The present disclosed subject matter is concerned with filtration systems. The disclosed subject matter is further concerned with a fluid distribution manifold for a filtration system, as well as with filtration assemblies.
The present disclosed subject matter is also concerned with pipe couplings and a spinning member useful in filtration systems.
A wide variety of fluid filtering systems is available, among which are also multiple filtering systems, i.e. systems comprising a plurality of integrated filtration units.
An important consideration in the field of filtering systems is the effective filtration volume (i.e. filtration capability of a filtration system) compared with the space such a filtration system occupies, and its footprint, i.e. the effective area occupied by a filtration system.
Yet an important consideration in the field of filtering systems is the ease at which servicing and maintenance may be attended to the system.
For that purpose and others, there is a need for designing compact filtering systems as well as fluid couplings therefore.
It is an object of the present disclosed subject matter to provide a filtration array configured with a plurality of filtration assemblies, each configured with a plurality of filter members.
According to a first aspect of the presently disclosed subject matter there is a filtration array comprising a main raw fluid supply line and a main filtered fluid collecting line, at least one filtration flow path extending between said main raw fluid supply line and main filtered fluid collecting line, each at least one filtration flow path configured with a filtering assembly comprising a pair of filter units coaxially extending from a common manifold configured on said filtration flow path and being in flow communication with the main raw fluid supply line and the main filtered fluid collecting line, each of the filter units comprising a plurality of parallely disposed filter members.
The filtration array comprises a main raw fluid supply line and a main filtered fluid collecting line, with at least one filtering assembly extending therebetween; each of said at least one filtering assembly comprising two coaxially extending filter units extending from a common manifold extending in flow communication with the main raw fluid supply line and the main filtered fluid collecting line, each of the filter units comprising a plurality of parallely disposed filter members.
An aspect of the disclosed subject matter is also concerned with a filtering assembly for mounting between a main raw fluid supply line and a main filtered fluid collecting line; said filtering assembly comprising two filter units coaxially extending from a common manifold configured for being in flow communication with the main raw fluid supply line and the main filtered fluid collecting line, each of the filter units comprising a plurality of parallely disposed filter members.
According to the presently disclosed subject matter there is disclosed a filtration array comprising a main raw fluid supply line and a main filtered fluid collecting line extending substantially parallel to one another and defining a substantially vertical plain; at least one filtering assembly extending therebetween along a filtering flow path and each comprising a pair of coaxially extending filter units coaxially extending from a common manifold configured for being in flow communication with the main raw fluid supply line and the main filtered fluid collecting line, each of the filter units comprising a plurality of parallely disposed filter members extending from a support plate dividing the manifold into an inlet chamber being in flow communication with a raw fluid main supply line, and an outlet chamber being in flow communication with a main filtered fluid collecting line; each filter member having one side of its filtrating media in flow communication with one of the inlet chamber and the outlet chamber, and another side of the filtrating media being in flow communication with the other of the inlet chamber and the outlet chamber.
Any one or more of the following configurations, features and designs can be incorporated in a filtration array according to the disclosed subject matter, independently or in one or more combinations:
A further aspect of the disclosed subject matter is concerned with a support plate for a filtering unit as disclosed hereinabove. A support plate according to the present disclosure comprises a plate-like portion configured for sealing mounting within a manifold of a filter unit; said plate-like portion configured with a plurality of filter member openings each configured with a filter member coupling.
The plate-like portion has a filtration face configured for supporting the filter members.
The support plate is configured with at least one opening configured for sealing coupling to one of an inlet chamber and an outlet chamber of a manifold of the filter unit, with the filter member openings opening into the other of the inlet chamber and an outlet chamber of a manifold.
According to one particular example the filter members are articulated to the support plate by screw coupling or by a bayonet coupling, however in a substantially sealed fashion. The filter member coupling can be configured as an internal threading within the openings.
The two support plates within a filtering assembly are identical and disposed at a mirror like orientation.
The support plate is configured for articulation to a like support plate of a filtering assembly, whereby the support plates with the articulated filtering members remain secured to the manifold upon removal of the housing. According to one example a support plate is configured with one or more support posts axially extending and configured for articulating to support posts of a mating support plate, e.g. by screw coupling.
A perimeter of the plate-like portion is configured for supporting one or more sealing gaskets.
Another aspect of the present disclosure is concerned with a manifold of the filtering assemblies. The manifold comprises a housing configured for coupling a pair of filter units to a flow line extending between a main raw fluid supply line and a main filtered fluid collecting line, said housing comprising an inlet port configured for coupling to the main raw fluid supply line and extending to an inlet chamber, and an outlet port configured for coupling to the main filtered fluid collecting line and extending to an outlet chamber sealed from said inlet chamber; a support plate seat configured at least at one face of the housing and a coupling arrangement for sealingly articulating a filter unit housing to the manifold.
Any one or more of the following configurations, features and designs can be incorporated in a manifold according to the disclosed subject matter, independently or in one or more combinations:
Yet another aspect of the present disclosed subject matter is directed to coupling arrangements between any two axial flow segments of neighboring components.
The coupler comprises two semi circular halves with abutting surfaces at each end of the semi circle, said abutting surfaces extending substantially parallel to one another, a coupling arrangement disposed at said abutting surfaces configured for tightening the semi circular halves to one another, wherein each semi circle half is configured with a top shoulder and a bottom shoulder, each configured with an inner conical wall surface.
The inner conical wall surfaces correspond with a wall surface of a flanged portion of the two flow segments.
The coupling arrangement is one or more screw fastener or a fast release mechanism, or a toggle lock, etc.
The coupler is made of molded material, e.g. polymeric material.
A sealing gasket can be provided between mating faces of the two flow segments. A sealing gasket can be a hydraulic gasket, wherein a gasket receiving grove is configured at one or both the coupler and the two flow segments.
According to a particular example there is provided a valve-integrated coupler element integrated with a valve and an actuator, wherein the coupler comprises two semi circular halves with abutting surfaces at each end of the semi circular halves, said abutting surfaces extending substantially parallel to one another, a coupling arrangement disposed at said abutting surfaces configured for tightening the semi circular halves to one another, wherein each semi circle half is configured with a top shoulder and a bottom shoulder, each configured with an inner conical wall surface, and wherein an aperture resides between the semi circular halves configured for receiving an axle of an actuator radially projecting therebetween, said actuator extending between a valve gate within the coupler and an external actuator.
According to yet an example of a coupler according to the disclosed subject matter there is provided a flange coupler comprising a first circular retention ring and a second circular retention ring, each of which configured for clamping together, said circular retention rings configured for bearing against radially outwards projecting shoulders of the two flow segments.
Sealing coupling between the two flow segments can take place in a face-to-face contact sealing or by a sealing gasket disposed at the connection between the facing head surface of the flanged ends of the two flow segments
The first retention ring and the second retention ring are configured for clamping together by screws and bolts.
Also disclosed by the present disclosure there is a fluid spinning element configured for use in fluid flow systems. The fluid spinning element has a ring-like shape comprising cylindrical tube section, a flanged retention element and a plurality of radially extending angled vanes, extending from an inner wall of cylindrical tube section and meeting at a central vane hub.
The flanged retention element is configured for clamp-positioning between two tubular pipe segments of a hydraulic system.
The flanged retention element can be reinforced by a plurality of ribs or by a circumferentially disposed reinforcing rim at a bottom thereof.
Furthermore, a hydraulic spinning member may be disposed within the pipe work of a filtration assembly according to the disclosed subject matter.
It is appreciated that the filter unit in the following examples may be any type of filtering media such as a stack of filtering disks, a filtering screen (i.e. a fine mash of material) or a thread-type cylinder.
Also, Fluid is defined as any flowable matter, i.e. gas or liquid, regardless its purpose, degree of contamination, particle size, viscosity, pressure or any other parameters. Hence, herein in the specification and claims the term fluid is used in its broadest sense.
Raw fluid denotes a fluid (gas or liquid) to be filtered, and Rinsing fluid denotes a fluid (gas or liquid) used for rinsing/flushing the filter unit or filtering media or other components of the filter assembly. It is noted that in some cases filtered fluid serves as a rinsing fluid. Filtered fluid denotes the fluid/liquid obtained after a filtration process, namely after removing particles and contaminating matter.
Respective inlet ports and outlet ports may serve for more than one function. For example, a certain port may function at one stage as a raw fluid inlet port and at another stage may function as a waste/rinsing outlet port.
In order to understand the different aspects of the disclosed subject matter, and to see how it may be carried out in practice, embodiments will now be described, by way of non-limiting examples only, with reference to the accompanying drawings, in which:
Turning first to
As illustrated in the drawings, the filtration array 20 comprises a plurality of filtering assemblies 30 (three illustrated in the present example) parallely extending between said main raw fluid supply line 22 and said main filtered fluid collecting line 24, wherein each of said filtering assemblies 30 comprises a puerility of parallely extending filter units 34 (
It is appreciated that the filter units in the following disclosure can be of any type of filtering media such as a stack of filtering disks, a filtering screen (i.e. a fine mash of material) or a thread-type cylinder, etc.
Each of the filtering assemblies 30 is coupled to the main raw fluid supply line 22 via an inter-connecting inlet pipe 40 and to the filtered fluid collecting line 24 via an interconnecting outlet pipe 42, said inter-connecting inlet pipe 40 and interconnecting outlet pipe 42 extending substantially coaxial and at an upright orientation (substantially vertical), intersecting the main raw fluid supply line 22 and the filtered fluid collecting line 24 at a right angle.
The filtration array 20 is maintained in its configuration and supported by a plurality of supports 50 configured for retaining the system in a sturdy and fixed orientation and for that purpose several supports are disposed along the length of a filtration array.
The supports 50 comprise a widened based ground engaging portion 52 for resting or supporting to a ground surface, a supply line support portion 54 and a collecting line support portion 56 extending substantially parallel to one another and substantially vertical from the ground.
Each of the supports 50 is configured of a symmetric member 56A and 56B secured to one another and thus bracing the main raw fluid supply line 22 and a main filtered fluid collecting line 24.
Further reference is now being made also to
The manifold 66 comprises an inlet port 80 extending from the inter-connecting inlet pipe 40 and extending into an inlet chamber 82, and further, the manifold 66 comprises an outlet port 86 configured for coupling to the inter-connecting outlet pipe 42 and extending from an outlet chamber 88 of the manifold 66, said inlet chamber 82 and outlet chamber 88 being partitioned from one another by a partition wall 92.
In the particular example it is seen that the inlet port 80 of the manifold 66, and the outlet port 86, extend upon a common longitudinal axis designated T (
Each side of the manifold 66 is fitted with a filter coupler plate 96 (
According to a modification of the disclosed example, plates 96 are integral or integrated with the manifold 66. Such a configuration makes sealing arrangements with the manifold 66 and screw coupling arrangements, redundant.
The arrangement is such that fluid flowing through the inlet port 80 flows into respective chambers 60 and 62 via opening 112 formed in the plate 96 wherein raw fluid flows through the units 34 and upon filtration through the filtration units 34 flows into the central cavity 116 of each of the filter units 34 and from there it expands into the outlet chamber 88 of the manifold 66 and then through the outlet port 86, through inter-connecting outlet pipe 42 to be discharged through the main filtered collecting line 24.
Turning now to
The coupler 160 comprises two semi circular halves with abutting surfaces 162 at each end of the semi circle, said abutting surfaces extending substantially parallel to one another, and apertures 164 configured within the surfaces 162, to allow for insertion of bolts within the apertures 164 in order to fasten the halves together at their abutting surfaces 162.
Plastic coupler 160 further comprises upper shoulder 184 with inner conical wall surface 186 which matches the form of outer wall surface 172, and a lower shoulder 188 with inner conical wall surface 200, which matches the form of outer wall 178. When the two halves of plastic coupler 160 are mounted at the junction between the branch pipe 152 and secondary pipe 156, inner conical wall surfaces 186 and 200 engage outer wall surfaces 172 and outer wall 178 respectively, and the halves are compressed by tightening of the bolts, and thus the flange 176 and flanged end 168 are pressed together and the two pipes are sealingly yet detachably joined at the junction.
The annular groove 180 (formed at one or both of the flanged ends), is configured for receiving a sealing gasket.
At the ends of each semi circular halves 218 and 220 of the valve receiving coupler 210 there are provided abutting surfaces 226 and 228, respectively which comprise apertures 230 for insertion of bolts used for tightening the halves of the coupler 210 in a similar fashion as described above. However, different fastening arrangements can be configured for tightening the halves of the coupler to one another, such as a threaded bore into which volts are screwed, a toggle clamp etc., however not shown.
Attention is now directed to
It is however appreciated that additional sealing arrangements can be configured at the vicinity of the spinning element, between the two pipe segments, e.g. an O-ring, a hydraulic gasket and the like.
As fluid passes through the angled vanes 314 of the fluid spinning element 300, a spinning flow motion is created in the fluid as it leaves the fluid spinning element 300. A centrifugal force created by the spinning motion urges heavy particles residing in the fluid to gather near the walls of filter inlet pipe and thus separating the heavy particles from the main flow stream entering the filter system.
According to another example (not shown) the spinning element can be configured with straight vanes, i.e. not inclined with respect to a longitudinal flow axis, serving as a flow straightening device. According yet an example, the spinning element can be devoid of any vanes, thus serving as a gap smoothing device, between the two coupled pipe segments, thereby reducing or substantially eliminating drag forces.
It is appreciated that according to modifications of the disclosure referring to
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IL2011/050063 | 12/15/2011 | WO | 00 | 6/12/2013 |
Number | Date | Country | |
---|---|---|---|
61423787 | Dec 2010 | US |