The present invention relates to a fin plug, for installation in a water craft, such as a surfboard or the like, adapted to enable a fin to be removably attached to the water craft.
A water craft, such as a surf-craft, particularly one on which a person stands, kneels or sits, when traversing water or riding a wave, generally has at least one fin in an underside of the craft, generally near the tail end of the craft. Such fins have a number of functions, including: enabling the craft to travel in a desired direction; facilitating the turning of the craft; preventing the craft from slipping sideways; and providing greater control over the movement of the craft, such as when riding a wave.
The following discussion is directed mainly to surf-craft, such as surfboards, but it is to be understood that the discussion applies equally to other water craft (and surf craft) which are adapted to include fins, such as sail boards, paddle boards, kite surf boards, rescue boards, surf skis, kayaks, and the like.
Some surf craft have the fins integrally formed on the surf craft and, for many years, this was the standard means for incorporating fins into such surfcraft. In the last twenty years or so, it has become more common for surfcraft to incorporate a removable fin or, more commonly, fin systems which include a number of removable fins. Such fin systems have numerous benefits, including enabling the fins to be removed for transportation and travelling, allowing damaged fins to be easily replaced and enabling fins of different shapes or styles to be selectively used. Such fin systems typically include at least one fin plug embedded into the underside of the surfcraft. This fin plug generally has at least one cavity adapted to receive a base portion (or a base element) of a surfcraft fin. The surfcraft fin is attached to the surfcraft by securing the base portion (or base element) of the fin into the cavity (or cavities) of the fin plug. There are numerous known fin systems which adopt this general arrangement.
One such known fin system is described in U.S. Pat. No. 5,464,359 in the name of Fin Control Systems Pty Ltd. This system includes fins having 2 projecting base elements (or tabs) and, for each fin, two fin plugs installed in the underside of the surfcraft. Each of the fin plugs has a cavity for receiving one of the base elements. Each fin plug also includes means for securing the base element into the cavity.
An alternative fin system is described in PCT/AU2008/001132, also in the name of Fin Control Systems Pty Ltd. This system also includes fins having 2 projecting base elements. However, these base elements are attachable to a single fin plug, having two cavities for receiving the two corresponding base elements.
Other known fin systems comprise a single fin plug, with a single cavity, for each fin. Typically, such a fin system has quite a large fin plug with an elongated fin cavity for receiving the base element of the fin. The fin plug of such systems also typically includes an upper flat portion having an opening from which the fin cavity extends inwardly and a flange section extending laterally about the opening. This flange section has a particular width. Extending downwardly from an underside of the flat upper portion is a body portion which surrounds the fin cavity. The shape of such a fin plug generally requires two cavities to be routed into the underside of the surfcraft in a two-step process. Firstly, a relatively wide, shallow cavity needs to be formed, the dimensions of which substantially correspond to the shape of the flange section. The depth of this first cavity will substantially correspond with the width of the flange section. Secondly, a narrow, deeper cavity needs to be formed in the first mentioned cavity, which is adapted to receive the body portion of the fin plug. As most surfcraft are designed to accommodate three fins, having to adopt this two-step process for forming each fin plug cavity in the surfcraft substantially slows down the installation process.
Another problem with known fin plugs is that the bond formed between the fin plug and the resinous material with which the fin plug is typically secured within a surfboard blank can be, or can become, flawed, particularly as a result of pressure placed upon the surfcraft fin (which, in use, is connected to the fin plug). The means by which a fin plug is secured within a surfcraft is typically by means of a harden-able liquid resinous material between external surfaces of the fin plug and the wall(s) of the cavity into which the fin plug is inserted.
In the fin system described in U.S. Pat. No. 5,464,359, each of the fin plugs has a top surface (being the surface on which the opening to the cavity is located) and following installation in the surfcraft, this top surface is exposed, being flush with the surface of the underside of the surfcraft.
In the fin system described in PCT patent application number PCT/AU2008/001132 published as WO 2009/021267 A1, each fin plug has a top surface (again being the surface on which the opening to each cavity is located). Following installation in the surfcraft, this top surface is not exposed but, rather, sits under a fibreglass layer. This fiberglass layer above the fin plug top surface is generally continuous with the fibreglass layer of the underside of the surfcraft. The fiberglass layer which sits over the top surface of the fin plug enhances the secure fixation of the fin plug to the surfcraft.
A further problem with most known fin plugs (such as those disclosed in U.S. Pat. No. 5,464,359) is that, when installed in a surfcraft, they are surrounded by the relatively low density foam of which the surfcraft is formed. Such foam may not generally provide sufficient strength to support the loads placed upon the fin plug, due to forces applied to the attached fin, without some deformation, weakening or crushing of the surrounding foam over time. Such deformation or weakening of the foam may cause the fin plug to sink into the foam or to shift out of alignment, with consequential reduction in performance of the attached fin. This can also cause the fibreglass skin, in the vicinity of the fin plug, to crack or shatter. Also, when the fin plug sinks into the foam body, it can cause the top surface of the fin plug to separate from the adjoining fiberglass layer.
Surfcraft fins can be subject to very substantial forces (especially lateral forces) when the surfcraft is undergoing a turn or upon impact with some other object and these forces are then transferred to the corresponding fin plugs to which the fins are attached. These forces can place very substantial strains on the connections (formed of hardened resinous material) between the fin plug and the surfcraft. In turn, these connections can be weakened and, in some cases, the hardened resinous material can crack). These strains upon the abovementioned connections are generally in inverse proportion to the total area of the external surfaces of the fin plug. Accordingly, the smaller this area, the greater will be the strain placed upon the relevant connection.
The present invention is directed towards ameliorating at least some of the above described problems associated with prior art fin plugs and, consequently, the methods of installing these. In particular, one object of the present invention is directed towards providing a fin plug assembly which is adapted to form a stronger bond with the resinous material with which it is secured to a surfcraft.
Any reference herein to known prior art does not, unless the contrary indication appears, constitute an admission that such prior art is commonly known by those skilled in the art to which the invention relates, at the priority date of this application.
According to a first aspect of the present invention, there is provided a fin plug for a water craft, said fin plug including:
Preferably, the fin plug includes a plurality of said holes extending between the top surface and the bottom surface. It is further preferred that the fin plug includes a planar portion, having said top surface and bottom surface, and a base portion extending from said bottom surface and surrounding said at least one fin cavity. The planar portion of the fin plug preferably includes a flange extending laterally from said a least one opening to an external perimeter.
In a preferred embodiment of this aspect of the invention, the fin plug includes two fin cavities for receiving two base elements of a water craft fin, said fin cavities extending inwardly from two openings in the top surface of said planar portion.
It is particularly preferred that at least some of the holes extend through the flange of the planar portion.
In another embodiment of the invention, a fin plug for a water craft, said fin plug including:
In further embodiment of the first aspect of the invention, the fin plug may have a honeycomb-like structure in that it has a plurality of holes extending from the top surface to a base surface of the base portion of the fin plug. In this embodiment, the holes have a length of up to about 2 cm.
In an alternative embodiment, the holes are located in the planar portion of the fin plug and, in this embodiment; the holes have a length of up to about 0.5 cm. Preferably, the length of these holes is about 0.3 cm. As will be appreciated, the length of the holes is effectively the distance from the top surface to the bottom surface.
It is further preferred that the base portion of said fin plug includes a plurality of rib elements on an external surface thereof. The main purpose of these rib elements is to enhance the strength and/or structural integrity of the fin plug. The rib elements may also enhance the bonding of the fin plug to a surrounding foam body. This base portion preferably includes a wall section and a floor section which are of substantially uniform thickness. A benefit of this uniform thickness is that it reduces the risk of any deformation of these sections of the fin plug during the cooling of the fin plug (following an injection moulding manufacturing process).
The fin plug will typically contain fin retention means serving to keep the fin connected to the water craft (as desired).
In one preferred embodiment, the fin retention means includes a grub screw located within a screw hole which extends from the top surface and communicates with said at least one fin cavity. In an embodiment of the invention in which the fin plug contains two fin cavities, the fin retention means of the fin plug may include one grub screw located within a screw hole which extends from the top surface and communicates with one of said two fin cavities. In a variation of this embodiment, the fin retention means may include two grub screws located within two screw holes, one of which extends from the top surface and communicates with one of said two fin cavities and the other of which extends from the top surface and communicates with the other of said two fin cavities.
In an alternative preferred embodiment, the fin retention means includes a biasing means adapted to impose a lateral force on the base element of the fin located in said fin cavity. This biasing means may include a resilient biasing rod and a protruding member cooperating with the biasing rod, said protruding member being adapted to abut the base portion of said fin when received in said fin cavity. If the fin plug contains two fin cavities it is preferred that the biasing means is adapted only to impose the stated lateral force on the base element of the fin in one of the fin cavities (although it is possible that such a lateral force could be applied within both of the cavities). The biasing rod may be formed of any suitable material such as titanium, steel, marine grade steel, fiberglass, carbon fiber, plastic and reinforced engineering plastic.
It is possible that the fin plug may incorporate both of the fin retention means described in the above two paragraphs.
In a further preferred embodiment, the fin plug may further include fin removal inhibiting means including a ledge portion, within said fin cavity, adapted to overlie a section of the base element of said fin, thereby inhibiting removal of the fin.
The fin plug may be formed of any suitable material, although plastic, thermosets and thermoplastic materials will generally be preferred. Suitable thermoplastic materials include polyamide (nylon′), acrylonitrile butadiene styrene (‘ABS’), polyurethane, polyvinyl chloride (‘PVC’), polybutylene terepthalate (‘PBT’), polyurethane and polyethylene terephthalate (‘PET’).
According to a second aspect of the present invention, there is provided a fin plug assembly including:
Preferably, the fin plug of the above fin plug assembly includes a plurality of said holes extending between the top surface and the bottom surface and foam in-fills located in at least some of the plurality of holes.
In a preferred embodiment, the foam in-fills are integrally formed or adhered with a foam body which underlies the planar portion of the fin plug. Preferably, this foam body substantially surrounds the base portion of the fin plug. In a particularly preferred embodiment, this foam body includes a sidewall which has a profile which is substantially identical to the external perimeter of the flange of the planar portion. The sidewall is preferably a continuous sidewall which extends about the foam body. Alternatively the sidewall may have a profile as described in detail below.
It is generally preferable that the foam body has a thickness which is substantially equivalent to the distance from the bottom surface of the planar portion to a base surface of the base portion of the fin plug.
In a particularly preferred embodiment of this aspect of the invention, an upper end of each in-fill (or at least most of the in-fills) is substantially flush with said top surface. A benefit of this feature is that it results in enhanced bonding between the fin plug assembly and a superimposed layer of fibreglass and resinous material (during the process of installing the fin plug assembly in a water craft, such as a surfboard).
It is preferred that the foam body and foam infills are formed of a high density foam or a foam as detailed further below.
According to a further aspect of this invention, there is provided a method of manufacturing a fin plug assembly, as described above, said method including the steps:
It is preferred that the above method includes the further step of cutting excess foam from the fin plug plus foam block so that the top surface of the planar portion and the base surface of the base portion of the fin plug are exposed.
In a preferred embodiment of the above method, a further preferred step is the cutting of excess foam from the fin plug plus foam block so as to form a sidewall of the fin plug assembly which has a profile which is substantially identical to the external perimeter of the flange of the planar portion.
In an alternative embodiment of the above method the mould chamber has a shape adapted to form a sidewall of the fin plug assembly which has a profile which is substantially identical to the external perimeter of the flange of the planar portion. This can avoid the need to cut away excess foam from the fin plug plus foam block around the sidewall thereof.
According to another further aspect of this invention, there is provided a method of manufacturing a fin plug assembly, as also described above, said method including the steps:
Preferably, the liquid foam is formed of polyurethane foam, epoxy foam, EPS foam, PVC foam or PET foam. It is further preferred that the liquid foam is adapted to form solid foam when cooled to about room temperature, said solid foam being a high density foam or a foam of substantially similar density as the foam blank of the water craft. For a high density foam a foam density of greater than approximately 50 kg/m3 may be used or more preferably greater than approximately 70 kg/m3.
According to another aspect of this invention, there is provided a method of installing in a water craft a fin plug assembly, as described above, said method including the steps:
In order to inhibit unwanted resinous material from entering into the fin cavity (or fin cavities) of the fin plug assembly, it is preferred that said cavities are covered or blocked. For instance, any such cavity may be blocked by having (removable) plastic in-fills inserted into them or a sticker sheet or tape applied to the opening of the cavity.
Preferably, prior to the abovementioned step of pouring an amount of resinous material into the plug hole, the following steps are included:
When the above preferred steps are involved, then the covering or blocking of the of the fin cavities is undertaken after these steps have been taken.
Preferably, the material used to block up each cavity is a cavity in-fill which may be formed of the same material as the fin plug.
Typically, the water craft is a surfboard and the shaped foam water craft blank will be a shaped foam surfboard blank.
According to a further invention, there is provided a fin plug assembly for a water craft, said fin plug assembly including:
Accordingly to a still further invention, there is provided a fin plug assembly for a water craft, said fin plug assembly including:
Further forms of the invention are as set out in the appended claims and as apparent from the description.
A detailed description of preferred embodiments of the first aspect and the second aspect of the present invention are given hereinafter, while referring to
An example fin plug 10 is shown in
The fin plug 10 of
It will be readily appreciated that the top surface 15 may be curved or otherwise shaped to correspond to the surface profile of a foam blank of a water craft or a surf craft in the position where the fin plug 10 is to be installed. Installation and other details of the fin plug are described in detail further below.
In one particular example, the planar portion 16 can include a flange 19 extending laterally from the at least one opening 30 to an external perimeter 22 of the fin plug 10. Thus, in this particular example, one or more holes 35 can extend through the flange 19 of the planar portion 16. For example as can been seen in
It will further be appreciated that the fin plug 10 can include two fin cavities 25 which extend inwardly from two separate openings 30 in the top surface 15 of the planar portion 16.
According to one particular example, the one or more holes 35 are located in the planar portion and have a length or depth of up to 0.5 cm. And yet in a further example, the holes can have a length of about 0.3 cm. As can be seen, the lengths or depths of the holes are substantially equivalent to the distance between the top surface 15 and the bottom surface of the flange 19.
The fin plug 10 can also include a fin retention means or otherwise termed a securing means. In one particular example, as shown in
Notably, there can be provided two or more grub screws located within respective two or more screw holes 28. In this particular example, one of the grub screws can extend from the top surface 15 and communicate with one of said two fin cavities 25 and the other of the grub screws can extend from the top surface 15 and communicates with the other of said two fin cavities 25.
The inclusion of the screw holes 28 (and the grub screws) in the fin plug described above are optional inclusions and may be done, primarily, to accommodate certain known surf craft fins which have fin tabs which extend into the fin cavities 25 and which are typically held in place by means of the grub screws. When such known surf craft fins are secured to the fin plug, the fin tabs may not entirely fill the fin cavities and, consequently, there may be an empty space in the relevant fin cavity. In order to minimise or avoid the presence of any such empty space, a small cavity insert may (optionally) be inserted into the fin cavity to ‘fill in’ any such space when the water craft or surf craft is fitted with a fin/s and in use. Examples of such, other cavity inserts are shown in
In yet a further example, as shown particularly in
Typically, the biasing means 45 includes a resilient biasing rod and a protruding member 46 (as shown in
In yet a further example of the above reference, the fin plug 10 can also include a fin removal inhibiting means, described below with respect to
It will be appreciated by persons skilled in the art that the fin plug 10 may be formed of a thermoplastic, thermoset or plastic material, including but not limited to: a rigid thermoplastic, polyamide (‘nylon’), acrylonitrile butadiene styrene (‘ABS’), polyethylene, polyvinyl chloride (‘PVC’), polyurethane, polybutylene terephthalate (‘PBT’) and polyethylene terephthalate (‘PET’).
The foam body 40 may be formed about and within the fin plug 10 by a foam injection moulding process as described below with respect to
A purpose of the rib elements 24 is to enhance the strength and/or structural integrity of the fin plug 10. The rib elements 24 may also enhance the bonding of the fin plug and mechanical coupling of the fin plug to a surrounding foam body as shown in
It will be appreciated that, when in the final stages of manufacturing the surf craft, as described below, a cavity insert 50 (for example
The cavity insert may be made of the same or similar materials to that described above for the fin plug. Preferably the cavity insert is formed of a material which has poor adhesion to the resinous material, other adhesives and the foam. Alternatively a person skilled in the art may select an appropriate material for the cavity insert and the application of the glass layer 60, resins, adhesives and fillers.
Furthermore, as shown in
Notably, the fin plug 10 as described herein can include a ramp 70, lip, or the like formed at least partially or wholly around the surface of the cavity 25 opening 30. Examples of the ramp 70 are shown in
Although
Further examples of possible manufacturing and installation techniques of the fin plugs shown in the Figures are described below.
The fin plug assembly 90 is typically formed by inserting the fin plug 10 into a mould and liquid foam is injected into the mould so as to enable the foam to form and bond around the underside of the fin plug 10 and into the holes 35. The foam may then be heated to promote curing of the foam, thereby forming the composite foam and fin plug assembly 90. The foam body 40 is therefore, typically, moulded around the underside of the fin plug 10. Thus, as described herein, together the foam body 40 and the fin plug 10 form the composite foam and fin plug assembly 90 (as shown in
The foam in-fills 42 occupy the holes 35 and, as shown in
It will be readily appreciated that the foam 42 within the holes 35 may not entirely fill the holes 35 to be flush with the top surface 15, but may be a sufficient filling of the hole to allow sufficient bonding with the glass layer 60. The glass layer 60 may also partially enter the holes 35. Alternatively it will also be appreciated that the foam infills 42 may also overfill the holes 35 such that foam 42 protrudes above the top surface 15. For example the foam infill 42 may protrude up to approximately 3 mm above the top surface 15 or more preferably up to approximately 1 mm above the top surface 15.
It will also be readily appreciated that the geometry or shape of the holes 35 with the foam in-fills 42 may be varied and still achieve the desired bonding and mechanical connection between the fin plug 10, the glass layer 60 and the rest of the body of the water craft. The shape, arrangement and number of the holes may be optimised and varied to improve the desired bonding and mechanical connections between the fin cavities and the glass layer 60, whilst maintaining the structural integrity of the planar portion 16 and the flange 19. For example the hole cross-sectional shape may be as shown in the Figures as: circular, semi-circular, portions of a circle and hexagonal. Further cross-sectional shapes include: slots, ellipses, rectangular, square, irregular shapes, polygonal and the like to provide the function required for providing a foam surface for bonding with the glass layer 60. Alternatively the planar portion 16 and the flange 19 may in part at least be a lattice of holes or apertures where the holes or the apertures may be of different shapes depending on: a form of the lattice or a framework which forms the lattice.
The top surface 15 may alternatively be rippled or corrugated. The wells formed by the rippled surface or corrugations may contain foam for bonding with the glass layer 60.
It will also be further appreciated that a use of a second moulding process, described in detail below, may be used to apply the foam to holes which are blind. For example the holes are only open at one end at the top surface 15. In other words the holes or apertures may only extend part of a thickness of the flange 19 or of the planar portion 16. Alternatively blind holes may also include recesses in the top surface of the fin plug.
As can be seen from the
The foam used to form the foam body or foam infill 40 may be the same or substantially similar or compatible with that used for the foam used for foam blanks 62 of surfboards and water crafts. For example closed cell polyurethane (PU) closed cell expanded polystyrene (EPS) and closed cell extruded polystyrene foams. The density of such foams may approximately range from 15 to 50 kg/m3.
In an alternate embodiment the foam body or foam infill 40 may be a higher strength and a higher stiffness closed foam that than that used for the foam blank of the water craft or the surf craft. Such higher strength or higher stiffness foams typically correspond to higher density foams compared with those used for water craft and surfboard blanks. For example a foam density of greater than approximately 50 kg/m3 may be used or more preferably greater than approximately 70 kg/m3.
The higher density foam may be of the same or similar type as that described above for the foam blanks as well as including epoxy foams, polyethylene terephthalate (PET) foams and polyvinyl chloride (PVC) foams. It will be readily appreciated that a person skilled in the art may select or design a suitable performing foam.
A higher density foam for the foam body or foam infill compared with the foam blank may provide a number of advantages in the performance of the composite foam and fin plug assembly within the water craft or surf craft. For example a stiffer or higher strength foam within the holes 35 of the top surface may more effectively transmit and withstand higher forces in the bonding between the glass layer 60 and the composite foam and fin plug assembly. With respect to the sidewalls and bottom of the foam body of foam infill 40 the advantages are as disclosed in PCT Patent Application No. PCT/AU2008/001132, “A Fin Plug Assembly and Method of Installation” filed 5 Aug. 2008, the contents of which are incorporated herein by reference.
The profile of the sidewalls 92 of the foam body 40 are shown in
As can be seen from the
Alternatively the foam sections 40A, 40B may be injection moulded about the fin plug 110 as described above for
It will be readily appreciated that an alternative first foam section 40A may also be applied to the top surface of the planar portion 16C of the fin plug 210 in
In yet a further example,
In the example of
First Example Manufacturing Technique of the Composite Foam and Fin Plug Assembly in
Steps which may be taken in a manufacturing of the fin plug of the above Figures includes:
It will be readily appreciated that a similar manufacturing technique may be used where a pre-formed foam body 40 is desired which is then subsequently joined or bonded with a fin plug. For example the subsequent joining as illustrated and described above with respect to
Typically prior to the installation of a fin plug into a surfboard the surfboard foam blank has been shaped with the fin/s position/s marked on the underside by the shaper of the surfboard. The foam blank may or may not have one or more glass layers. The steps to subsequently install the composite foam and fin plug assembly may include:
The following advantages may be provided:
(a) No stickers are required to cover the openings 30 of the fin cavities 25. The use of stickers or masking tape may be time consuming and prone to failure leading to resin and the like flowing into the fin cavities.
(b) As the fin plug sits flush with the foam blank surface of the surf board it is quicker and easier to apply the glass layer 60 to and about the composite foam and fin plug assembly. More attention is required to remove air bubbles and position the glass layer around fin plugs which have a raised lip about the openings to the fin cavities.
(c) It is easier to sand fibreglass laps during a glassing process and the final sanding and polishing process.
(d) The glass layer covers the whole surface of the composite foam and fin plug top surface 15, except the openings 30 to the fin cavities 25. This provides a stronger mechanical coupling between the top surface 15 and the rest of the surfboard by increasing the surface area for the glass layer 60 to bond and mechanically key to the top surface 15. Prior art fin plugs with a ramp or a raised lip about the openings to the fin cavities may suffer from the glass layer about the openings receding or feathering away from the openings and fin cavities when sanded.
(e) The chemical and mechanical bonding of the resin to the foam at the top surface provides an improved bonding compared with bonding only to a plastic or otherwise surface of prior art fin plugs.
(f) The use of a cavity insert 50 facilitates the use of the installation jig to adjust the cant and toe angles of the fin plug by providing a flush reference surface to adjust the angles against.
(g) Improved aesthetic qualities of having the preferably high density, structural foam becoming an appealing feature as well as indicating that a superior fin plug and installation process has been used for the particular water craft or surfboard.
An alternative to the first example manufacturing technique is to sacrifice the first cavity insert at step 6) when excess foam is being removed. In situations where the foam has covered the top surface 15 and the cavity insert 50, it may be more economic and time efficient to use a router or other tool to remove the foam above the cavity insert without precautions to maintain the integrity of the cavity insert. A new cavity insert may be used to replace the cavity insert used in foam moulding. The new cavity insert would also have the cross hair markers 54 for guiding the positioning of the second template guide when using a router to obtain access to the fin cavities through the glass layer 60.
The use of a sacrificial cavity insert may then be used for the forming of the composite foam and fin plug assembly of the first example for the example Figures referenced. It may be particularly useful where the excess of foam to the top surface 15 is so much that the cavity insert cannot be seen.
Sacrificial cavity inserts may also be used for the composite foam and fin plugs assemblies of
An alternative to the first example installation technique is the separate installation of the pre-formed foam body 40, 40B, 24, 540, 1940 into the foam blank prior to the fin plug 10. It has been described above that the foam body for the fin plug may be pre-formed to the fin plug. The pre-formed foam body may be separately installed into the foam blank with an appropriate installation jig as per steps II to IV of the first example. Then additional steps may be included to then separately install the fin plug by joining or otherwise adhering the fin plug to the foam body, which is already installed in the foam blank.
Where the pre-formed foam body is separately installed then it may be supplied as in an assembly kit that includes a fin plug, a pre-formed foam body, adhesive/s, cutting or routing templates, suitable installation jigs and instructions.
The assembly kit may also be suitable for also assembling a composite foam and fin plug assembly which then may be installed into the foam blank as described for the first example installation technique.
In this specification, terms denoting direction, such as vertical, up, down, left, right etc. or rotation, should be taken to refer to the directions or rotations relative to the corresponding drawing rather than to absolute directions or rotations unless the context require otherwise.
Where ever it is used, the word “comprising” is to be understood in its “open” sense, that is, in the sense of “including”, and thus not limited to its “closed” sense, that is the sense of “consisting only of”. A corresponding meaning is to be attributed to the corresponding words “comprise”, “comprised” and “comprises” where they appear.
It will be understood that the invention disclosed and defined herein extends to all alternative combinations of two or more of the individual features mentioned or evident from the text. All of these different combinations constitute various alternative aspects of the invention.
While particular embodiments of this invention have been described, it will be evident to those skilled in the art that the present invention may be embodied in other specific forms without departing from the essential characteristics thereof. The present embodiments and examples are therefore to be considered in all respects as illustrative and not restrictive, and all modifications which would be obvious to those skilled in the art are therefore intended to be embraced therein.
Number | Date | Country | Kind |
---|---|---|---|
2012905008 | Nov 2012 | AU | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/AU2013/001314 | 11/14/2013 | WO | 00 |