The disclosed subject matter relates to fluid filtration systems and filter assemblies used by such systems. More particularly the disclosed subject matter relates to standalone independently activated filter assemblies comprising cylindrical filter element.
Various types of filters are configured with mechanisms for removing suspended solids from solid-entrained liquids. One type among those filters is a cylindrical screen filter. In a cylindrical screen filter, a filter element is generally placed within a sealed housing having inlet and outlet ports. In such an arrangement, liquid introduced into the housing flows from the inside of the filter element out through the perforations in the filter element. The filtered liquid then exits via the outlet of the housing. As a result, the solid material strained from the liquid flowing through the filter is retained on the inside of the filter element. In conventional filters, the retained solids are periodically discharged, using a back flushing liquid, through a manual or automatic valve opened to the atmosphere.
One of the methods used to achieve self-cleaning of the filter element utilizes suction nozzle mechanisms to create suction for pulling out the solids from the filter element which are then expulsed through the open exhaust valve. According to one of such methods, a plurality of nozzles scans the inside surface of the screen in a spiral movement during each cleaning cycle.
The disclosed subject matter is directed to filtration systems and filter assemblies.
The filtration system in accordance with the disclosed subject matter comprises a housing, configured with a raw fluid inlet zone comprising an inlet port, a main filtering chamber comprising an outlet port and an exhaust chamber comprising a fluid drain port configured at a top end of the exhaust chamber. The system further comprises at least one filter assembly extending within the housing. The filter assembly comprises a filter element disposed within the main filtering chamber; a cleaning assembly comprising a suction shaft, and a liquid resistant driving mechanism disposed within the exhaust chamber and configured to impart the suction shaft with rotary motion and reciprocal linear motion. The suction shaft comprises at least one suction nozzle along a portion thereof, disposed within the main filtering chamber in close proximity to the filter element and being sealed at its one end and configured with at least one exhaust opening at its other end configured for extending within the exhaust chamber. The suction shaft in accordance with this subject matter is adapted for selectively closing and opening the fluid drain port.
In accordance with the disclosed subject matter the filter system can be provided with two or more filter assemblies, each separately and independently activated. As each of the filter assemblies is a separate and independently activated unit, and as each filter element is associated with a suction/cleaning assembly, this configuration facilitates simultaneous filtering and cleaning within the main space.
As indicated above, this synchronized mode of operation ensures control of the amount of cleaning fluid and the volumetric fluid flow rate discharged from the system, thus preventing unnecessary loss of fluid from the system, e.g. of the contaminants containing fluid.
The independent operation is also beneficial in the event that one or more of the filter assemblies is in need of repair. In such a case, rather than replacing the entire filtration system, the damaged filter assembly is removed and repaired and/or exchanged with a new one. This provides for an easy and cost effective repair of the system.
In accordance with another aspect of the disclosed subject matter a filter assembly is provided. The filter assembly comprises at least one filter element and a cleaning assembly associated with each of the at least one filter assemblies. The cleaning assembly comprises a suction shaft, the suction shaft being sealed at its one end and configured with at least one exhaust opening at its other end and comprising at least one suction nozzle along a portion thereof; and a liquid resistant driving mechanism configured to impart the suction shaft with rotary motion and reciprocal linear motion. The suction shaft is adapted for selectively closing and opening a fluid drain port when received within a filter system housing comprising a fluid drain port.
Any one or more of the following features, designs and configurations can be incorporated in the filtration system and/or one or more filter assemblies according to the present disclosure, either separately or in combinations thereof:
In order to better understand the subject matter that is disclosed herein and to exemplify how it may be carried out in practice, embodiments will now be described, by way of non-limiting examples only, with reference to the accompanying drawings, in which:
Referring to
A cylindrical fine filter element 5 is secured to the collar 11 thus allowing fluid flow through the inlet port 3 into the filter element 5. It is however appreciated that other forms of separation and articulation of the filter element 5 to the housing can be applied, such as by provision of an endplate at the bottom end thereof.
The fine filter element 5, having a smaller diameter than that of the housing 2, rests concentrically within the main filtering chamber 19 of the housing 2, creating an outer space 6 (namely, a filtered fluid chamber) between an inside surface of the housing 2 and an outside surface of the filter element 5. An inner space 7 (also referred to as a raw fluid chamber) extends within the cylindrical filter element 5. The filter element 5 is a screen-type filter. It will be appreciated that any variation of a fine filtering element is envisioned, such a filter element should have a substantially cylindrical shape. Thus, for example, the screen of the cylindrical element can be folded in a zigzag manner or a bellows like fold thus providing, e.g. for a larger surface area for filtration. Alternatively, the filtering element can be a disc type element.
The raw fluid inlet zone 18 comprises a coarse filter element C. In the illustrated example the coarse filter element is a basket like concave member. The coarse filter element C is designed to protect the fine filter element 5 from large dirt particles by filtering large particles on its outer surface. The coarse filter element C is coupled to the cylindrical fine filter element 5. The fine filter element 5 is supported and capped by a hydraulically sealing collar 11. The sealing prevents the unfiltered raw water containing large particles from entering the main filtration chamber 19 of the housing 2 and in particular prevents unfiltered fluid from flowing into the outer space 6. In the present example, the filtrate of the coarse filter element C serves as the raw fluid to be treated by the fine filter element 5 and hereinafter reference made to raw fluid refers to fluid pre-filtered by the coarse filter element C.
The filter system 1 further comprises a suction/cleaning assembly generally designated 13 (best seen in
The shaft 15 can be roughly divided into three main portions as follows: the sealed bottom portion configured as a screw threaded element 22 comprising convolutions thereon, a hollow main suction portion 21, comprising a plurality of suction nozzles 16 and a hollow top portion 27 extending from the main suction portion 21 and in fluid communication therewith provided with a toothed surface, configured to act as a transmission gear against meshing transmission gears 28 associated with the drive motor 17 and activated thereby. It will be appreciated that while in this example two transmission gears are used to provide the mechanism with stability, less or more gears can be used, Mutatis Mutandis. As indicated, the top portion 27 is provided with openings 30 at its top end, the openings 30 being in fluid communication with the hollow interior of the shaft 15. It will be appreciated that in the illustrated example, the length of the bottom, screw threaded portion 22 substantially corresponds to the length of the toothed surface, i.e. the gear, of the top portion 27. In addition, the pitch of the threaded element 27 is equal or less than the diameter of the opening in the suction nozzle 16. The assembly 13 extends through the flange 8 and is surrounded by a mechanical seal 12 allowing little to no fluid to flow between the portions of the housing. The seal 12 primarily protects against leakage of any fluid within the exhaust chamber 20 back into the main filtering chamber 19 and maintains fluid pressure during various stages of operation of the filter. The seal 12, however, allows for axial and rotational motion of the assembly 13 relative to the filter element 5.
The assembly 13 as indicated is associated with an electric drive motor 17 connected thereto and disposed near its top portion, extending within the exhaust chamber 20. The drive motor 17 is mounted above the flanged endplate 8 within the filter housing 2. In accordance with the disclosed subject matter the drive motor 17 is adapted to operate in fluid and is liquid resistant as the drive motor 17 is entirely immersed within fluid at the exhaust chamber 20. The top end of the drive motor is fitted with a transmission gear 28. Transmission gear 28 is configured to be associated with the toothed surface of the top portion 27 of the shaft 15 thereby forming a rotational transmission system between the drive motor 17 and the shaft 15.
In operation, when the rotational transmission system is activated by the drive motor 17 rotating the transmission gear 28 which meshes with the toothed surface of the top portion 27 of the shaft 15, a corresponding axial displacement of the shaft 15 occurs when the screw threaded portion 22 is rotated and is imparted with a reciprocal linear motion as it is screwed through a nut collar 23 (best seen in
According to one example of the disclosed subject matter, inlet port 3 extends through inlet pipe 25 which communicates with inner space 7 of filter element 5 through coarse filter element C, and outlet port 4 communicates with outer space 6 of main filtering chamber 19.
In filtration mode, the unfiltered raw fluid is introduced through inlet port 3 (the flow path I is illustrated in
The cleaning cycle is performed as follows. First, the self-cleaning cycle is initiated by a pressure differential switch which activates the drive motor at a point when dirt material is accumulated on the fine filter element 5 (i.e. when the pressure differential DPI across the fine filter element 5 reaches a pre-set value), and/or by a timer which activates the drive motor 17 at predetermined time intervals. The space 7 within the filter element 5 has a higher (‘positive’) pressure relative to the pressure in the space outside the filter element 5, the controller sensing the differential pressure DPI activates the drive motor 17. Upon the initiation of the cleaning cycle, the electric drive motor 17 initiates the rotary motion of the gear system over the shaft 15. As the shaft is rotated, the screw threaded portion 22 of the shaft 15 translates the rotational motion into a reciprocal linear motion as it is screwed through the nut collar 23. This causes the shaft 15 and the suction nozzles 16 thereon to rotate and axially reciprocate, thus scanning substantially the entire inner surface 5A of the filter element 5.
With the activation of the gear system and the linear movement of the shaft 15 in the downwards direction, the drain fluid outlet port 9 is opened as the top end of the shaft 27 (acting as an integral valve) moves therefrom, thus causing the exhaust chamber 20 to open to atmosphere. In turn, this causes the pressure within the exhaust chamber and within the shaft to drop, causing a differential pressure DPII between the inner space 7 within the filter element and the hollow space within the shaft 15. Thus, suction is created at the opening of the nozzles 16. This suction draws suspended material that has been deposited on to the inside surface 5A of the fine filter element 5 during filtration, into the hollow shaft 15 through the nozzles 16. As the raw fluid continues to flow through the inlet port 3 and into the space 7, nozzles 16 draw therein both the suspended material and some of the raw fluid. The suspended material/mass together with the raw fluid is then flushed into the flushing cell/exhaust chamber 20 through the openings 30 at the top portion 27 (integral valve) of the shaft 15 and is discharged/flushed out through the flushing/drain fluid outlet port 9 outside the housing 2. The flushing flow path F1 is illustrated in
It will be appreciated that during the cleaning cycle, the drive motor 17 is configured to activate the gears 27 and 28 so as to move therein the main suction portion 21 of the shaft 15 in both the downwards and the upwards directions as desired. Alternatively the threaded screw portion 22 can be configured as a self reversing screw, as demonstrated in
While the filtration and the cleaning cycles have been exemplified and discussed as separate modes of operation, it will be appreciated that during the cleaning cycle, as the pressure differential changes, simultaneous filtration and cleaning is performed by the filtration system. For as long as the outlet port 9 of the exhaust chamber 20 is open to the atmosphere, the cleaning cycle is continuous simultaneously with the filtration cycle. Thus the cleaning cycle will be halted when the top end (i.e. the integral valve) of the shaft 17 reaches the outlet port 9 and locks the exhaust chamber 20 to the atmosphere. This mode of operation, and in particular the utilization of the integral valve 27 (i.e. its opening of the port 9 in response to the DPI and the activation of the drive motor and the closing of the port as the cleaning shaft 15 reaches the port 9, simultaneously completing the cleaning cycle and locking of the system to the atmosphere, without any delay which might cause loss of cleaning fluid from the exhaust chamber 20), decreases the loss of the amount of cleaning fluid and the volumetric fluid flow rate discharged from the system, thus preventing unnecessary loss of fluid from the system 1.
Another embodiment of the disclosed subject matter is illustrated in
The housing 102 is configured with a main filtering chamber 119 accommodating the fine filtering elements 105a-105e (only three seen in
As each of the filter assemblies is a separate and independently activated unit, and as discussed above, each filter element is associated with a suction/cleaning assembly 113, this configuration facilitates simultaneous filtering and cleaning within the main space. For example, one or more of the filter assemblies 110 can be in a cleaning mode while one or more of the remaining filter assemblies filters the raw fluid (seen in
As indicated above, this synchronized mode of operation ensures control of the amount of cleaning fluid and the volumetric fluid flow rate discharged from the system, thus preventing unnecessary loss of fluid from the system.
The independent operation is also beneficial in the event that one or more of the filter assemblies is in need of repair. In such a case, rather than replacing the entire filtration system, the damaged filter assembly is removed and repaired and/or exchanged with a new one. This provides for an easy and cost effective repair of the system.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IL2014/051059 | 12/4/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61911697 | Dec 2013 | US |