12/420,884, filed Apr. 9, 2009 now U.S. Pat. No. 8,061,530. The contents of these applications are incorporated herein by reference in their entirety.

US Referenced Citations (429)
Number Name Date Kind
2025009 Baker Dec 1935 A
2093877 Von Sep 1937 A
2270969 Robinson Jan 1942 A
2306325 Allam Dec 1942 A
2910332 Madsen et al. Oct 1959 A
2915188 Buker Dec 1959 A
2955028 Bauer Oct 1960 A
3025963 Burns et al. Mar 1962 A
3224592 Burns et al. Dec 1965 A
3383841 Olson May 1968 A
3494113 Kinney Feb 1970 A
3576095 Rivers Apr 1971 A
3582095 Bogaert et al. Jun 1971 A
3598738 Biswell et al. Aug 1971 A
3645402 Alexander et al. Feb 1972 A
3687849 Abbott Aug 1972 A
3749247 Rohde Jul 1973 A
4014794 Lewis Mar 1977 A
4061572 Cohen et al. Dec 1977 A
4066559 Rohde Jan 1978 A
4075097 Paul Feb 1978 A
4075098 Paul et al. Feb 1978 A
4080185 Richter et al. Mar 1978 A
4128251 Gaither et al. Dec 1978 A
4129429 Humbert et al. Dec 1978 A
4144169 Grueschow Mar 1979 A
4181313 Hillier et al. Jan 1980 A
4211543 Tokar et al. Jul 1980 A
4257890 Hurner Mar 1981 A
4300928 Sugie Nov 1981 A
4324213 Kasting et al. Apr 1982 A
4364751 Copley Dec 1982 A
4402912 Krueger et al. Sep 1983 A
4410427 Wydeven Oct 1983 A
4473471 Robichaud et al. Sep 1984 A
4572522 Smagatz Feb 1986 A
4589983 Wydevan May 1986 A
4600420 Wydeven et al. Jul 1986 A
4617122 Kruse et al. Oct 1986 A
4738776 Brown Apr 1988 A
4755289 Villani Jul 1988 A
4782891 Cheadle et al. Nov 1988 A
4826517 Norman May 1989 A
4861359 Tettman Aug 1989 A
4865636 Raber Sep 1989 A
4915831 Taylor Apr 1990 A
4925561 Ishii et al. May 1990 A
4951834 Aikins Aug 1990 A
4979969 Herding Dec 1990 A
5024268 Cheadle et al. Jun 1991 A
5050549 Sturmon Sep 1991 A
5069799 Brownawell et al. Dec 1991 A
5071456 Binder et al. Dec 1991 A
5094745 Reynolds Mar 1992 A
5120334 Cooper Jun 1992 A
5203994 Janik Apr 1993 A
5213596 Kume et al. May 1993 A
5222488 Forsgren Jun 1993 A
5223011 Hanni Jun 1993 A
5225081 Brownawell Jul 1993 A
5228891 Adiletta Jul 1993 A
5258118 Gouritin et al. Nov 1993 A
5298160 Ayers et al. Mar 1994 A
5302284 Zeiner et al. Apr 1994 A
5342511 Brown et al. Aug 1994 A
5382355 Arlozynski Jan 1995 A
5391212 Ernst et al. Feb 1995 A
5435346 Tregidgo et al. Jul 1995 A
5459074 Muoni Oct 1995 A
5472379 Andress et al. Dec 1995 A
5472463 Herman et al. Dec 1995 A
5484466 Brown et al. Jan 1996 A
5494497 Lee Feb 1996 A
5498332 Handtmann Mar 1996 A
5512074 Hanni et al. Apr 1996 A
5531848 Brinda et al. Jul 1996 A
5556542 Berman et al. Sep 1996 A
5560330 Andress et al. Oct 1996 A
5562825 Yamada et al. Oct 1996 A
5569311 Oda et al. Oct 1996 A
5575826 Gillingham et al. Nov 1996 A
5591330 Lefebvre Jan 1997 A
5605554 Kennedy Feb 1997 A
5662799 Hudgens et al. Sep 1997 A
5672399 Kahlbaugh et al. Sep 1997 A
5709722 Nagai et al. Jan 1998 A
5720790 Kometani et al. Feb 1998 A
5738785 Brown et al. Apr 1998 A
5753116 Baumann et al. May 1998 A
5753117 Jiang May 1998 A
5759217 Joy Jun 1998 A
5772883 Rothman et al. Jun 1998 A
5793566 Scura et al. Aug 1998 A
5795361 Lanier et al. Aug 1998 A
5803024 Brown Sep 1998 A
5820646 Gillingham et al. Oct 1998 A
5830371 Smith et al. Nov 1998 A
5853439 Gieseke et al. Dec 1998 A
5863424 Lee Jan 1999 A
5891402 Sassa et al. Apr 1999 A
5893939 Rakocy et al. Apr 1999 A
5902364 Tokar et al. May 1999 A
5948248 Brown Sep 1999 A
5985143 Lin Nov 1999 A
6045692 Bilski et al. Apr 2000 A
D425189 Gillingham et al. May 2000 S
6086763 Baumann Jul 2000 A
6096208 Connelly et al. Aug 2000 A
6098575 Mulshine et al. Aug 2000 A
6099612 Bartos Aug 2000 A
6117202 Wetzel Sep 2000 A
6123746 Alvin et al. Sep 2000 A
6129852 Elliott et al. Oct 2000 A
6149700 Morgan et al. Nov 2000 A
6171355 Gieseke et al. Jan 2001 B1
6179890 Ramos et al. Jan 2001 B1
D437402 Gieseke et al. Feb 2001 S
6190432 Gieseke et al. Feb 2001 B1
6196019 Higo et al. Mar 2001 B1
6217627 Vyskocil et al. Apr 2001 B1
6231630 Ernst et al. May 2001 B1
6235194 Jousset May 2001 B1
6235195 Tokar May 2001 B1
6238554 Martin et al. May 2001 B1
6238561 Liu et al. May 2001 B1
6261334 Morgan et al. Jul 2001 B1
6264831 Hawkins et al. Jul 2001 B1
6264833 Reamsnyder et al. Jul 2001 B1
RE37369 Hudgens et al. Sep 2001 E
6293984 Oda et al. Sep 2001 B1
6306193 Morgan et al. Oct 2001 B1
D450828 Tokar Nov 2001 S
6348085 Tokar et al. Feb 2002 B1
D455826 Gillingham et al. Apr 2002 S
6375700 Jaroszczyk et al. Apr 2002 B1
6379564 Rohrbach et al. Apr 2002 B1
6391076 Jaroszczyk et al. May 2002 B1
6398832 Morgan et al. Jun 2002 B2
6402798 Kallsen et al. Jun 2002 B1
6416561 Kallsen et al. Jul 2002 B1
6447566 Rivera et al. Sep 2002 B1
6475379 Jousset et al. Nov 2002 B2
6478018 Fedorowicz et al. Nov 2002 B2
6478019 Fedorowicz et al. Nov 2002 B2
6478958 Beard et al. Nov 2002 B1
6482247 Jaroszczyk et al. Nov 2002 B2
6511599 Jaroszczyk et al. Jan 2003 B2
6517598 Anderson et al. Feb 2003 B2
6537453 Beard et al. Mar 2003 B2
D473637 Golden Apr 2003 S
6547857 Gieseke et al. Apr 2003 B2
6554139 Maxwell et al. Apr 2003 B1
6571962 Thomas Jun 2003 B2
6596165 Koivula Jul 2003 B2
6610126 Xu et al. Aug 2003 B2
6623636 Rohrbach et al. Sep 2003 B2
6641637 Kallsen et al. Nov 2003 B2
6673136 Gillingham et al. Jan 2004 B2
6676721 Gillingham et al. Jan 2004 B1
6709588 Pavlin et al. Mar 2004 B2
6740234 Williams et al. May 2004 B1
6743317 Wydeven Jun 2004 B2
6746518 Gieseke et al. Jun 2004 B2
6787033 Beard et al. Sep 2004 B2
6823996 Durre Nov 2004 B2
6827750 Drozd et al. Dec 2004 B2
6835304 Jousset et al. Dec 2004 B2
6837920 Gieseke et al. Jan 2005 B2
6843916 Burrington et al. Jan 2005 B2
6860241 Martin et al. Mar 2005 B2
6893571 Harenbrock et al. May 2005 B2
6902598 Gunderson et al. Jun 2005 B2
6919023 Merritt et al. Jul 2005 B2
6922894 Durre Aug 2005 B2
6939464 Jiang et al. Sep 2005 B1
6953124 Winter et al. Oct 2005 B2
6966940 Krisko et al. Nov 2005 B2
6969461 Beard et al. Nov 2005 B2
6984319 Merritt et al. Jan 2006 B2
6996940 Beasley Feb 2006 B2
6998045 Durre Feb 2006 B2
7001450 Gieseke et al. Feb 2006 B2
7008467 Krisko et al. Mar 2006 B2
7018531 Eilers et al. Mar 2006 B2
7048501 Katayama et al. May 2006 B2
7070641 Gunderson et al. Jul 2006 B1
7081145 Gieseke et al. Jul 2006 B2
7090711 Gillingham et al. Aug 2006 B2
7153422 Herman et al. Dec 2006 B2
7156991 Herman et al. Jan 2007 B2
7160451 Hacker et al. Jan 2007 B2
7182863 Eilers et al. Feb 2007 B2
7182864 Brown et al. Feb 2007 B2
7211124 Gieseke et al. May 2007 B2
7217361 Connor et al. May 2007 B2
7237682 Reynolds et al. Jul 2007 B2
7247183 Connor et al. Jul 2007 B2
7258719 Miller et al. Aug 2007 B2
7282075 Sporre et al. Oct 2007 B2
7311747 Adamek et al. Dec 2007 B2
7338544 Sporre et al. Mar 2008 B2
7344582 Pearson et al. Mar 2008 B2
7351270 Engelland et al. Apr 2008 B2
7396375 Nepsund et al. Jul 2008 B2
7425226 Powell Sep 2008 B2
7491254 Krisko et al. Feb 2009 B2
7494017 Miller Feb 2009 B2
7524416 Bergmen Apr 2009 B1
7540895 Furseth et al. Jun 2009 B2
D600790 Nelson et al. Sep 2009 S
7582130 Ng et al. Sep 2009 B2
7614504 South et al. Nov 2009 B2
7625419 Nelson et al. Dec 2009 B2
7645310 Krisko et al. Jan 2010 B2
7655074 Nepsund et al. Feb 2010 B2
7662216 Terres et al. Feb 2010 B1
7674308 Krisko et al. Mar 2010 B2
7682416 Engelland et al. Mar 2010 B2
7731753 Reo et al. Jun 2010 B2
7776139 Schwandt et al. Aug 2010 B2
7799108 Connor et al. Sep 2010 B2
7828869 Parikh et al. Nov 2010 B1
7882961 Menez et al. Feb 2011 B2
7931723 Cuvelier Apr 2011 B2
7959714 Smith et al. Jun 2011 B2
7967886 Schrage et al. Jun 2011 B2
7972405 Engelland et al. Jul 2011 B2
7981183 Nepsund et al. Jul 2011 B2
7993422 Krisko et al. Aug 2011 B2
8016903 Nelson et al. Sep 2011 B2
8034145 Boehrs et al. Oct 2011 B2
8043504 Malgorn Oct 2011 B2
8048187 Merritt et al. Nov 2011 B2
8061530 Kindkeppel et al. Nov 2011 B2
8062399 Nelson et al. Nov 2011 B2
8096423 Menez et al. Jan 2012 B2
8097061 Smith et al. Jan 2012 B2
8101003 Krisko et al. Jan 2012 B2
8119002 Schiavon et al. Feb 2012 B2
8146751 Hawkins et al. Apr 2012 B2
8167966 Amirkhanian et al. May 2012 B2
8177967 Bagci et al. May 2012 B2
8216470 Abdalla et al. Jul 2012 B2
8220640 Schmitz et al. Jul 2012 B2
8241383 Schrage et al. Aug 2012 B2
8276763 Shaam Oct 2012 B2
8277532 Reichter et al. Oct 2012 B2
8292983 Reichter et al. Oct 2012 B2
8328897 Nelson et al. Dec 2012 B2
8333890 Wells et al. Dec 2012 B2
8348064 Tandon Jan 2013 B2
8357219 Boehrs et al. Jan 2013 B2
8419938 Ries et al. Apr 2013 B2
8430657 Simonelli et al. Apr 2013 B2
8440081 Wieczorek May 2013 B2
8480779 Boehrs et al. Jul 2013 B2
8496723 Reichter et al. Jul 2013 B2
8501001 Curt et al. Aug 2013 B2
8506666 Haslebacher Aug 2013 B2
8518141 Schrage et al. Aug 2013 B2
8544158 Curt et al. Oct 2013 B2
8550656 McCarthy et al. Oct 2013 B2
8562707 Nepsund et al. Oct 2013 B2
8636820 Reichter et al. Jan 2014 B2
8652228 Krisko et al. Feb 2014 B2
8709119 Reichter et al. Apr 2014 B2
8714565 Cornett et al. May 2014 B1
8753414 Gebert Jun 2014 B2
8778043 Krisko et al. Jul 2014 B2
8840699 Bruce et al. Sep 2014 B2
8845897 Wieczorek et al. Sep 2014 B2
8852308 Jarrier Oct 2014 B2
8906128 Reichter et al. Dec 2014 B2
8911498 Bartish et al. Dec 2014 B2
8926725 Loken et al. Jan 2015 B2
8932465 Wells et al. Jan 2015 B2
9101883 Pugh et al. Aug 2015 B2
9114346 Schrage et al. Aug 2015 B2
9211488 South et al. Dec 2015 B2
9308476 Martin et al. Apr 2016 B2
9320997 Campbell et al. Apr 2016 B2
9409107 Arakeri et al. Aug 2016 B2
9415333 Kindkeppel et al. Aug 2016 B2
9782706 Levy Oct 2017 B1
9782708 Kindkeppel et al. Oct 2017 B2
10729999 Nichols et al. Aug 2020 B2
10744443 Silvestro Aug 2020 B2
10835852 Decoster et al. Nov 2020 B2
20010032545 Goto et al. Oct 2001 A1
20020046556 Reid Apr 2002 A1
20020060178 Tsabari May 2002 A1
20020073850 Tokar et al. Jun 2002 A1
20020096247 Wydeven Jul 2002 A1
20020157359 Stenersen et al. Oct 2002 A1
20020170280 Soh Nov 2002 A1
20020185007 Xu et al. Dec 2002 A1
20020185454 Beard et al. Dec 2002 A1
20020195384 Rohrbach et al. Dec 2002 A1
20030121845 Wagner et al. Jul 2003 A1
20030154863 Tokar et al. Aug 2003 A1
20030184025 Matsuki Oct 2003 A1
20030218150 Blakemore et al. Nov 2003 A1
20040035097 Schlensker et al. Feb 2004 A1
20040040271 Kopec et al. Mar 2004 A1
20040060861 Winter et al. Apr 2004 A1
20040091652 Kikuchi et al. May 2004 A1
20040091654 Kelly et al. May 2004 A1
20040140255 Merritt et al. Jul 2004 A1
20040173097 Engelland et al. Sep 2004 A1
20040187689 Sporre et al. Sep 2004 A1
20040221555 Engelland et al. Nov 2004 A1
20040226443 Gillingham et al. Nov 2004 A1
20050019236 Martin et al. Jan 2005 A1
20050024061 Cox et al. Feb 2005 A1
20050166561 Schrage et al. Aug 2005 A1
20050173325 Klein et al. Aug 2005 A1
20050193695 Holmes et al. Sep 2005 A1
20050194312 Niemeyer et al. Sep 2005 A1
20050224061 Ulrich et al. Oct 2005 A1
20050252848 Miller Nov 2005 A1
20060064956 Connor et al. Mar 2006 A1
20060113233 Merritt et al. Jun 2006 A1
20060118474 Kolczyk et al. Jun 2006 A1
20060180537 Loftis et al. Aug 2006 A1
20060213139 Stramandinoli Sep 2006 A1
20070037428 Annecke Feb 2007 A1
20070095744 Bagci et al. May 2007 A1
20070175815 Thomas Aug 2007 A1
20070240392 Ng et al. Oct 2007 A1
20070261374 Nelson et al. Nov 2007 A1
20070267338 Menez et al. Nov 2007 A1
20080011672 Schwartz et al. Jan 2008 A1
20080022641 Engelland et al. Jan 2008 A1
20080035587 Wieczorek et al. Feb 2008 A1
20080047132 Wieczorek Feb 2008 A1
20080087589 Grzonka et al. Apr 2008 A1
20080107765 Considine et al. May 2008 A1
20080110142 Nelson et al. May 2008 A1
20080179263 Wieczorek et al. Jul 2008 A1
20080237113 Jensen Oct 2008 A1
20080250766 Schrage et al. Oct 2008 A1
20080307759 Reichter et al. Dec 2008 A1
20080308481 Wieczorek et al. Dec 2008 A1
20090014381 South et al. Jan 2009 A1
20090026124 Schmitz et al. Jan 2009 A1
20090050554 Shaam Feb 2009 A1
20090057213 Schiavon et al. Mar 2009 A1
20090057219 Bagci et al. Mar 2009 A1
20090064646 Reichter et al. Mar 2009 A1
20090071892 Malgorn Mar 2009 A1
20090090669 Holzmann et al. Apr 2009 A1
20090095669 South Apr 2009 A1
20090126324 Smith et al. May 2009 A1
20090135590 McCarthy et al. May 2009 A1
20090151311 Reichter et al. Jun 2009 A1
20090193972 Schwandt et al. Aug 2009 A1
20090241315 Menez et al. Oct 2009 A1
20090242475 Menez et al. Oct 2009 A2
20090249754 Amirkhanian et al. Oct 2009 A1
20090326657 Grinberg et al. Dec 2009 A1
20100001477 Eyers et al. Jan 2010 A1
20100043366 Boehrs et al. Feb 2010 A1
20100051528 Derstler et al. Mar 2010 A1
20100064646 Smith et al. Mar 2010 A1
20100065203 Tanbour et al. Mar 2010 A1
20100077710 Severance et al. Apr 2010 A1
20100101993 Wells et al. Apr 2010 A1
20100108590 Curt et al. May 2010 A1
20100114318 Gittings et al. May 2010 A1
20100126919 Hawkins et al. May 2010 A1
20100150764 Simonelli et al. Jun 2010 A1
20100170209 Nelson et al. Jul 2010 A1
20100176047 Bagci et al. Jul 2010 A1
20100186353 Ackermann et al. Jul 2010 A1
20100200490 Martin et al. Aug 2010 A1
20100258493 Kindkeppel et al. Oct 2010 A1
20100263339 Steins et al. Oct 2010 A1
20100294707 Abdalla et al. Nov 2010 A1
20100294712 Abdalla et al. Nov 2010 A1
20110089104 Menez et al. Apr 2011 A1
20110132829 Tucker et al. Jun 2011 A1
20110197556 Brown et al. Aug 2011 A1
20110203099 Curt et al. Aug 2011 A1
20110260413 Voltenburg et al. Oct 2011 A1
20110303604 McKenzie Dec 2011 A1
20120031059 Haslebacher Feb 2012 A1
20120055127 Holzmann et al. Mar 2012 A1
20120061307 Kindkeppel et al. Mar 2012 A1
20120223008 Mbadinga-Mouanda Sep 2012 A1
20130015119 Pugh et al. Jan 2013 A1
20130087497 Wells et al. Apr 2013 A1
20130220914 Hawkins et al. Aug 2013 A1
20130291502 Gorman Nov 2013 A1
20130327696 Bagci et al. Dec 2013 A1
20140027366 Hawkins et al. Jan 2014 A1
20140034565 Loken et al. Feb 2014 A1
20140034566 Verdegan et al. Feb 2014 A1
20140048468 Kindkeppel et al. Feb 2014 A1
20140071669 McCarthy et al. Mar 2014 A1
20140096493 Kelmartin et al. Apr 2014 A1
20140151275 Bradford et al. Jun 2014 A1
20140251895 Wagner Sep 2014 A1
20140260143 Kaiser Sep 2014 A1
20140290194 Muenkel et al. Oct 2014 A1
20140318090 Rieger et al. Oct 2014 A1
20150013289 Hasenfratz et al. Jan 2015 A1
20150013293 Wagner et al. Jan 2015 A1
20150033684 Pettersson Feb 2015 A1
20150060351 Kaufmann et al. Mar 2015 A1
20150061307 Nakanishi Mar 2015 A1
20150096273 Kaiser Apr 2015 A1
20150096932 Hou et al. Apr 2015 A1
20150176544 Kaufmann et al. Jun 2015 A1
20150202556 Hawkins et al. Jul 2015 A1
20150231532 Pugh et al. Aug 2015 A1
20150285381 Preston et al. Oct 2015 A1
20160023142 Arakeri et al. Jan 2016 A1
20160045848 Campbell et al. Feb 2016 A1
20160059172 Allott et al. Mar 2016 A1
20160082372 South et al. Mar 2016 A1
20160160816 Venkatraman et al. Jun 2016 A1
20160169391 Emig et al. Jun 2016 A1
20160222931 Jiang et al. Aug 2016 A1
20160228798 Page et al. Aug 2016 A1
20160258397 Jiang et al. Sep 2016 A1
20160332103 Marks et al. Nov 2016 A1
20170078852 Tan et al. Mar 2017 A1
20180318745 Nichols et al. Nov 2018 A1
20200324237 Moers et al. Oct 2020 A1
Foreign Referenced Citations (56)
Number Date Country
1130539 Sep 1996 CN
1139884 Jan 1997 CN
1193288 Sep 1998 CN
2296402 Nov 1998 CN
2296402 Nov 1998 CN
1486213 Mar 2004 CN
1590746 Mar 2005 CN
2372041 Apr 2005 CN
1754612 Apr 2006 CN
101084050 Dec 2007 CN
101374582 Feb 2009 CN
201292900 Aug 2009 CN
101695616 Apr 2010 CN
102083510 Jun 2011 CN
102271780 Dec 2011 CN
202746046 Feb 2013 CN
103977647 Aug 2014 CN
104220142 Dec 2014 CN
105688498 Jun 2016 CN
106102858 Nov 2016 CN
88 08 632 Sep 1988 DE
29613098 Sep 1996 DE
10 2008 062 956 Jun 2010 DE
0 718 021 Jun 1996 EP
0 747 579 Dec 1996 EP
0 982 062 Mar 2000 EP
1 129 760 Sep 2001 EP
1 166 843 Jan 2002 EP
1 208 902 May 2002 EP
1 233 173 Aug 2002 EP
1 693 096 Aug 2006 EP
1 693 096 Aug 2006 EP
1 747 053 Jan 2007 EP
3 370 849 Sep 2018 EP
2214505 Aug 1974 FR
2214505 Aug 1974 FR
0 970 826 Sep 1964 GB
2 082 932 Mar 1982 GB
2 082 932 Mar 1982 GB
2 404 348 Feb 2005 GB
60-112320 Jun 1985 JP
H1-163408 Jun 1989 JP
H1-171615 Jul 1989 JP
H2-025009 Feb 1990 JP
WO-0050152 Aug 2000 WO
WO-0074818 Dec 2000 WO
WO-0105485 Jan 2001 WO
WO-2004054684 Jul 2004 WO
WO-2005058461 Jun 2005 WO
WO-2005077487 Aug 2005 WO
WO-2006093981 Sep 2006 WO
WO-2007009039 Jan 2007 WO
WO-2007089662 Aug 2007 WO
WO-2012153430 Nov 2012 WO
WO-2017079191 May 2017 WO
WO-2017120113 Jul 2017 WO
Non-Patent Literature Citations (20)
Entry
First Office Action issued for Chinese Patent Application No. CN 201680071070.3 dated Nov. 26, 2020, with translation, 19 pages.
International Search Report and Written Opinion for PCT/US2018/018696, dated Apr. 19, 2018, 8 pages.
Non-Final Office Action from U.S. Appl. No. 15/781,585, dated Jul. 2, 2020.
Non-Final Office Action from U.S. Appl. No. 16/097,773, dated Jul. 14, 2020.
First Office Action issued for German Patent Application No. 11 2010 001 567.8, including English language translation, dated May 18, 2017, 12 pages.
International Search Report and Written Opinion issued for PCT/US2017/030386, dated Jul. 26, 2017, 9 pages.
International Search Report and Written Opinion issued for PCT/US2016/063053, dated Feb. 16, 2017, 8 pages.
International Search Report and Written Opinion issued for PCT/US2017/021615, dated Jun. 6, 2017, 8 pages.
First Office Action issued for Chinese Patent Application No. CN201880018033.5 dated Dec. 24, 2020, 10 pages.
Notice of Allowance issued for U.S. Appl. No. 15/781,585, dated Feb. 3, 2021, 23 pages.
Akro-Mils, “Nest & Stack Totes,” retrieved from http://web.archive.org/web/20150323114331/https://akro-mils.com/produts/types/plastic-storage-containers/nest-stack-totes, 1 page (2015).
Final Office Action on U.S. Appl. No. 16/097,773 dated Dec. 14, 2020.
Non-Final Office Action on U.S. Appl. No. 16/083,945 dated Nov. 10, 2020.
U.S. Office Action on U.S. Appl. No. 15/781,585 dated Nov. 5, 2020.
First Examination Report for Indian Patent App. No. 202047056950 dated Mar. 24, 2021, 5 pages.
First Office Action for Chinese Patent App. No. 201880012627.5 dated Dec. 12, 2020, 22 pages (with English translation).
First Office Action for Chinese Patent Application No. 201880007980.4 dated Jan. 12, 2021, 15 pages (with English translation).
International Search Report & Written Opinion for PCT/US2018/014401 dated May 15, 2018, 9 pages.
International Search Report & Written Opinion for PCT/US2018/018724 dated Apr. 24, 2018, 13 pages.
International Search Report and Written Opinion for PCT/IB2019/056208 dated Nov. 11, 2019, 8 pages.
Related Publications (1)
Number Date Country
20190039002 A1 Feb 2019 US
Continuations (5)
Number Date Country
Parent 15706138 Sep 2017 US
Child 16153977 US
Parent 15236213 Aug 2016 US
Child 15706138 US
Parent 14052057 Oct 2013 US
Child 15236213 US
Parent 13299419 Nov 2011 US
Child 14052057 US
Parent 12420884 Apr 2009 US
Child 13299419 US