Fin-tube heat exchanger with vortex generator

Information

  • Patent Grant
  • 6349761
  • Patent Number
    6,349,761
  • Date Filed
    Wednesday, December 27, 2000
    24 years ago
  • Date Issued
    Tuesday, February 26, 2002
    22 years ago
Abstract
A fin-tube heat exchanger with a vortex generator is disclosed. The heat exchanger includes at least one heat transfer tube extending therethrough. A vortex generator is formed on the fin and includes a plurality of protuberance ribs projected from the fin and centralized with the heat transfer tube. An air flow inlet is defined between adjacent two of the protuberance ribs and an air flow outlet is defined between other adjacent two of the protuberance ribs. The air flow is guided from the air flow inlet, through channels defined between the vortex generator and the at least one heat transfer tube, and passes out of the air flow outlet, thereby speeding the air flow and promoting the heat transfer efficiency of a stagnation area behind the tube, and generating vortexes at the protuberance ribs and the air flow outlet for draining outer air into the surface for better air mixing and promoting the heat transfer efficiency of the fin.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a fin-tube fin of a heat exchanger, especially to a fin-tube fin having a vortex generator.




2. Description of the Prior Art




Traditional air conditioner generally contains a compressor, a condenser, an expansion valve, and an evaporator. Normally, a fin-tube heat exchanger is used as the heat exchanger of an air conditioner as shown in

FIG. 1. A

traditional fin-tube heat exchanger


1


comprises a plurality of fins


11


spaced apart from adjacent ones a proper distance for passing an air flow


13


through gaps between the fins


11


. A plurality of heat transfer tubes


12


extend through the fins


11


and each heat transfer tube


12


contains coolant flowing therein for heat dissipation. The main function of the heat exchanger is to facilitate heat exchange between the coolant in the heat transfer tubes


12


and the air around the heat transfer tubes


12


. The main function of the fins


11


is to increase the contacting area between the coolant and the air around.




It has been a long term effort in the air conditioner industry to promote the function of the heat exchanger in consideration of power conservation. Some of the published patents have disclosed technique about promoting the heat exchange efficiency of the fins but most of the designs focus on the improvement of the traditional louver type or slit type of fins. For example, in U.S. Pat. No. 4,817,709, issued on Apr. 4, 1989, a fin structure having a slant plate formed by stamping is disclosed. Specifically, the fin has a wavy shape in which several triangular slant plates are formed by stamping and enable the air flow to generate counter-rotating vortexes at two sides of the triangular slant plate. The triangular slant plate is specifically suitable for the wavy-shaped fin not for general shape. Moreover, the heat transfer efficiency caused by the counter-rotating vortexes at two sides of the triangular slant plate is doubtful.




In U.S. Pat. No. 5,207,270, issued on May 4, 1993, a fin-tube heat exchanger is disclosed which has curved angular protuberances and straight protuberances around heat transfer tubes of each fin of the fin-tube heat exchanger. The curved angular protuberances cooperate with the straight protuberances for improving the heat transfer efficiency of the heat exchanger. In U.S. Pat. No. 5,203,403, issued on Apr. 20, 1993, a fin-tube heat exchanger is disclosed which has elliptic protuberances formed around heat transfer tubes of each fin of the fin-tube heat exchanger for promoting the heat transfer efficiency. However, the manufacturing of the heat exchanger is very complicated and high cost therefore need to be improved.




SUMMARY OF THE INVENTION




The primary purpose of the present invention is to provide a new structure of a fin geometry of a heat exchanger which is simple and easily manufactured yet effective in heat transfer. The fin geometry has a vortex generator having a plurality of ribs formed around heat transfer tubes of the fin by which the air flow passing through the heat exchanger can form a vortex effect around the heat transfer tubes for strengthening the mixture of air around thus considerably improving the heat dissipation efficiency of the fin.




Another purpose of the present invention is to provide a new structure of a fin of a heat exchanger which utilizes a pattern of ribs of a vortex generator of the fin to create a vortex effect for increasing the mixture of air and promoting the heat transfer efficiency of a stagnation area behind the heat transfer tube while not increasing the pressure drop significantly. With this new structure, the function of the heat exchanger is promoted and the total operational efficiency of the air conditioner is thus increased.




According to one aspect of the present invention, there is provided a heat exchanger comprising a plurality of fins spaced from each other in parallel and adjacent ones of the fins allowing an air flow to pass through a gap therebetween. A plurality of heat transfer tubes extends through the fins. A vortex generator comprises a plurality of protuberance ribs formed on the fin and centralized with the heat transfer tube. An air flow inlet is defined between adjacent two of the protuberance ribs and an air flow outlet is defined between other adjacent two of the protuberance ribs.




In operation, the air flow is guided from the air flow inlet, through channels defined between the vortex generator and the heat transfer tube, and passes out of the air flow outlet, thereby speeding the air flow and promoting the heat transfer efficiency of a stagnation area behind the tube, and generating vortexes at the protuberance ribs and the air flow outlet for draining outer air into the surface for better air mixing.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view of a traditional fin-tube heat exchanger;





FIG. 2

is a perspective view of a fin-tube heat exchanger in accordance with a first embodiment of the present invention;





FIG. 3

is an enlarged view of a portion of a fin of FIG.


2


and the heat transfer tube and vortex generator fixed on the fin;





FIG. 4

is a schematic view showing that a vortex generator is configured around a heat transfer tube for guiding air flow to form vortex around the heat transfer tube;





FIG. 5

is a cross-sectional view taken from line


1





1


of

FIG. 3

;





FIGS. 6A

to


6


F illustrate different designs of the protuberance ribs of the first embodiment of

FIG. 2

;





FIG. 7

is a plan view of a fin-tube heat exchanger in accordance with a second embodiment of the present invention;





FIG. 8

is a plan view of a fin-tube heat exchanger in accordance with a third embodiment of the present invention;





FIG. 9

is a cross-sectional view taken from line


2





2


of

FIG. 8

;





FIGS. 10A

to


10


F illustrate different designs of the protuberance ribs of the third embodiment of

FIG. 8

; and





FIG. 11

is a plan view of a fin-tube heat exchanger in accordance with a fourth embodiment of the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring to

FIG. 2

, a fin-tube heat exchanger


2


in accordance with the present invention also comprises a plurality of fins


21


spaced away adjacent ones and a plurality of heat transfer tubes


22


extending through the fins


21


. An air flow may pass through a gap between adjacent fins


21


. A vortex generator


3


is formed around the heat transfer tube


22


for guiding the air flow


23


to create vortex around the heat transfer tube


22


in order to promote the dissipation efficiency of the fin


21


.





FIG. 3

is a partial enlarged view of

FIG. 2

, illustrating the fin


21


, the heat transfer tube


22


and the vortex generator


3


.

FIG. 4

is a schematic view showing that the vortex generator


3


is configured around the heat transfer tube


22


for guiding the air flow


23


to form vortex


25


around the heat transfer tube


22


.

FIG. 5

is a cross-sectional view taken from line


1





1


of FIG.


3


. In the first embodiment, the vortex generator


3


comprises two front protuberance ribs


31




a


,


31




b


and two rear protuberance ribs


31




c


,


31




d


. The front protuberance ribs


31




a


,


31




b


are symmetric with respect to the air flow


23


. Similarly, the rear protuberance ribs


31




c


,


31




d


are also symmetric with respect to the air flow


23


. Each protuberance rib


31




a


,


31




b


,


31




c


,


31




d


has a arc shape. The protuberance ribs


31




a


,


31




b


,


31




c


,


31




d


are arranged around the heat transfer tube


22


. Specifically, the heat transfer tube


22


is the physical center of the four protuberance ribs


31




a


,


31




b


,


31




c


,


31




d


. The protuberance ribs


31




a


,


31




b


,


31




c


,


31




d


are projected from one face of the fin


21


and each protuberance rib forms an arc shape along an extended direction II of the fin


21


.




The protuberance ribs


31




a


,


31




b


,


31




c


,


31




d


are spaced away from each other, wherein an air flow inlet


24




a


is defined between the two front protuberance ribs


31




a


,


31




b


, while an air flow outlet


24




b


is defined between the two rear protuberance ribs


31




c


,


31




d.






When the air flow


23


is guided from the inlet


24




a


to the outlet


24




b


, due to the affection of the protuberance ribs


31




a


,


31




b


,


31




c


,


31




d


, the air flow


23


will be strengthened and passes through channels defined between the heat transfer tube


22


and the protuberance ribs


31




a


,


31




b


,


31




c


,


31




d


and force the wake lagged in the stagration area ,i.e., the outlet


24




b


, to move forward thereby increasing the heat transmission efficiency between the heat transfer tube


22


and the protuberance ribs


31




a


,


31




b


,


31




c


,


31




d.






Meanwhile, co-rotating or counter-rotating vertex


25


are formed at two sides of the air flow


23


and the outlet


24




b


for draining outer air into the fin


21


in order to promote the heat transfer effect.




Since the heat transfer effect is the poorest at the stagnation area, i.e., the outlet


24




b


, it has been improved considerably by the vortex generator


3


yet not increasing the pressure drop significantly.




The design of the first embodiment of the present invention is quite different from the traditional louver or slit fin, because the traditional structure promotes the heat transfer efficiency by damaging the heat boundary layer which causes a drawback of increasing the pressure drop significantly. The vortex generator can promote the heat transfer efficiency without introducing considerable pressure drop. In applications, the vortex generator is suitable for both plain and wavy fin.




The protuberance rib


31




a


,


31




b


,


31




c


,


31




d


may have different structures.

FIGS. 6A

to


6


F illustrate different structures of the protuberance ribs in cross-sectional views.

FIG. 6A

illustrates a protuberance rib


32


having two vertical side walls


321


and a horizontal top wall


322


connected between the vertical side walls


321


.

FIG. 6B

illustrates a protuberance rib


33


having two sloped side walls


331


and a horizontal top wall


332


connected between the sloped side walls


331


.

FIG. 6C

illustrates a protuberance rib


34


having a vertical side wall


321


connected to a curved wall


342


.

FIG. 6D

illustrates a protuberance rib


35


having two sloped walls


351


,


352


connected to form a triangular shape.

FIG. 6E

illustrates a protuberance rib


36


having a vertical wall


361


and a sloped wall


362


connected to the vertical wall


361


, wherein the sloped wall


362


is located between the vertical wall


361


and the heat transfer tube


22


.

FIG. 6F

illustrates a protuberance rib


37


having a vertical wall


371


and a sloped wall


372


connected to the vertical wall


371


, wherein the vertical wall


371


is located between the sloped wall


372


and the heat transfer tube


22


.





FIG. 7

is a plan view of a fin-tube heat exchanger in accordance with a second embodiment of the present invention. In the second embodiment, most of the structure is the same as that of the first embodiment except that the number of the protuberance ribs


38


in the second embodiment is increased compared to that of the first embodiment. For example, the number of the protuberance ribs


38


may be eight and each protuberance rib


38


has a corresponding one symmetric to the virtual line of the air flow. The air flow path, the vortex generating theory, and the heat transfer effect are the same to those of the first embodiment thus the description thereof is omitted herein.





FIG. 8

is a plan schematic view of a fin-tube heat exchanger in accordance with a third embodiment of the present invention. In the third embodiment, the fin


21


has four inner protuberance ribs


41




a


,


41




b


,


41




c


,


41




d


formed around the heat transfer tube


22


and centralized with the heat transfer tube


22


. The arrangement and shapes of the four inner protuberance ribs


41




a


,


41




b


,


41




c


,


41




d


are the same as those of the first embodiment shown in FIG.


4


. Four outer protuberance ribs


42




a


,


42




b


,


42




c


,


42




d


are also formed around and centralized with the heat transfer tube


22


and respectively correspond to the inner protuberance ribs


41




a


,


41




b


,


41




c


,


41




d


. Each outer protuberance rib


42




a


,


42




b


,


42




c


,


42




d


is spaced from each corresponding inner protuberance rib


41




a


,


41




b


,


41




c


,


41




d


a predetermined distance. The outer protuberance ribs


42




a


,


42




b


,


42




c


,


42




d


are projected from one side of the fin


21


, while the corresponding inner protuberance ribs


41




a


,


41




b


,


41




c


,


41




d


are projected from an opposite side of the fin


21


. The cross-sectional view thereof may be referred to FIG.


9


.




Except to the addition of the outer protuberance ribs


42




a


,


42




b


,


42




c


,


42




d


, the air flow path, the vortex generating theory, and the heat transmission effect are similar to those of the first embodiment. For example, there are two inner protuberance ribs


41




a


,


41




b


function as front inner protuberance ribs and an air flow inlet


43




a


is defined between the two front protuberance ribs


41




a


,


41




b


. Similarly, there are other two inner protuberance ribs


41




c


,


41




d


function as rear inner protuberance ribs and an air flow outlet


43




b


is defined between the two rear inner protuberance ribs


41




c


,


41




d.






Referring to

FIG. 9

, the inner protuberance ribs


41




a


,


41




d


are symmetric to the heat transfer tube


22


and the corresponding outer protuberance ribs


42




a


,


42




d


are also symmetric to the heat transfer tube


22


. The inner and outer protuberance ribs


41




a


,


42




a


forms a wave shape and same of the inner and outer protuberance ribs


41




d


,


42




d


. The corresponding pair of the inner and outer protuberance ribs may have different structures as shown in the cross-sectional views of

FIGS. 10A

to


10


F.





FIG. 10A

illustrates an inner protuberance rib


43


having two vertical side walls


431


and a horizontal top wall


432


connected between the vertical side walls


431


.

FIG. 10B

illustrates an inner protuberance rib


44


having two sloped side walls


441


and a horizontal top wall


442


connected between the sloped side walls


441


.

FIG. 10C

illustrates an inner protuberance rib


45


having a vertical side wall


451


connected to a curved wall


452


.

FIG. 10D

illustrates an inner protuberance rib


46


having two sloped walls


461


,


462


connected to form a triangular shape.

FIG. 10E

illustrates an inner protuberance rib


47


having a vertical wall


471


and a sloped wall


472


connected to the vertical wall


471


, wherein the sloped wall


472


is located between the vertical wall


471


and the heat transfer tube


22


.

FIG. 10F

illustrates an inner protuberance rib


48


having a vertical wall


481


and a sloped wall


482


connected to the vertical wall


481


, wherein the vertical wall


481


is located between the sloped wall


482


and the heat transfer tube


22


. The above mentioned inner protuberance ribs each has its corresponding outer protuberance rib projected to an opposite direction, while another pair of inner and outer protuberance ribs are symmetric to the heat transfer tube


22


as shown in

FIGS. 10A

to


10


F.





FIG. 11

is a plan view of a fin-tube heat exchanger in accordance with a fourth embodiment of the present invention. Similar to the third embodiment, a plurality of inner protuberance ribs


50


and outer protuberance ribs


51


are formed around and centralized with the heat transfer tube


22


. The only difference is that the number of the protuberance ribs


50


,


51


in this embodiment is more than that of the third embodiment.




In practice, the present invention can be used in air conditioners and air-cooled heat exchangers. The fin may be plain type or wavy type. The vortex generator of the present invention can cause a pair of co-rotating or counter-rotating vortex vortexes for draining outer new air into the surface of the heat exchanger in order to improve the heat transfer efficiency of the stagnation-lagged area behind the heat transfer tube thereby promoting the total heat transfer efficiency of the heat exchanger.




While the present invention has been described with reference to specific embodiments, the description is illustrative of the invention and is not to be construed as limiting the invention. Therefore, various modifications to the present invention can be made to the preferred embodiments by those skilled in the art without departing from the true spirit and scope of the invention as defined by the appended claims.



Claims
  • 1. A heat exchanger comprising:a plurality of fins spaced from each other in parallel and allowing an air flow to pass through a gap therebetween; a plurality of heat transfer tubes extending through the fins; and a plurality of vortex generators respectively formed on the plurality of fins and corresponding to each of the plurality of heat transfer tubes, each of the vortex generators comprising a plurality of protuberance ribs formed on a corresponding fin around a respective centrally disposed heat transfer tube, each of the protuberance ribs having an arcuate contour in a plane normal to the respective heat transfer tube, the plurality of arcuate protuberance ribs together forming a circular pattern concentrically spaced from the respective heat transfer tube, an air flow inlet being defined between an adjacent two of the protuberance ribs and an air flow outlet being defined between another adjacent two of the protuberance ribs; wherein the air flow is guided from the air flow inlet, through channels defined between the plurality of protuberance ribs and the heat transfer tube, and passes out of the air flow outlet, thereby speeding the air flow, and generating vortexes at the protuberance ribs and the air flow outlet for drawing outer air to the heat exchanger for air mixing.
  • 2. A heat exchanger, comprising:a plurality of fins spaced from each other in parallel and allowing an air flow to pass through a gap therebetween; a plurality of heat transfer tubes extending through the fins; and a plurality of vortex generators respectively formed on the plurality of fins and corresponding to each of the plurality of heat transfer tubes, each of the vortex generators comprising a plurality of protuberance ribs formed on a corresponding fin around a respective centrally disposed heat transfer tube, an air flow inlet being defined between an adjacent two of the protuberance ribs and an air flow outlet being defined between another adjacent two of the protuberance ribs, each protuberance rib having a vertical wall connected to a sloped wall and the vertical wall being located between a respective heat transfer tube and the sloped wall; wherein the air flow is guided from the air flow inlet, through channels defined between the plurality of protuberance ribs and the heat transfer tube, and passes out of the air flow outlet, thereby speeding the air flow, and generating vortexes at the protuberance ribs and the air flow outlet for drawing outer air to the heat exchanger for air mixing.
  • 3. A heat exchanger, comprising:a plurality of fins spaced from each other in parallel and allowing an air flow to pass through a gap therebetween; a plurality of heat transfer tubes extending through the fins; and a plurality of vortex generators respectively formed on the plurality of fins and corresponding to each of the plurality of heat transfer tubes, each of the vortex generators comprising a plurality of protuberance ribs formed on a corresponding fin around a respective centrally disposed heat transfer tube, an air flow inlet being defined between an adjacent two of the protuberance ribs and an air flow outlet being defined between another adjacent two of the protuberance ribs, each protuberance rib having a vertical wall connected to a sloped wall and the sloped wall being located between a respective heat transfer tube and the vertical wall; wherein the air flow is guided from the air flow inlet, through channels defined between the plurality of protuberance ribs and the heat transfer tube, and passes out of the air flow outlet, thereby speeding the air flow, and generating vortexes at the protuberance ribs and the air flow outlet for drawing outer air to the heat exchanger for air mixing.
  • 4. A heat exchanger comprising:a plurality of fins spaced from each other in parallel and allowing an air flow to pass through a gap therebetween; a plurality of heat transfer tubes extending through the fins; and a plurality of vortex generators respectively formed on the plurality of fins and corresponding to each of the plurality of heat transfer tubes, each of the vortex generators comprising (a) a plurality of inner protuberance ribs formed on a corresponding fin around a respective centrally disposed heat transfer tube, each of the inner protuberance ribs extending from a first surface of the corresponding fin in a first direction and having an arcuate contour in a plane normal to the respective heat transfer tube, the plurality of arcuate inner protuberance ribs together forming a circular pattern concentrically spaced from the respective heat transfer tube, a first air flow inlet being defined between an adjacent two of the inner protuberance ribs and a first air flow outlet being defined between another adjacent two of the inner protuberance ribs; and (b) a plurality of outer protuberance ribs formed on the corresponding fin around the centrally disposed heat transfer tube and in respective radial alignment with the inner protuberance ribs, each of the outer protuberance ribs extending from a second surface of the corresponding fin in a second direction, the second direction being opposite the first direction, each of the outer protuberance ribs having an arcuate contour in a plane normal to the respective heat transfer tube, the plurality of arcuate outer protuberance ribs together forming a circular pattern concentrically spaced from the circular pattern of the inner protuberance ribs, a second air flow inlet being defined between an adjacent two of the outer protuberance ribs and a second air flow outlet being defined between another adjacent two of the outer protuberance ribs; wherein the air flow is respectively guided from the first and second air flow inlets, through channels defined between the inner and outer protuberance ribs and between the inner protuberance ribs and the heat transfer tube, and respectively pass out of the first and second air flow outlets, thereby speeding the air flow and drawing wake lagged air in the first and second air flow outlets away from the first and second air flow outlet, and generating vortexes at the inner and outer protuberance ribs and the first and second air flow outlets for drawing outer air to the heat exchanger for air mixing.
  • 5. A heat exchanger, comprising:a plurality of fins spaced from each other in parallel and allowing an air flow to pass through a gap therebetween; a plurality of heat transfer tubes extending through the fins; and a plurality of vortex generators respectively formed on the plurality of fins and corresponding to each of the plurality of heat transfer tubes, each of the vortex generators comprising (a) a plurality of inner protuberance ribs formed on a corresponding fin around a respective centrally disposed heat transfer tube, a first air flow inlet being defined between an adjacent two of the inner protuberance ribs and a first air flow outlet being defined between another adjacent two of the inner protuberance ribs; and (b) a plurality of outer protuberance ribs formed on the corresponding fin around the centrally disposed heat transfer tube and in respective radial alignment with the inner protuberance ribs, a second air flow inlet being defined between an adjacent two of the outer protuberance ribs and a second air flow outlet being defined between another adjacent two of the outer protuberance ribs, each of the inner and outer protuberance ribs having a vertical wall connected to a curved wall; wherein the air flow is guided from the second and first air flow inlets, through channels defined between the inner and outer protuberance ribs and between the inner protuberance ribs and the heat transfer tube, and passes out of the first and second air flow outlets, thereby speeding the air flow and drawing wake lagged air in the first and second air flow outlets away from the first and second air flow outlet, and generating vortexes at the inner and outer protuberance ribs and the first and second air flow outlets for drawing outer air to the heat exchanger for air mixing.
  • 6. A heat exchanger, comprising:a plurality of fins spaced from each other in parallel and allowing an air flow to pass through a gap therebetween; a plurality of heat transfer tubes extending through the fins; and a plurality of vortex generators respectively formed on the plurality of fins and corresponding to each of the plurality of heat transfer tubes, each of the vortex generators comprising (a) a plurality of inner protuberance ribs formed on a corresponding fin around a respective centrally disposed heat transfer tube, a first air flow inlet being defined between an adjacent two of the inner protuberance ribs and a first air flow outlet being defined between another adjacent two of the inner protuberance ribs; and (b) a plurality of outer protuberance ribs formed on the corresponding fin around the centrally disposed heat transfer tube and in respective radial alignment with the inner protuberance ribs, a second air flow inlet being defined between an adjacent two of the outer protuberance ribs and a second air flow outlet being defined between another adjacent two of the outer protuberance ribs, each of the inner and outer protuberance ribs having a vertical wall connected to a sloped wall and the vertical wall being located between the heat transfer tube and the sloped wall; wherein the air flow is guided from the second and first air flow inlets, through channels defined between the inner and outer protuberance ribs and between the inner protuberance ribs and the heat transfer tube, and passes out of the first and second air flow outlets, thereby speeding the air flow and drawing wake lagged air in the first and second air flow outlets away from the first and second air flow outlet, and generating vortexes at the inner and outer protuberance ribs and the first and second air flow outlets for drawing outer air to the heat exchanger for air mixing.
  • 7. A heat exchanger, comprising:a plurality of fins spaced from each other in parallel and allowing an air flow to pass through a gap therebetween; a plurality of heat transfer tubes extending through the fins; and a plurality of vortex generators respectively formed on the plurality of fins and corresponding to each of the plurality of heat transfer tubes, each of the vortex generators comprising (a) a plurality of inner protuberance ribs formed on a corresponding fin around a respective centrally disposed heat transfer tube, a first air flow inlet being defined between an adjacent two of the inner protuberance ribs and a first air flow outlet being defined between another adjacent two of the inner protuberance ribs; and (b) a plurality of outer protuberance ribs formed on the corresponding fin around the centrally disposed heat transfer tube and in respective radial alignment with the inner protuberance ribs, a second air flow inlet being defined between an adjacent two of the outer protuberance ribs and a second air flow outlet being defined between another adjacent two of the outer protuberance ribs, each of the inner and outer protuberance ribs having a vertical wall connected to a sloped wall and the sloped wall being located between the heat transfer tube and the vertical wall; wherein the air flow is guided from the second and first air flow inlets, through channels defined between the inner and outer protuberance ribs and between the inner protuberance ribs and the heat transfer tube, and passes out of the first and second air flow outlets, thereby speeding the air flow and drawing wake lagged air in the first and second air flow outlets away from the first and second air flow outlet, and generating vortexes at the inner and outer protuberance ribs and the first and second air flow outlets for drawing outer air to the heat exchanger for air mixing.
US Referenced Citations (3)
Number Name Date Kind
4449581 Blystone et al. May 1984 A
5706885 Kim Jan 1998 A
5975199 Park et al. Nov 1999 A
Foreign Referenced Citations (5)
Number Date Country
2088544 Jun 1982 GB
58-213192 Dec 1983 JP
361006590 Jan 1986 JP
61-83893 Apr 1986 JP
62266391-A Nov 1987 JP