None.
The present disclosure is related generally to sporting equipment and, more particularly, to personal watercraft.
Wave surfing is one of the oldest board sports. From the inspiration of surfing came “sidewalk surfing” or skate boarding, as well as snowboarding, wake boarding, and kite boarding. However, in spite of the longevity of surfing, the newer board sports have surpassed surfing in the complexity and variety of maneuvers and stunts performed by their riders. This is largely due to a surfboard being uni-directional (able to move forward for extended periods of time), while other board sports have equipment that allows them to move bi-directionally (able to move forward or backward for extended periods of time). The shape of modern skateboards, snowboards, wake boards, and kite boards have since adopted symmetrical designs (from front to back) which allows a wide variety of maneuvers.
The key challenge in designing a bi-directional surfboard is the fins (or skegs) of the surfboard. The fins are used to give lateral traction of the board as it slides down a wave. But if a surfer spins the board around 180 degrees, the fins (now at the front of the board) dig into the water, making the board unstable and preventing the surfer from riding with the fins in the front of the board for extended periods of time.
Other inventors have recognized this challenge, and there have been several attempts to create a bi-directional surfboard, but none of the attempts have been adopted by the surfing community. Attempts at a bi-directional surfboard include a board with ridges instead of fins, fins that retract into the surfboard, as well as reduced size of the fins. These ideas have not been adopted by the surf community for a number of reasons, including a decrease (perceived or real) in board performance, and a necessity of substantially altering how a surfer would use the surfboard. Thus, there remains a need for an invention that allows surfers to surf bi-directionally in a high performance manner without substantially changing the dynamics of wave riding.
The present invention(s) elegantly overcome many of the drawbacks of prior systems and provide numerous additional improvements and benefits as will be apparent to persons of skill in the art. Provided in various example embodiments is a bi-directional watercraft, such as a surfboard, comprising a fin system configured to allow a user of the watercraft to perform bi-directional maneuvers and stunts. One example embodiment is shown in
For example, provided in various example embodiments is a watercraft comprising: a body extending longitudinally from a first end to a second end, the body comprising an undersurface; fin assemblies proximate the first end and the second end, each fin assembly comprising a fin pivotably coupled with the undersurface, wherein each fin is pivotable between a deployed position wherein the fin extends substantially perpendicularly to the undersurface, and a stowed position wherein each fin extends substantially parallel to the undersurface; wherein each fin assembly is configured so that when water flows past each fin in a chordwise direction from an end of the body distal that fin toward an end of the body proximate that fin, hydrodynamic force biases that fin toward the deployed position; and wherein each fin assembly comprises a biasing mechanism biasing each fin toward the stowed position so that each fin tends to return to the stowed position when no water flows past each fin.
In various example embodiments the watercraft may be any of a surfboard, a paddleboard, a kayak, or a wakesurf board, for example.
In various example embodiments the watercraft may further comprise two fin assemblies proximate the first end of the body and two fin assemblies proximate the second end of the body, the fin assemblies mounted to the body symmetrically (or asymmetrically) about a longitudinal centerline of the body; wherein the fins on a first side of the longitudinal centerline pivot in a first direction, and the fins on a second side of the longitudinal centerline pivot in a second direction opposite the first direction.
In various example embodiments one or more of the fin assemblies may comprise a stowed-position holder configured to tend to hold that fin assembly's fin in the stowed position and then to release the fin to pivot toward the deployed position when water flows past the fin with a sufficient force in a chordwise direction from an end of the body distal the fin toward an end of the body proximate the fin. In various example embodiments one or more of the fin assemblies may comprise a deployed-position holder configured to tend to hold that fin assembly's fin in the deployed position as long as water flows past the fin with a sufficient force in a chordwise direction from an end of the body distal the fin toward an end of the body proximate the fin.
Also provided in various example embodiments is a fin assembly comprising: a fin base comprising a watercraft mount configured to mount the fin assembly to a substantially planar surface of an exterior of a watercraft; a fin comprising a body extending in a first longitudinal direction from a front portion to a rear portion and extending in a second longitudinal direction from a base portion to a tip portion; a coupling configured to pivotably attach the base portion of the fin to the fin base so that when the fin assembly is mounted to the substantially planar surface of the exterior of the watercraft, the fin body may pivot about an axis that is at least substantially parallel with the first longitudinal direction to allow the fin body to pivot between a deployed position wherein the second longitudinal direction is substantially perpendicular to the planar surface of the exterior of the watercraft, and a stowed position wherein the second longitudinal direction is substantially parallel to the planar surface of the exterior of the watercraft; and a biasing element configured to bias the fin toward the stowed position.
In various example embodiments the coupling may comprise a hinge or an elastomeric element, for example. In various example embodiments a fin assembly may further comprise a stowed-position holder configured to tend to hold the fin in the stowed position, the stowed-position holder comprising a mechanical interference between the fin and the fin base when the fin is in the stowed position. In various example embodiments a fin assembly may further comprise a deployed-position holder configured to tend to hold the fin in the deployed position. In various example embodiments a deployed-position holder may comprise a slot in the coupling that engages the fin when the fin is in the deployed position. In various example embodiments a fin assembly may further comprise a stowed-position holder configured to tend to hold the fin in the stowed position, the stowed-position holder comprising an interference element configured to tend to prevent the fin from pivoting toward the deployed position when the fin is in the stowed position. In various example embodiments an interference element may comprise a lever rotatable between at least two positions. In various example embodiments a fin may be configured to be longitudinally translated from a first longitudinal position to a second longitudinal position, and the interference element comprises a portion of the fin that mechanically interferes with another portion of the fin assembly when the fin is in the first longitudinal position and does not mechanically interfere with said another portion of the fin assembly when the fin is in the second longitudinal position. In various example embodiments a fin may be configured to be longitudinally translated from the first longitudinal position to the second longitudinal position by the force of water traveling over the fin.
Further provided in various example embodiments is a method of incorporating a fin assembly with a substantially planar surface of an exterior of a watercraft, the method comprising the steps of: providing a fin assembly comprising: a fin base comprising a watercraft mount configured to mount the fin assembly to a substantially planar surface of an exterior of a watercraft; a fin comprising a body extending in a first longitudinal direction from a front portion to a rear portion and extending in a second longitudinal direction from a base portion to a tip portion; a coupling configured to pivotably attach the base portion of the fin to the fin base so that when the fin assembly is mounted to the substantially planar surface of the exterior of the watercraft, the fin body may pivot about an axis that is at least substantially parallel with the first longitudinal direction to allow the fin body to pivot between a deployed position wherein the second longitudinal direction is substantially perpendicular to the planar surface of the exterior of the watercraft, and a stowed position wherein the second longitudinal direction is substantially parallel to the planar surface of the exterior of the watercraft; and a biasing element configured to bias the fin toward the stowed position; and mounting the fin assembly to the substantially planar surface of the exterior of the watercraft.
In various example embodiments the method may further comprise the steps of: providing two of said fin assemblies; and mounting the fin assemblies to the substantially planar surface of the exterior of the watercraft symmetrically about a longitudinal centerline of the watercraft so that the fin on a first side of the longitudinal centerline pivots in a first direction, and the fin on a second side of the longitudinal centerline pivots in a second direction opposite the first direction. In various example embodiments the method may further comprise the steps of: providing a plurality of said fin assemblies; mounting at least a first two of the fin assemblies to the substantially planar surface of the exterior of the watercraft symmetrically about a longitudinal centerline of the watercraft and proximate a first end of the watercraft; mounting at least a second two of the fin assemblies to the substantially planar surface of the exterior of the watercraft symmetrically about a longitudinal centerline of the watercraft and proximate a second end of the watercraft opposite the first end of the watercraft; and said mounting steps positioning the fin assemblies so that the fins on a first side of the longitudinal centerline pivot in a first direction, and the fins on a second side of the longitudinal centerline pivot in a second direction opposite the first direction. In various example embodiments the method may further comprise the steps of: mounting the first two and the second two of the fin assemblies to the substantially planar surface of the exterior of the watercraft symmetrically about a line perpendicular to the centerline of the watercraft, so that: water flowing over the fins in a first direction parallel to the centerline of the watercraft urges the fins of the first two of the fin assemblies to pivot toward the deployed position; and water flowing over the fins in a second direction parallel to the centerline of the watercraft and opposite the first direction urges the fins of the second two of the fin assemblies to pivot toward the deployed position. In various example embodiments the method may further comprise the steps of: riding the watercraft so that water flows over the fins in the first direction and causing one or more the fins of the first two fin assemblies to pivot to the deployed position; riding the watercraft so that water stops flowing over the fins of the first two fin assemblies and causing the fins of the first two fin assemblies to pivot to the stowed position; and riding the watercraft so that water flows over the fins of the second two fin assemblies in the second direction and causing one or more the fins of the second two fin assemblies to pivot to the deployed position.
Additional aspects, alternatives and variations as would be apparent to persons of skill in the art are also disclosed herein and are specifically contemplated as included as part of the invention, including but not limited to all the embodiments shown or discussed in the '053 Application. The invention is set forth only in the claims as allowed by the patent office in this or related applications, and the summary descriptions of certain examples are not in any way to limit, define or otherwise establish the scope of legal protection.
Various embodiments are depicted in the accompanying drawings for illustrative purposes, and should in no way be interpreted as limiting the scope of the embodiments. Furthermore, various features of different disclosed embodiments can be combined to form additional embodiments, which are part of this disclosure. It will be understood that certain components and details may not appear in the Figure(s) to assist in more clearly describing the invention.
Reference is made herein to some specific examples of the present invention, including any best modes contemplated by the inventor for carrying out the invention. Examples of these specific embodiments are illustrated in the accompanying Figure(s). While the invention is described in conjunction with these specific embodiments, it will be understood that it is not intended to limit the invention to the described or illustrated embodiments. To the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. Particular example embodiments of the present invention may be implemented without some or all of these specific details. In other instances, process operations well known to persons of skill in the art have not been described in detail in order not to obscure unnecessarily the present invention. Various techniques and mechanisms of the present invention will sometimes be described in singular form for clarity. However, it should be noted that some embodiments include multiple iterations of a technique or multiple mechanisms unless noted otherwise. Similarly, various steps of the methods shown and described herein are not necessarily performed in the order indicated, or performed at all in certain embodiments. Accordingly, some implementations of the methods discussed herein may include more or fewer steps than those shown or described. Further, the techniques and mechanisms of the present invention will sometimes describe a connection, relationship or communication between two or more entities. It should be noted that a connection or relationship between entities does not necessarily mean a direct, unimpeded connection, as a variety of other entities or processes may reside or occur between any two entities. Consequently, an indicated connection does not necessarily mean a direct, unimpeded connection unless otherwise noted.
Turning to the drawings, wherein like reference letters refer to like elements, various example embodiments are illustrated as implemented in an example environment. Note that for the sake of clarity in the discussion, rather than repeatedly stating “watercraft” and “watercraft user,” most of the examples refer to an example watercraft, namely a “surfboard,” and the user a “surfer.” These example references should not be interpreted to narrow the scope of the claims in any way.
The Summary includes a detailed discussion of
Note that
Turning to
When the surfer changes the direction of the board, what was the operative front end of the board becomes the operative rear. Water begins to flow (E) from the end of the board farther from the pictured fins (the “distal” end) toward the end near the fins (the “proximate” end). The fin assemblies are shaped or positioned (or both) so that water flowing in this direction (E), that is, water hitting the leading edge of the fin, exerts hydrodynamic pressure on the fin causing it to pivot (F) toward the deployed position (D) where the fin is substantially perpendicular to the undersurface of the board. While in this deployed position (D), the fin may function like a traditional fin fixed to the rear undersurface of the surfboard, especially with respect to transmitting force against the water in the direction toward the longitudinal centerline of the board. In some cases when water is moving across the fins at a net oblique angle (for instance when surfing across and slightly down the face of a wave while water is moving up the face of the wave), one fin at the rear of the board may fully deploy and provide stability to the board like a traditional fixed fin while the other fin at the rear of the board may move to a stowed or other not fully-deployed position. Thus, where the stability of at least two fixed fins is desired, a user may elect to have four pivotable fins at one or both ends of the board.
In
An example method of using hydrodynamic force to deploy the fins is illustrated in
Some example embodiments (for instance as discussion below) may also use the pressure of the flowing water (E) to move the fin slightly toward the rear of the board to activate a mechanism that allows the fin to deploy. Because water only flows in this direction (E) when the fins should be deployed, it is safe to use this rearward shift of the fin to release the stowed-position holder thus allowing the fin to pivot toward the deployed position (D).
As the fin pivots to the deployed position (D), it is important that it not pivot too far. Different embodiments (for instance as discussed below) can use different mechanisms to prevent the fin from “over-extending” beyond the desired deployment angle. The deployment angle need not be exactly 90 degrees from the stowed angle. Some variation, commonly called cant angle, may be preferable and may be adjustable by the surfer or by the manufacturer of the fin assemblies.
Once the fin moves to the deployed position (D), some embodiments may use the water flow (E) to hold the fin in that deployed position (D), preventing it from pivoting back to the stowed position. Examples of such “deployed-position holders” are discussed below.
Finally, when the board turns around, the fins that were deployed (D) at the rear of the board are now at the front of the board and need to be returned to the stowed position (C). Any time a surfer does a maneuver to flip the board around, the fins that were on the operational end will for a moment (or several moments) be removed from the water. When the fins are removed from the water, the spring force or other biasing mechanism urges the fins toward the stowed position. Once the fins are in the stowed position, a stowed-position holder mechanism may activate to keep the fins in the stowed position. This feature is useful when the surfboard is taken out of the water because it keeps the fragile fins stowed and out of harm's way.
For a first example embodiment of a pivoting fin structure,
The embodiment of
Now turning to
When the surfboard turns around again (or enters still water, or is taken out of the water completely), the flow (Q of
For a second example embodiment,
This embodiment also includes a stowed-position holder. A rotating lever (V1) includes a shoulder (V3) that can interfere with a tab (V2) on the fin (U).
When it comes time to deploy the fin (U), the water is flowing (FF) in the direction as seen in
Moving the fin (U) from the deployed to the stowed position will now be described. When the water flow reverses (to anti-FF) or simply stops, the hydrodynamic forces keeping the fin (U) in the deployed position diminish or vanish entirely. The spring (Z) is free to pivot the fin (U) back to the stowed position. Once there, the spring (AA) rotates the lever (V1) back to its hold position where its shoulder (V3) again interferes with the tab (V2) on the fin (U) and holds the fin (U) in place.
For a third illustrative example embodiment, consider
This embodiment also includes a deployed-position holder. When in the deployed position, the fin (HH) is pressed slightly backwards by the force of the water flow (XX). At least one of the tabs (NN2) of the fin (HH) slides rearward into a slot (SS) in the base plug (JJ). As long as the fin (HH) is in the deployed position, the slot (SS) holds the tab (NN2) in place preventing the fin (HH) from pivoting back to the stowed position.
When the pressure of the water flow (XX) reverses or vanishes, the spring (LL) pushes the fin (HH) forward again which removes the tab (NN2) from the deployment-position holder slot (SS). The fin (HH) is then free to pivot back to the stowed position under the impetus of the spring (MM). Once in the stowed position, the spring (LL) again pushes the face (OO) of the tab (NN1) against the inner face (PP) of the base plug (JJ), thus keeping the fin (HH) in the stowed position by mechanical interference.
While the above three embodiments show some of the scope of possible implementations, they do not cover the entire range. For example, the deployment-position holder of
The materials should be suitable for use in fresh or salt water. The components, while strong, may also be light to allow aerial maneuvers. High-stress components, such as the hinges and springs, can be made of corrosion-resistant metals or even ceramic. Other components can be formed from lightweight plastics or resin.
Any of the suitable technologies and materials set forth and incorporated herein may be used to implement various example aspects of the invention as would be apparent to one of skill in the art. In view of the many possible embodiments to which the principles of the present discussion may be applied, it should be recognized that the embodiments described herein with respect to the drawing figures are meant to be illustrative only and should not be taken as limiting the scope of the claims. Therefore, the techniques as described herein contemplate all such embodiments as may come within the scope of the following claims and equivalents thereof.
The present application claims priority to U.S. Provisional Patent Application Ser. No. 62/193,053, filed on Jul. 15, 2015 (herein “the '053 Application”), which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
7740512 | Patterson | Jun 2010 | B1 |
9139265 | Peberdy | Sep 2015 | B2 |
Number | Date | Country | |
---|---|---|---|
62193053 | Jul 2015 | US |