Finding relatives in a database

Information

  • Patent Grant
  • 12100487
  • Patent Number
    12,100,487
  • Date Filed
    Tuesday, February 6, 2024
    11 months ago
  • Date Issued
    Tuesday, September 24, 2024
    4 months ago
  • CPC
  • Field of Search
    • US
    • NON E00000
  • International Classifications
    • G06F16/00
    • G06F16/2457
    • G06F16/9535
    • G06N5/048
    • G16B10/00
    • G16B30/00
    • G16B50/00
    • G16B50/30
    • Disclaimer
      This patent is subject to a terminal disclaimer.
      Term Extension
      0
Abstract
Determining relative relationships of people who share a common ancestor within at least a threshold number of generations includes: receiving recombinable deoxyribonucleic acid (DNA) sequence information of a first user and recombinable DNA sequence information of a plurality of users; processing, using one or more computer processors, the recombinable DNA sequence information of the plurality of users in parallel; determining, based at least in part on a result of processing the recombinable DNA information of the plurality of users in parallel, a predicted degree of relationship between the first user and a user among the plurality of users, the predicted degree of relative relationship corresponding to a number of generations within which the first user and the second user share a common ancestor.
Description
BACKGROUND OF THE INVENTION

Genealogy is the study of the history of families and the line of descent from ancestors. It is an interesting subject studied by many professionals as well as hobbyists. Traditional genealogical study techniques typically involve constructing family trees based on surnames and historical records. As gene sequencing technology becomes more accessible, there has been growing interest in genetic ancestry testing in recent years.


Existing genetic ancestry testing techniques are typically based on deoxyribonucleic acid (DNA) information of the Y chromosome (Y-DNA) or DNA information of the mitochondria (mtDNA). Aside from a small amount of mutation, the Y-DNA is passed down unchanged from father to son and therefore is useful for testing patrilineal ancestry of a man. The mtDNA is passed down mostly unchanged from mother to children and therefore is useful for testing a person's matrilineal ancestry. These techniques are found to be effective for identifying individuals that are related many generations ago (e.g., 10 generations or more), but are typically less effective for identifying closer relationships. Further, many relationships that are not strictly patrilineal or matrilineal cannot be easily detected by the existing techniques.





BRIEF DESCRIPTION OF THE DRA WINGS

Various embodiments of the invention are disclosed in the following detailed description and the accompanying drawings.



FIG. 1 is a block diagram illustrating an embodiment of a relative finding system.



FIG. 2 is a flowchart illustrating an embodiment of a process for finding relatives in a relative finding system.



FIG. 3 is a flowchart illustrating an embodiment of a process for connecting a user with potential relatives found in the database.



FIGS. 4A-4I are screenshots illustrating user interface examples in connection with process 300.



FIG. 5 is a diagram illustrating an embodiment of a process for determining the expected degree of relationship between two users.



FIG. 6 is a diagram illustrating example DNA data used for IBD identification by process 500.



FIG. 7 shows the simulated relationship distribution patterns for different population groups according to one embodiment.



FIG. 8 is a diagram illustrating an embodiment of a highly parallel IBD identification process.



FIG. 9 is a diagram illustrating an example in which phased data is compared to identify IBD.





DETAILED DESCRIPTION

The invention can be implemented in numerous ways, including as a process; an apparatus; a system; a composition of matter; a computer program product embodied on a computer readable storage medium; and/or a processor, such as a processor configured to execute instructions stored on and/or provided by a memory coupled to the processor. In this specification, these implementations, or any other form that the invention may take, may be referred to as techniques. In general, the order of the steps of disclosed processes may be altered within the scope of the invention. Unless stated otherwise, a component such as a processor or a memory described as being configured to perform a task may be implemented as a general component that is temporarily configured to perform the task at a given time or a specific component that is manufactured to perform the task. As used herein, the term ‘processor’ refers to one or more devices, circuits, and/or processing cores configured to process data, such as computer program instructions.


A detailed description of one or more embodiments of the invention is provided below along with accompanying figures that illustrate the principles of the invention. The invention is described in connection with such embodiments, but the invention is not limited to any embodiment. The scope of the invention is limited only by the claims and the invention encompasses numerous alternatives, modifications and equivalents. Numerous specific details are set forth in the following description in order to provide a thorough understanding of the invention. These details are provided for the purpose of example and the invention may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the invention has not been described in detail so that the invention is not unnecessarily obscured.


Because of recombination and independent assortment of chromosomes, the autosomal DNA and X chromosome DNA (collectively referred to as recombinable DNA) from the parents is shuffled at the next generation, with small amounts of mutation. Thus, only relatives will share long stretches of genome regions where their recombinable DNA is completely or nearly identical. Such regions are referred to as “Identical by Descent” (IBD) regions because they arose from the same DNA sequences in an earlier generation. The relative finder technique described below is based at least in part on locating IBD regions in the recombinable chromosomes of individuals.


In some embodiments, locating IBD regions includes sequencing the entire genomes of the individuals and comparing the genome sequences. In some embodiments, locating IBD regions includes assaying a large number of markers that tend to vary in different individuals and comparing the markers. Examples of such markers include Single Nucleotide Polymorphisms (SNPs), which are points along the genome with two or more common variations; Short Tandem Repeats (STRs), which are repeated patterns of two or more repeated nucleotide sequences adjacent to each other; and Copy-Number Variants (CNVs), which include longer sequences of DNA that could be present in varying numbers in different individuals. Long stretches of DNA sequences from different individuals' genomes in which markers in the same locations are the same or at least compatible indicate that the rest of the sequences, although not assayed directly, are also likely identical.



FIG. 1 is a block diagram illustrating an embodiment of a relative finding system. In this example, relative finder system 102 may be implemented using one or more server computers having one or more processors, one or more special purpose computing appliances, or any other appropriate hardware, software, or combinations thereof. The operations of the relative finder system are described in greater detail below. In this example, various users of the system (e.g., user 1 (“Alice”) and user 2 (“Bob”)) access the relative finder system via a network 104 using client devices such as 106 and 108. User information (including genetic information and optionally other personal information such as family information, population group, etc.) pertaining to the users is stored in a database 110, which can be implemented on an integral storage component of the relative finder system, an attached storage device, a separate storage device accessible by the relative finder system, or a combination thereof. Many different arrangements of the physical components are possible in various embodiments. In various embodiments, the entire genome sequences or assayed DNA markers (SNPs, STRs, CNVs, etc.) are stored in the database to facilitate the relative finding process. For example, approximately 650,000 SNPs per individual's genome are assayed and stored in the database in some implementations.


System 100 shown in this example includes genetic and other additional non-genetic information for many users. By comparing the recombinable DNA information to identify IBD regions between various users, the relative finder system can identify users within the database that are relatives. Since more distant relationships (second cousins or further) are often unknown to the users themselves, the system allows the users to “opt-in” and receive notifications about the existence of relative relationships. Users are also presented with the option of connecting with their newly found relatives.



FIG. 2 is a flowchart illustrating an embodiment of a process for finding relatives in a relative finding system. Process 200 may be implemented on a relative finder system such as 100. The process may be invoked, for example, at a user's request to look for potential relatives this user may have in the database or by the system to assess the potential relationships among various users. At 202, recombinable DNA information of a first user (e.g., Alice) and of a second user (e.g., Bob) is received. In some embodiments, the information is retrieved from a database that stores recombinable DNA information of a plurality of users as well as any additional user information. For purposes of illustration, SNP information is described extensively in this and following examples. Other DNA information such as STR information and/or CNV information may be used in other embodiments.


At 204, a predicted degree of relationship between Alice and Bob is determined. In some embodiments, a range of possible relationships between the users is determined and a prediction of the most likely relationship between the users is made. In some embodiments, it is optionally determined whether the predicted degree of relationship at least meets a threshold. The threshold may be a user configurable value, a system default value, a value configured by the system's operator, or any other appropriate value. For example, Bob may select five generations as the maximum threshold, which means he is interested in discovering relatives with whom the user shares a common ancestor five generations or closer. Alternatively, the system may set a default value minimum of three generations, allowing the users to by default find relatives sharing a common ancestor at least three generations out or beyond. In some embodiments, the system, the user, or both, have the option to set a minimum threshold (e.g., two generations) and a maximum threshold (e.g., six generations) so that the user would discover relatives within a maximum number of generations, but would not be surprised by the discovery of a close relative such as a sibling who was previously unknown to the user.


At 206, Alice or Bob (or both) is notified about her/his relative relationship with the other user. In some embodiments, the system actively notifies the users by sending messages or alerts about the relationship information when it becomes available. Other notification techniques are possible, for example by displaying a list or table of users that are found to be related to the user. Depending on system settings, the potential relatives may be shown anonymously for privacy protection, or shown with visible identities to facilitate making connections. In embodiments where a threshold is set, the user is only notified if the predicted degree of relationship at least meets the threshold. In some embodiments, a user is only notified if both of the user and the potential relative have “opted in” to receive the notification. In various embodiments, the user is notified about certain personal information of the potential relative, the predicted relationship, the possible range of relationships, the amount of DNA matching, or any other appropriate information.


In some embodiments, at 208, the process optionally infers additional relationships or refines estimates of existing relationships between the users based on other relative relationship information, such as the relative relationship information the users have with a third user. For example, although Alice and Bob are only estimated to be 6th cousins after step 204, if among Alice's relatives in the system, a third cousin, Cathy, is also a sibling of Bob's, then Alice and Bob are deemed to be third cousins because of their relative relationships to Cathy. The relative relationships with the third user may be determined based on genetic information and analysis using a process similar to 200, based on non-genetic information such as family tree supplied by one of the users, or both.


In some embodiments, the relatives of the users in the system are optionally checked to infer additional relatives at 210. For example, if Bob is identified as a third cousin of Alice's, then Bob's relatives in the system (such as children, siblings, possibly some of the parents, aunts, uncles, cousins, etc.) are also deemed to be relatives of Alice's. In some embodiments a threshold is applied to limit the relationships within a certain range. Additional notifications about these relatives are optionally generated.


Upon receiving a notification about another user who is a potential relative, the notified user is allowed to make certain choices about how to interact with the potential relative. FIG. 3 is a flowchart illustrating an embodiment of a process for connecting a user with potential relatives found in the database. The process may be implemented on a relative finder system such as 102, a client system such as 106, or a combination thereof. In this example, it is assumed that it has been determined that Alice and Bob are possibly 4th cousins and that Alice has indicated that she would like to be notified about any potential relatives within 6 generations. In this example, process 300 follows 206 of process 200, where a notification is sent to Alice, indicating that a potential relative has been identified. In some embodiments, the identity of Bob is disclosed to Alice. In some embodiments, the identity of Bob is not disclosed initially to protect Bob's privacy.


Upon receiving the notification, Alice decides that she would like to make a connection with the newly found relative. At 302, an invitation from Alice to Bob inviting Bob to make a connection is generated. In various embodiments, the invitation includes information about how Alice and Bob may be related and any personal information Alice wishes to share such as her own ancestry information. Upon receiving the invitation, Bob can accept the invitation or decline. At 304, an acceptance or a declination is received. If a declination is received, no further action is required. In some embodiments, Alice is notified that a declination has been received. If, however, an acceptance is received, at 306, a connection is made between Alice and Bob. In various embodiments, once a connection is made, the identities and any other sharable personal information (e.g., genetic information, family history, phenotype/traits, etc.) of Alice and Bob are revealed to each other and they may interact with each other. In some embodiments, the connection information is updated in the database.


In some embodiments, a user can discover many potential relatives in the database at once. Additional potential relatives are added as more users join the system and make their genetic information available for the relative finding process. FIGS. 4A-4I are screenshots illustrating user interface examples in connection with process 300. In this example, the relative finder application provides two views to the user: the discovery view and the list view.



FIG. 4A shows an interface example for the discovery view at the beginning of the process. No relative has been discovered at this point. In this example, a privacy feature is built into the relative finder application so that close relative information will only be displayed if both the user and the close relative have chosen to view close relatives. This is referred to as the “opt in” feature. The user is further presented with a selection button “show close relatives” to indicate that he/she is interested in finding out about close relatives. FIG. 4B shows a message that is displayed when the user selects “show close relatives”. The message explains to the user how a close relative is defined. In this case, a close relative is defined as a first cousin or closer. In other words, the system has set a default minimum threshold of three degrees. The message further explains that unless there is already an existing connection between the user and the close relative, any newly discovered potential close relatives will not appear in the results unless the potential close relatives have also chosen to view their close relatives. The message further warns about the possibility of finding out about close relatives the user did not know he/she had. The user has the option to proceed with viewing close relatives or cancel the selection.



FIG. 4C shows the results in the discovery view. In this example, seven potential relatives are found in the database. The predicted relationship, the range of possible relationship, certain personal details a potential relative has made public, the amount of DNA a potential relative shares with the user, and the number of DNA segments the potential relative shares with the user are displayed. The user is presented with a “make contact” selection button for each potential relative.



FIG. 4D shows the results in the list view. The potential relatives are sorted according to how close the corresponding predicted relationships are to the user in icon form. The user may select an icon that corresponds to a potential relative and view his/her personal information, the predicted relationship, relationship range, and other additional information. The user can also make contact with the potential relative.



FIGS. 4E-4G show the user interface when the user selects to “make contact” with a potential relative. FIG. 4E shows the first step in making contact, where the user personalizes the introduction message and determine what information the user is willing to share with the potential relative. FIG. 4F shows an optional step in making contact, where the user is told about the cost of using the introduction service. In this case, the introduction is free. FIG. 4G shows the final step, where the introduction message is sent.



FIG. 4H shows the user interface shown to the potential relative upon receiving the introduction message. In this example, the discovery view indicates that a certain user/potential relative has requested to make a contact. The predicted relationship, personal details of the sender, and DNA sharing information are shown to the recipient. The recipient has the option to select “view message” to view the introduction message from the sender.



FIG. 4I shows the message as it is displayed to the recipient. In addition to the content of the message, the recipient is given the option to accept or decline the invitation to be in contact with the sender. If the recipient accepts the invitation, the recipient and the sender become connected and may view each other's information and/or interact with each other.


Many other user interfaces can be used in addition to or as alternatives of the ones shown above. For example, in some embodiments, at least some of the potential relatives are displayed in a family tree.


Determining the relationship between two users in the database is now described. In some embodiments, the determination includes comparing the DNA markers (e.g., SNPs) of two users and identifying IBD regions. The standard SNP based genotyping technology results in genotype calls each having two alleles, one from each half of a chromosome pair. As used herein, a genotype call refers to the identification of the pair of alleles at a particular locus on the chromosome. Genotype calls can be phased or unphased. In phased data, the individual's diploid genotype at a particular locus is resolved into two haplotypes, one for each chromosome. In unphased data, the two alleles are unresolved; in other words, it is uncertain which allele corresponds to which haplotype or chromosome.


The genotype call at a particular SNP location may be a heterozygous call with two different alleles or a homozygous call with two identical alleles. A heterozygous call is represented using two different letters such as AB that correspond to different alleles. Some SNPs are biallelic SNPs with only two possible states for SNPs. Some SNPs have more states, e.g. triallelic. Other representations are possible.


In this example, A is selected to represent an allele with base A and B represents an allele with base G at the SNP location. Other representations are possible. A homozygous call is represented using a pair of identical letters such as AA or BB. The two alleles in a homozygous call are interchangeable because the same allele came from each parent. When two individuals have opposite-homozygous calls at a given SNP location, or, in other words, one person has alleles AA and the other person has alleles BB, it is very likely that the region in which the SNP resides does not have IBD since different alleles came from different ancestors. If, however, the two individuals have compatible calls, that is, both have the same homozygotes (i.e., both people have AA alleles or both have BB alleles), both have heterozygotes (i.e., both people have AB alleles), or one has a heterozygote and the other a homozygote (i.e., one has AB and the other has AA or BB), there is some chance that at least one allele is passed down from the same ancestor and therefore the region in which the SNP resides is IBD. Further, based on statistical computations, if a region has a very low rate of opposite-homozygote occurrence over a substantial distance, it is likely that the individuals inherited the DNA sequence in the region from the same ancestor and the region is therefore deemed to be an IBD region.



FIG. 5 is a diagram illustrating an embodiment of a process for determining the predicted degree of relationship between two users. Process 500 may be implemented on a relative finder system such as 102 and is applicable to unphased data. At 502, consecutive opposite-homozygous calls in the users' SNPs are identified. The consecutive opposite-homozygous calls can be identified by serially comparing individual SNPs in the users' SNP sequences or in parallel using bitwise operations as described below. At 504, the distance between consecutive opposite-homozygous calls is determined. At 506, IBD regions are identified based at least in part on the distance between the opposite-homozygous calls. The distance may be physical distance measured in the number of base pairs or genetic distance accounting for the rate of recombination. For example, in some embodiments, if the genetic distance between the locations of two consecutive opposite-homozygous calls is greater than a threshold of 10 centimorgans (cM), the region between the calls is determined to be an IBD region. This step may be repeated for all the opposite-homozygous calls. A tolerance for genotyping error can be built by allowing some low rate of opposite homozygotes when calculating an IBD segment. In some embodiments, the total number of matching genotype calls is also taken into account when deciding whether the region is IBD. For example, a region may be examined where the distance between consecutive opposite homozygous calls is just below the 10 cM threshold. If a large enough number of genotype calls within that interval match exactly, the interval is deemed IBD.



FIG. 6 is a diagram illustrating example DNA data used for IBD identification by process 500. 602 and 604 correspond to the SNP sequences of Alice and Bob, respectively. At location 606, the alleles of Alice and Bob are opposite-homozygotes, suggesting that the SNP at this location resides in a non-IBD region. Similarly, at location 608, the opposite-homozygotes suggest a non-IBD region. At location 610, however, both pairs of alleles are heterozygotes, suggesting that there is potential for IBD. Similarly, there is potential for IBD at location 612, where both pairs of alleles are identical homozygotes, and at location 614, where Alice's pair of alleles is heterozygous and Bob's is homozygous. If there is no other opposite-homozygote between 606 and 608 and there are a large number of compatible calls between the two locations, it is then likely that the region between 606 and 608 is an IBD region.


Returning to FIG. 5, at 508, the number of shared IBD segments and the amount of DNA shared by the two users are computed based on the IBD. In some embodiments, the longest IBD segment is also determined. In some embodiments, the amount of DNA shared includes the sum of the lengths of IBD regions and/or percentage of DNA shared. The sum is referred to as IBDhalf or half IBD because the individuals share DNA identical by descent for at least one of the homologous chromosomes. At 510, the predicted relationship between the users, the range of possible relationships, or both, is determined using the IBDhalf and number of segments, based on the distribution pattern of IBDhalf and shared segments for different types of relationships. For example, in a first degree parent/child relationship, the individuals have IBDhalf that is 100% the total length of all the autosomal chromosomes and 22 shared autosomal chromosome segments; in a second degree grandparent/grandchild relationship, the individuals have IBDhalf that is approximately half the total length of all the autosomal chromosomes and many more shared segments; in each subsequent degree of relationship, the percentage of IBDhalf of the total length is about 50% of the previous degree. Also, for more distant relationships, in each subsequent degree of relationship, the number of shared segments is approximately half of the previous number.


In various embodiments, the effects of genotyping error are accounted for and corrected. In some embodiments, certain genotyped SNPs are removed from consideration if there are a large number of Mendelian errors when comparing data from known parent/offspring trios. In some embodiments, SNPs that have a high no-call rate or otherwise failed quality control measures during the assay process are removed. In some embodiments, in an IBD segment, an occasional opposite-homozygote is allowed if there is sufficient opposite-homozygotes-free distance (e.g., at least 3 cM and 300 SNPs) surrounding the opposite-homozygote.


There is a statistical range of possible relationships for the same IBDhalf and shared segment number. In some embodiments, the distribution patterns are determined empirically based on survey of real populations. Different population groups may exhibit different distribution patterns. For example, the level of homozygosity within endogamous populations is found to be higher than in populations receiving gene flow from other groups. In some embodiments, the bounds of particular relationships are estimated using simulations of IBD using generated family trees. Based at least in part on the distribution patterns, the IBDhalf, and shared number of segments, the degree of relationship between two individuals can be estimated. FIG. 7 shows the simulated relationship distribution patterns for different population groups according to one embodiment. In particular, Ashkenazi Jews and Europeans are two population groups surveyed. In panels A-C, for each combination of IBDhalf and the number of IBD segments in an Ashkenazi sample group, the 95%, 50% and 5% of obtained nth degree cousinships from 1 million simulated pedigrees are plotted. In panels D-F, for each combination of IBDhalf and the number of IBD segments in a European sample group, the 95%, 50% and 5% of obtained nth degree cousinships from 1 million simulated pedigrees are plotted. In panels G-I, the differences between Ashkenazi and European distant cousinship for the prior panels are represented. Each nth cousinship category is scaled by the expected number of nth degree cousins given a model of population growth. Simulations are conducted by specifying an extended pedigree and creating simulated genomes for the pedigree by simulating the mating of individuals drawn from a pool of empirical genomes. Pairs of individuals who appear to share IBDhalf that was not inherited through the specified simulated pedigree are marked as “unknown” in panels A-F. Thus, special distribution patterns can be used to find relatives of users who have indicated that they belong to certain distinctive population groups such as the Ashkenazi.


The amount of IBD sharing is used in some embodiments to identify different population groups. For example, for a given degree of relationship, since Ashkenazi tend to have much more IBD sharing than non-Ashkenazi Europeans, users may be classified as either Ashkenazi or non-Ashkenazi Europeans based on the number and pattern of IBD matches.


In some embodiments, instead of, or in addition to, determining the relationship based on the overall number of IBD segments and percent DNA shared, individual chromosomes are examined to determine the relationship. For example, X chromosome information is received in some embodiments in addition to the autosomal chromosomes. The X chromosomes of the users are also processed to identify IBD. Since one of the X chromosomes in a female user is passed on from her father without recombination, the female inherits one X chromosome from her paternal grandmother and another one from her mother. Thus, the X chromosome undergoes recombination at a slower rate compared to autosomal chromosomes and more distant relationships can be predicted using IBD found on the X chromosomes.


In some embodiments, analyses of mutations within IBD segments can be used to estimate ages of the IBD segments and refine estimates of relationships between users.


In some embodiments, the relationship determined is verified using non-DNA information. For example, the relationship may be checked against the users' family tree information, birth records, or other user information.


In some embodiments, the efficiency of IBD region identification is improved by comparing a user's DNA information with the DNA information of multiple other users in parallel and using bitwise operations. FIG. 8 is a diagram illustrating an embodiment of a highly parallel IBD identification process. Alice's SNP calls are compared with those of multiple other users. Alice's SNP calls are pre-processed to identify ones that are homozygous. Alice's heterozygous calls are not further processed since they always indicate that there is possibility of IBD with another user. For each SNP call in Alice's genome that is homozygous, the zygosity states in the corresponding SNP calls in the other users are encoded. In this example, compatible calls (e.g., heterozygous calls and same homozygous calls) are encoded as 0 and opposite-homozygous calls are encoded as 1. For example, for homozygous SNP call AA at location 806, opposite-homozygous calls BB are encoded as 1 and compatible calls (AA and AB) are encoded as 0; for homozygous SNP call EE at location 812, opposite-homozygous calls FF are encoded as 1 and compatible calls (EE and EF) are encoded as 0, etc. The encoded representations are stored in arrays such as 818, 820, and 824. In some embodiments, the length of the array is the same as the word length of the processor to achieve greater processing efficiency. For example, in a 64-bit processing system, the array length is set to 64 and the zygosity of 64 users' SNP calls are encoded and stored in the array.


A bitwise operation is performed on the encoded arrays to determine whether a section of DNA such as the section between locations 806 and 810 includes opposite-homozygous calls. In this example, a bitwise OR operation is performed to generate a result array 824. Any user with no opposite-homozygous calls between beginning location 806 and ending location 816 results in an entry value of 0 in array 824. The corresponding DNA segment, therefore, is deemed as an IBD region for such user and Alice. In contrast, users with opposite-homozygotes result in corresponding entry values of 1 in array 824 and they are deemed not to share IBD with Alice in this region. In the example shown, user 1 shares IBD with Alice while other users do not.


In some embodiments, phased data is used instead of unphased data. These data can come directly from assays that produce phased data, or from statistical processing of unphased data. IBD regions are determined by matching the SNP sequences between users. In some embodiments, sequences of SNPs are stored in dictionaries using a hash-table data structure for the case of comparison. FIG. 9 is a diagram illustrating an example in which phased data is compared to identify IBD. The sequences are split along pre-defined intervals into non-overlapping words. Other embodiments may use overlapping words. Although a preset length of 3 is used for purposes of illustration in the example shown, many implementations may use words of longer lengths (e.g. 100). Also, the length does not have to be the same for every location. In FIG. 9, in Alice's chromosome pair 1, chromosome 902 is represented by words AGT, CTG, CAA, . . . and chromosome 904 is represented by CGA, CAG, TCA, . . . . At each location, the words are stored in a hash table that includes information about a plurality of users to enable constant retrieval of which users carry matching haplotypes. Similar hash tables are constructed for other sequences starting at other locations. To determine whether Bob's chromosome pair 1 shares any IBD with Alice's, Bob's sequences are processed into words at the same locations as Alice's. Thus, Bob's chromosome 906 yields CAT, GAC, CCG, . . . and chromosome 908 yields AAT, CTG, CAA, . . . Every word from Bob's chromosomes is then looked up in the corresponding hash table to check whether any other users have the same word at that location in their genomes. In the example shown, the second and third words of chromosome 908 match second and third words of Alice's chromosome 902. This indicates that SNP sequence CTGCAA is present in both chromosomes and suggests the possibility of IBD sharing. If enough matching words are present in close proximity to each other, the region would be deemed IBD.


In some embodiments, relative relationships found using the techniques described above are used to infer characteristics about the users that are related to each other. In some embodiments, the inferred characteristic is based on non-genetic information pertaining to the related users. For example, if a user is found to have a number of relatives that belong to a particular population group, then an inference is made that the user may also belong to the same population group. In some embodiments, genetic information is used to infer characteristics, in particular characteristics specific to shared IBD segments of the related users. Assume, for example, that Alice has sequenced her entire genome but her relatives in the system have only genotyped SNP data. If Alice's genome sequence indicates that she may have inherited a disease gene, then, with Alice's permission, Alice's relatives who have shared IBD with Alice in the same region that includes the disease gene may be notified that they are at risk for the same disease.


Although the foregoing embodiments have been described in some detail for purposes of clarity of understanding, the invention is not limited to the details provided. There are many alternative ways of implementing the invention. The disclosed embodiments are illustrative and not restrictive.

Claims
  • 1. A computer-implemented method comprising: receiving, by a computing system and from a user, a request for information about potential familial relatives among a plurality of users in a familial relative finder database, wherein the familial relative finder database comprises recombinable deoxyribonucleic acid (DNA) sequence information of the plurality of users, including that of the user;determining, through use of bitwise parallel processing by the computing system, identical-by-descent (IBD) segments from the recombinable DNA sequence information of the user and the recombinable DNA sequence information of the plurality of users;based on the IBD segments, predicting, by the computing system, familial relative relationships between the user and each of a subset of users from the plurality of users; andproviding, by the computing system and for display on a client device of the user, a representation of a graphical user interface indicating the familial relative relationships between the user and each of the subset of users.
  • 2. The computer-implemented method of claim 1, wherein determining the IBD segments comprises: identifying the IBD segments based on a plurality of locations within a region of the DNA sequence information of the plurality of users.
  • 3. The computer-implemented method of claim 2, wherein identifying the IBD segments comprises: representing, in respective bitwise arrays for each of the subset of users, the locations that have opposite-homozygous values to that of the user with a one and the locations do not have opposite-homozygous values to that of the user with a zero;performing, in parallel, a bitwise OR operation over each of the respective bitwise arrays to form a result array; anddetermining, where the result array indicates a zero, that a particular user of the subset of users and the user share an IBD segment within the region.
  • 4. The computer-implemented method of claim 3, wherein a number of the subset of users matches a word length of a processor of the computing system.
  • 5. The computer-implemented method of claim 2, wherein identifying the IBD segments comprises: determining that a particular user of the subset of users and the user share an IBD segment where there is no more than a predetermined rate of opposite homozygotes between the particular user and the user within the region.
  • 6. The computer-implemented method of claim 5, wherein determining that the particular user and the user share the IBD segment comprises: determining that the IBD segment has a distance between consecutive opposite homozygotes that is above a predetermined threshold within the region.
  • 7. The computer-implemented method of claim 2, wherein identifying the IBD segments comprises: determining that a particular user of the subset of users and the user share an IBD segment where a distance between consecutive opposite homozygotes is above a predetermined threshold within the region.
  • 8. The computer-implemented method of claim 1, wherein the IBD segments include a particular IBD segment shared by the user and a particular user of the subset of users, the computer-implemented method further comprising: determining that the particular IBD segment overlaps with a disease gene; andproviding, to the particular user, a notification that the particular user is at risk of a disease associated with the disease gene.
  • 9. The computer-implemented method of claim 1, wherein the graphical user interface indicates the familial relative relationships between the user and each of the subset of users in tabular form.
  • 10. The computer-implemented method of claim 9, wherein entries in the tabular form display, for the user and each particular user of the subset of users, predicted familial relative relationships and a percent of DNA shared.
  • 11. The computer-implemented method of claim 10, wherein entries in the tabular form are sorted according to closeness of the predicted familial relative relationships with the user.
  • 12. The computer-implemented method of claim 9, wherein an entry in the tabular form displays an icon selectable by way of the graphical user interface that facilitates making contact between the user and a particular user to which the entry applies.
  • 13. The computer-implemented method of claim 12, further comprising: receiving, from the client device, an indication that the user has selected the icon; andin response to receiving the indication, providing, for display on the client device, a representation of a second graphical user interface that prompts the user to enter a personalized introduction message and to select personal information that the user is willing to share with the particular user.
  • 14. The computer-implemented method of claim 13, further comprising: receiving, from the client device, the personalized introduction message or selection of the personal information; andin response to receiving the personalized introduction message or selection of the personal information, transmitting an invitation to connect to the particular user on behalf of the user.
  • 15. The computer-implemented method of claim 14, wherein the particular user has opted-in to being presented with information about potential familial relatives.
  • 16. The computer-implemented method of claim 9, wherein entries in the tabular form are anonymized to hide identities of the subset of users.
  • 17. The computer-implemented method of claim 9, wherein each entry in the tabular form also displays, for the user and each particular user of the subset of users, a number of IBD segments shared.
  • 18. The computer-implemented method of claim 1, further comprising: receiving, from the user, a number of generations as a threshold relationship value, wherein each of the subset of users has a respective common ancestor with the user that is no more than the number of generations from the user.
  • 19. A non-transitory computer-readable medium, having stored thereon program instructions that, upon execution by a computing device, cause the computing device to perform operations comprising: receiving from a user, a request for information about potential familial relatives among a plurality of users in a familial relative finder database, wherein the familial relative finder database comprises recombinable deoxyribonucleic acid (DNA) sequence information of the plurality of users, including that of the user;determining, through use of bitwise parallel processing, identical-by-descent (IBD) segments from the recombinable DNA sequence information of the user and the recombinable DNA sequence information of the plurality of users;based on the IBD segments, predicting familial relative relationships between the user and each of a subset of users from the plurality of users; andproviding, for display on a client device of the user, a representation of a graphical user interface indicating the familial relative relationships between the user and each of the subset of users.
  • 20. A computing system comprising: one or more processors; andmemory containing instructions that, when executed by the one or more processors, cause the computing system to perform operations comprising: receiving, from a user, a request for information about potential familial relatives among a plurality of users in a familial relative finder database, wherein the familial relative finder database comprises recombinable deoxyribonucleic acid (DNA) sequence information of the plurality of users, including that of the user;determining, through use of bitwise parallel processing, identical-by-descent (IBD) segments from the recombinable DNA sequence information of the user and the recombinable DNA sequence information of the plurality of users;based on the IBD segments, predicting familial relative relationships between the user and each of a subset of users from the plurality of users; andproviding, for display on a client device of the user, a representation of a graphical user interface indicating the familial relative relationships between the user and each of the subset of users.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claims priority to U.S. patent application Ser. No. 17/979,412, filed Nov. 2, 2022. U.S. patent application Ser. No. 17/979,412 is a continuation of and claims priority to U.S. patent application Ser. No. 17/576,738, filed Jan. 14, 2022.U.S. patent application Ser. No. 17/576,738 is a continuation of and claims priority to U.S. patent application Ser. No. 17/351,052, filed Jun. 17, 2021.U.S. patent application Ser. No. 17/351,052 is a continuation of and claims priority to U.S. patent application Ser. No. 17/073,110, filed Oct. 16, 2020.U.S. patent application Ser. No. 17/073,110 is a continuation of and claims priority to U.S. patent application Ser. No. 16/129,645, filed Sep. 12, 2018.U.S. patent application Ser. No. 16/129,645 is a continuation of and claims priority to U.S. patent application Ser. No. 15/264,493, filed Sep. 13, 2016.U.S. patent application Ser. No. 15/264,493 is a continuation of and claims priority to U.S. patent application Ser. No. 13/871,744, filed Apr. 26, 2013.U.S. patent application Ser. No. 13/871,744 is a continuation of and claims priority to U.S. patent application Ser. No. 12/644,791, filed Dec. 22, 2009.U.S. patent application Ser. No. 12/644,791 is a continuation of and claims priority to U.S. provisional patent application no. 61/204,195, filed Dec. 31, 2008. All of these cited priority applications are hereby incorporated by reference in their entirety.

US Referenced Citations (483)
Number Name Date Kind
5288644 Beavis Feb 1994 A
5301105 Cummings, Jr. Apr 1994 A
5376526 Brown Dec 1994 A
5384261 Winkler Jan 1995 A
5424186 Fodor Jun 1995 A
5446886 Li Aug 1995 A
5551880 Bonnstetter Sep 1996 A
5649181 French Jul 1997 A
5660176 Iliff Aug 1997 A
5692501 Minturn Dec 1997 A
5752242 Havens May 1998 A
5769074 Barnhill Jun 1998 A
5839120 Thearling Nov 1998 A
5940802 Hildebrand Aug 1999 A
5941947 Brown Aug 1999 A
5985559 Brown Nov 1999 A
6014631 Teagarden Jan 2000 A
6063028 Luciano May 2000 A
6108647 Poosala Aug 2000 A
6131092 Masand Oct 2000 A
6203993 Shuber Mar 2001 B1
6216134 Heckerman Apr 2001 B1
6253203 O'Flaherty Jun 2001 B1
6269364 Kennedy Jul 2001 B1
6321163 Graham Nov 2001 B1
6393399 Even May 2002 B1
6450956 Rappaport Sep 2002 B1
6487541 Aggarwal Nov 2002 B1
6493637 Steeg Dec 2002 B1
6506562 Weissman Jan 2003 B1
6507840 Ioannidis Jan 2003 B1
6519604 Acharya Feb 2003 B1
6601059 Fries Jul 2003 B1
6629097 Keith Sep 2003 B1
6629935 Miller Oct 2003 B1
6640211 Holden Oct 2003 B1
6687696 Hofmann Feb 2004 B2
6694311 Smith Feb 2004 B1
6703228 Landers Mar 2004 B1
6730023 Dodds May 2004 B1
6738762 Chen May 2004 B1
6873914 Winfield Mar 2005 B2
6887666 Hager May 2005 B1
6912492 Johnson Jun 2005 B1
6931326 Judson Aug 2005 B1
6994962 Thilly Feb 2006 B1
7054758 Gill-Garrison May 2006 B2
7062752 Simpson Jun 2006 B2
7069308 Abrams Jun 2006 B2
7072794 Wittkowski Jul 2006 B2
7076504 Handel Jul 2006 B1
7107155 Frudakis Sep 2006 B2
7127355 Cox Oct 2006 B2
7162471 Knight Jan 2007 B1
7271243 Dumas Milne Edwards Sep 2007 B2
7292944 Larder Nov 2007 B2
7366719 Shaw Apr 2008 B2
7461006 Gogolak Dec 2008 B2
7461077 Greenwood Dec 2008 B1
7567870 Hood Jul 2009 B1
7572603 Small Aug 2009 B2
7592910 Tuck Sep 2009 B2
7630986 Herz Dec 2009 B1
7720855 Brown May 2010 B2
7739247 Mount Jun 2010 B2
7752215 Dettinger Jul 2010 B2
7783665 Tormasov Aug 2010 B1
7788358 Martino Aug 2010 B2
7797302 Kenedy Sep 2010 B2
7818310 Kenedy Oct 2010 B2
7818396 Dolin Oct 2010 B2
7844609 Kenedy Nov 2010 B2
7877398 Kroeschel Jan 2011 B2
7904511 Ryan Mar 2011 B2
7917374 Walker Mar 2011 B2
7917438 Kenedy Mar 2011 B2
7930156 Maruhashi Apr 2011 B2
7933912 Kenedy Apr 2011 B2
7941329 Kenedy May 2011 B2
7941434 Kenedy May 2011 B2
7951078 Scheuner May 2011 B2
7957907 Sorenson Jun 2011 B2
7996157 Zabeau Aug 2011 B2
8024348 Kenedy Sep 2011 B2
8051033 Kenedy Nov 2011 B2
8055643 Kenedy Nov 2011 B2
8065324 Kenedy Nov 2011 B2
8073708 Igoe Dec 2011 B1
8099424 Kenedy Jan 2012 B2
8108406 Kenedy Jan 2012 B2
8156158 Rolls Apr 2012 B2
8185461 Kenedy May 2012 B2
8187811 Eriksson May 2012 B2
8200509 Kenedy Jun 2012 B2
8209319 Kenedy Jun 2012 B2
8224835 Kenedy Jul 2012 B2
8255403 Kenedy Aug 2012 B2
8326648 Kenedy Dec 2012 B2
8335652 Soykan Dec 2012 B2
8386519 Kenedy Feb 2013 B2
8428886 Wong Apr 2013 B2
8452619 Kenedy May 2013 B2
8458097 Kenedy Jun 2013 B2
8458121 Kenedy Jun 2013 B2
8463554 Hon Jun 2013 B2
8510057 Avey Aug 2013 B1
8543339 Wojcicki Sep 2013 B2
8589437 Khomenko Nov 2013 B1
8606761 Kenedy Dec 2013 B2
8635087 Igoe Jan 2014 B1
8645343 Wong Feb 2014 B2
8655821 Aliferis Feb 2014 B2
8655899 Kenedy Feb 2014 B2
8655908 Kenedy Feb 2014 B2
8655915 Kenedy Feb 2014 B2
8719045 Yoon May 2014 B2
8738297 Sorenson May 2014 B2
8744982 Crockett Jun 2014 B2
8786603 Rasmussen Jul 2014 B2
8788283 Kenedy Jul 2014 B2
8788286 Kenedy Jul 2014 B2
8855935 Myres Oct 2014 B2
8898021 Perlin Nov 2014 B2
8990198 Rolls Mar 2015 B2
8990250 Chowdry Mar 2015 B1
9031870 Kenedy May 2015 B2
9092391 Stephan Jul 2015 B2
9116882 Macpherson Aug 2015 B1
9170992 Kenedy Oct 2015 B2
9213944 Do Dec 2015 B1
9213947 Do Dec 2015 B1
9218451 Wong Dec 2015 B2
9336177 Hawthorne May 2016 B2
9367663 Deciu Jun 2016 B2
9367800 Do Jun 2016 B1
9390225 Barber Jul 2016 B2
9405818 Chowdry Aug 2016 B2
9486429 Summar Nov 2016 B2
9582647 Kenedy Feb 2017 B2
9836576 Do Dec 2017 B1
9864835 Avey Jan 2018 B2
9928338 Tang Mar 2018 B2
9977708 Do May 2018 B1
9984198 Deciu May 2018 B2
10025877 Macpherson Jul 2018 B2
10162880 Chowdry Dec 2018 B1
10249389 Athey Apr 2019 B2
10275569 Avey Apr 2019 B2
10296842 Lu May 2019 B2
10296847 Do May 2019 B1
10379812 Kenedy Aug 2019 B2
10432640 Hawthorne Oct 2019 B1
10437858 Naughton Oct 2019 B2
10468141 Valenzuela Nov 2019 B1
10516670 Hawthorne Dec 2019 B2
10572831 Do Feb 2020 B1
10643740 Avey May 2020 B2
10658071 Do May 2020 B2
10691725 Naughton Jun 2020 B2
10699803 Do Jun 2020 B1
10755805 Do Aug 2020 B1
10777302 Chowdry Sep 2020 B2
10790041 Macpherson Sep 2020 B2
10803134 Kenedy Oct 2020 B2
10841312 Hawthorne Nov 2020 B2
10854318 Macpherson Dec 2020 B2
10891317 Chowdry Jan 2021 B1
10896233 Kenedy Jan 2021 B2
10957455 Kenedy Mar 2021 B2
10991467 Kenedy Apr 2021 B2
10999285 Hawthorne May 2021 B2
11003694 Kenedy May 2021 B2
11170047 Macpherson Nov 2021 B2
11170873 Avey Nov 2021 B2
11171962 Hawthorne Nov 2021 B2
11935628 Hon Mar 2024 B2
20010000810 Alabaster May 2001 A1
20020010552 Hugh, Jr. Jan 2002 A1
20020019746 Hugh, Jr. Feb 2002 A1
20020048763 Penn Apr 2002 A1
20020049772 Hugh, Jr. Apr 2002 A1
20020052697 Serita May 2002 A1
20020052761 Fey May 2002 A1
20020077775 Schork Jun 2002 A1
20020082868 Pories Jun 2002 A1
20020094532 Bader Jul 2002 A1
20020095585 Scott Jul 2002 A1
20020099789 Rudolph Jul 2002 A1
20020120623 Vivier Aug 2002 A1
20020123058 Threadgill Sep 2002 A1
20020126545 Warren Sep 2002 A1
20020128860 Leveque Sep 2002 A1
20020133299 Jacob Sep 2002 A1
20020133495 Hugh, Jr. Sep 2002 A1
20020137086 Olek Sep 2002 A1
20020138572 Delany Sep 2002 A1
20020155422 Ingber Oct 2002 A1
20020156043 Pfost Oct 2002 A1
20020161664 Shaya Oct 2002 A1
20020169793 Sweeney Nov 2002 A1
20020174096 O'Reilly Nov 2002 A1
20020179097 Atkins Dec 2002 A1
20020183965 Gogolak Dec 2002 A1
20020187496 Andersson Dec 2002 A1
20030009295 Markowitz Jan 2003 A1
20030030637 Grinstein Feb 2003 A1
20030040002 Ledley Feb 2003 A1
20030046110 Gogolak Mar 2003 A1
20030046114 Davies Mar 2003 A1
20030065241 Hohnloser Apr 2003 A1
20030065535 Karlov Apr 2003 A1
20030101000 Bader May 2003 A1
20030113727 Girn Jun 2003 A1
20030129630 Aakalu Jul 2003 A1
20030130798 Hood Jul 2003 A1
20030130873 Nevin Jul 2003 A1
20030135096 Dodds Jul 2003 A1
20030135488 Amir Jul 2003 A1
20030165926 Olek Sep 2003 A1
20030167260 Nakamura Sep 2003 A1
20030171876 Markowitz Sep 2003 A1
20030172065 Sorenson Sep 2003 A1
20030195706 Korenberg Oct 2003 A1
20030198970 Roberts Oct 2003 A1
20030203370 Yakhini Oct 2003 A1
20030204418 Ledley Oct 2003 A1
20030208454 Hugh, Jr. Nov 2003 A1
20030212579 Brown Nov 2003 A1
20030224394 Schadt Dec 2003 A1
20030233377 Kovac Dec 2003 A1
20030237103 Jacob Dec 2003 A1
20040002816 Milosavljevic Jan 2004 A1
20040006488 Fitall Jan 2004 A1
20040009495 O'Malley Jan 2004 A1
20040014097 McGlennen Jan 2004 A1
20040015337 Thomas Jan 2004 A1
20040018500 Glassbrook Jan 2004 A1
20040019598 Huang Jan 2004 A1
20040019688 Nickerson Jan 2004 A1
20040024534 Hsu Feb 2004 A1
20040034652 Hofmann Feb 2004 A1
20040076984 Eils Apr 2004 A1
20040093331 Garner May 2004 A1
20040093334 Scherer May 2004 A1
20040111410 Burgoon Jun 2004 A1
20040122705 Sabol Jun 2004 A1
20040133358 Bryant Jul 2004 A1
20040146870 Liao Jul 2004 A1
20040158581 Kotlyar Aug 2004 A1
20040172287 O'Toole Sep 2004 A1
20040172313 Stein Sep 2004 A1
20040175700 Geesaman Sep 2004 A1
20040177071 Massey Sep 2004 A1
20040193019 Wei Sep 2004 A1
20040197799 Williamson Oct 2004 A1
20040210548 William, Jr. Oct 2004 A1
20040219493 Phillips Nov 2004 A1
20040221855 Ashton Nov 2004 A1
20040235922 Baile Nov 2004 A1
20040242454 Gallant Dec 2004 A1
20040243443 Asano Dec 2004 A1
20040243545 Boone et al. Dec 2004 A1
20040254920 Brill Dec 2004 A1
20050003410 Frazer Jan 2005 A1
20050021240 Berlin Jan 2005 A1
20050026117 Judson Feb 2005 A1
20050026119 Ellis Feb 2005 A1
20050027560 Cook Feb 2005 A1
20050032066 Heng Feb 2005 A1
20050037405 Caspi Feb 2005 A1
20050055365 Ramakrishnan Mar 2005 A1
20050064476 Huang Mar 2005 A1
20050090718 Dodds Apr 2005 A1
20050112684 Holzle May 2005 A1
20050120019 Rigoutsos Jun 2005 A1
20050143928 Moser Jun 2005 A1
20050152905 Omoigui Jul 2005 A1
20050154627 Zuzek Jul 2005 A1
20050158788 Schork Jul 2005 A1
20050164704 Winsor Jul 2005 A1
20050170321 Scully Aug 2005 A1
20050170528 West Aug 2005 A1
20050176057 Bremer Aug 2005 A1
20050181516 Dressman Aug 2005 A1
20050191678 Lapointe Sep 2005 A1
20050191716 Surwit Sep 2005 A1
20050191731 Judson Sep 2005 A1
20050203900 Nakamura Sep 2005 A1
20050208454 Hall Sep 2005 A1
20050216208 Saito Sep 2005 A1
20050228595 Cooke Oct 2005 A1
20050256649 Roses Nov 2005 A1
20050260610 Kurtz Nov 2005 A1
20050278125 Harwood Dec 2005 A1
20050283386 Powers Dec 2005 A1
20060020398 Vernon Jan 2006 A1
20060020614 Kolawa Jan 2006 A1
20060025929 Eglington Feb 2006 A1
20060052945 Rabinowitz Mar 2006 A1
20060059159 Truong Mar 2006 A1
20060063156 Willman Mar 2006 A1
20060064415 Guyon Mar 2006 A1
20060111849 Schadt May 2006 A1
20060129034 Kasabov Jun 2006 A1
20060129435 Smitherman Jun 2006 A1
20060136143 Avinash Jun 2006 A1
20060185027 Bartel Aug 2006 A1
20060195335 Christian Aug 2006 A1
20060200319 Brown Sep 2006 A1
20060218111 Cohen Sep 2006 A1
20060235881 Masarie Oct 2006 A1
20060257888 Zabeau Nov 2006 A1
20060257903 Akil Nov 2006 A1
20060287876 Jedlicka Dec 2006 A1
20060293921 McCarthy Dec 2006 A1
20070011173 Agostino Jan 2007 A1
20070016568 Amir Jan 2007 A1
20070027636 Rabinowitz Feb 2007 A1
20070027850 Chan Feb 2007 A1
20070027917 Ariel Feb 2007 A1
20070037182 Gaskin Feb 2007 A1
20070042369 Reese Feb 2007 A1
20070050354 Rosenberg Mar 2007 A1
20070061085 Fernandez Mar 2007 A1
20070061166 Ramasubramanian Mar 2007 A1
20070061197 Ramer Mar 2007 A1
20070061424 Mattaway Mar 2007 A1
20070078680 Wennberg Apr 2007 A1
20070082353 Hiraoka Apr 2007 A1
20070106536 Moore May 2007 A1
20070106754 Moore May 2007 A1
20070111247 Stephens May 2007 A1
20070116036 Moore May 2007 A1
20070122824 Tucker May 2007 A1
20070156691 Sturms Jul 2007 A1
20070166728 Abramson Jul 2007 A1
20070185658 Paris Aug 2007 A1
20070198485 Ramer Aug 2007 A1
20070213939 Liew Sep 2007 A1
20070220017 Zuzarte Sep 2007 A1
20070226250 Mueller Sep 2007 A1
20070238936 Becker Oct 2007 A1
20070239554 Lin Oct 2007 A1
20070244701 Erlanger Oct 2007 A1
20070254295 Harvey Nov 2007 A1
20070271292 Acharya Nov 2007 A1
20070294113 Settimi Dec 2007 A1
20070299881 Bouganim Dec 2007 A1
20080009268 Ramer Jan 2008 A1
20080021288 Bowman Jan 2008 A1
20080040046 Chakraborty Feb 2008 A1
20080040151 Moore Feb 2008 A1
20080081331 Myres Apr 2008 A1
20080082955 Andreessen Apr 2008 A1
20080091471 Michon Apr 2008 A1
20080097938 Guyon Apr 2008 A1
20080097939 Guyon Apr 2008 A1
20080108881 Stupp May 2008 A1
20080114617 Heniford May 2008 A1
20080114737 Neely May 2008 A1
20080131887 Stephan Jun 2008 A1
20080154566 Myres Jun 2008 A1
20080162510 Baio Jul 2008 A1
20080189047 Wong Aug 2008 A1
20080195594 Gerjets Aug 2008 A1
20080201174 Ramasubramanian Aug 2008 A1
20080205655 Wilkins Aug 2008 A1
20080227063 Kenedy Sep 2008 A1
20080228043 Kenedy Sep 2008 A1
20080228410 Kenedy Sep 2008 A1
20080228451 Kenedy Sep 2008 A1
20080228677 Kenedy Sep 2008 A1
20080228698 Kenedy Sep 2008 A1
20080228699 Kenedy Sep 2008 A1
20080228700 Kenedy Sep 2008 A1
20080228701 Kenedy Sep 2008 A1
20080228702 Kenedy Sep 2008 A1
20080228704 Kenedy Sep 2008 A1
20080228705 Kenedy Sep 2008 A1
20080228706 Kenedy Sep 2008 A1
20080228708 Kenedy Sep 2008 A1
20080228722 Kenedy Sep 2008 A1
20080228753 Kenedy Sep 2008 A1
20080228756 Kenedy Sep 2008 A1
20080228757 Kenedy Sep 2008 A1
20080228765 Kenedy Sep 2008 A1
20080228766 Kenedy Sep 2008 A1
20080228767 Kenedy Sep 2008 A1
20080228768 Kenedy Sep 2008 A1
20080228797 Kenedy Sep 2008 A1
20080243843 Kenedy Oct 2008 A1
20080256023 Nair Oct 2008 A1
20080274456 Yankner Nov 2008 A1
20080286761 Day Nov 2008 A1
20080286796 Grupe Nov 2008 A1
20080300958 Gluck Dec 2008 A1
20090012928 Lussier Jan 2009 A1
20090029371 Elliott Jan 2009 A1
20090043752 Kenedy Feb 2009 A1
20090077110 Petri Mar 2009 A1
20090083654 Nickerson Mar 2009 A1
20090094271 Brewer Apr 2009 A1
20090099789 Stephan Apr 2009 A1
20090112871 Hawthorne Apr 2009 A1
20090118131 Avey May 2009 A1
20090119083 Avey May 2009 A1
20090132284 Fey May 2009 A1
20090186347 Cox Jul 2009 A1
20090222517 Kalofonos Sep 2009 A1
20090271375 Hyde Oct 2009 A1
20090299645 Colby Dec 2009 A1
20090318297 Cappucilli Dec 2009 A1
20090319610 Nikolayev Dec 2009 A1
20090326832 Heckerman Dec 2009 A1
20100024894 Himmelmann Feb 2010 A1
20100041958 Leuthardt Feb 2010 A1
20100042438 Moore Feb 2010 A1
20100042643 Pattabhi Feb 2010 A1
20100063830 Kenedy Mar 2010 A1
20100063835 Kenedy Mar 2010 A1
20100063865 Kenedy Mar 2010 A1
20100063930 Kenedy Mar 2010 A1
20100070292 Kenedy Mar 2010 A1
20100070455 Halperin Mar 2010 A1
20100076950 Kenedy Mar 2010 A1
20100076988 Kenedy Mar 2010 A1
20100099091 Hamet Apr 2010 A1
20100169262 Kenedy Jul 2010 A1
20100169313 Kenedy Jul 2010 A1
20100169338 Kenedy Jul 2010 A1
20100223281 Hon Sep 2010 A1
20100256917 Mcvean Oct 2010 A1
20110004628 Armstrong Jan 2011 A1
20110078168 Kenedy Mar 2011 A1
20110098187 Urdea Apr 2011 A1
20110098193 Kingsmore Apr 2011 A1
20110184656 Kenedy Jul 2011 A1
20110196872 Sims Aug 2011 A1
20120035954 Yeskel Feb 2012 A1
20120053845 Bruestle Mar 2012 A1
20120270190 Kenedy Oct 2012 A1
20120270794 Eriksson Oct 2012 A1
20120309639 Hakonarson Dec 2012 A1
20130013217 Stephan Jan 2013 A1
20130085728 Tang Apr 2013 A1
20130129630 Haik May 2013 A1
20130230858 Cantor Sep 2013 A1
20130345988 Avey Dec 2013 A1
20140006433 Hon Jan 2014 A1
20140067355 Noto Mar 2014 A1
20140098344 Gierhart Apr 2014 A1
20150051086 Hatchwell Feb 2015 A1
20150106115 Hu Apr 2015 A1
20150227610 Chowdry Aug 2015 A1
20150248473 Kenedy Sep 2015 A1
20150288780 El Daher Oct 2015 A1
20150315645 Gaasterland Nov 2015 A1
20150347566 Kenedy Dec 2015 A1
20150356243 Andreassen Dec 2015 A1
20160026755 Byrnes Jan 2016 A1
20160042143 Kenedy Feb 2016 A1
20160091499 Sterling Mar 2016 A1
20160103950 Myres Apr 2016 A1
20160171155 Do Jun 2016 A1
20160277408 Hawthorne Sep 2016 A1
20170053089 Kenedy Feb 2017 A1
20170185719 Kenedy Jun 2017 A1
20170277828 Avey Sep 2017 A1
20170330358 Macpherson Nov 2017 A1
20180181710 Avey Jun 2018 A1
20180210705 Kenedy Jul 2018 A1
20180239831 Boyce Aug 2018 A1
20190034163 Kenedy Jan 2019 A1
20190206514 Avey Jul 2019 A1
20190267115 Avey Aug 2019 A1
20190281061 Hawthorne Sep 2019 A1
20200137063 Hawthorne Apr 2020 A1
20200210143 Kenedy Jul 2020 A1
20210058398 Hawthorne Feb 2021 A1
20210166823 Kenedy Jun 2021 A1
20210209134 Kenedy Jul 2021 A1
20210233665 Kenedy Jul 2021 A1
20210250357 Hawthorne Aug 2021 A1
Foreign Referenced Citations (29)
Number Date Country
0967291 Dec 1999 EP
1990015070 Dec 1990 WO
1992010092 Jun 1992 WO
200127857 Apr 2001 WO
200150214 Jul 2001 WO
200210456 Feb 2002 WO
200222165 Mar 2002 WO
2002080079 Oct 2002 WO
2003060652 Jul 2003 WO
2003076895 Sep 2003 WO
2004029298 Apr 2004 WO
2004031912 Apr 2004 WO
2004048551 Jun 2004 WO
2004051548 Jun 2004 WO
2004075010 Sep 2004 WO
2004097577 Nov 2004 WO
2005086891 Sep 2005 WO
2005109238 Nov 2005 WO
2006052952 May 2006 WO
2006084195 Aug 2006 WO
2006089238 Aug 2006 WO
2007061881 May 2007 WO
2008042232 Apr 2008 WO
2008067551 Jun 2008 WO
2009051749 Apr 2009 WO
2009051766 Apr 2009 WO
2009051768 Apr 2009 WO
2010065139 Jun 2010 WO
2010139006 Dec 2010 WO
Non-Patent Literature Citations (497)
Entry
Office Action, U.S. Appl. No. 16/947,678, mailed Feb. 2, 2024.
Office Action, U.S. Appl. No. 17/979,412, mailed Aug. 17, 2023.
Office Action, U.S. Appl. No. 17/980,024, mailed Nov. 9, 2023.
Office Action, U.S. Appl. No. 17/981,917, mailed Feb. 1, 2024.
Alexander, et al., “Fast model-based estimation of ancestry in unrelated individuals”, Genome Research 19, (2009) pp. 1655-1664.
Anderson, et al., “A maximum-likelihood method for the estimation of pairwise relatedness in structured populations” Genetics 176, (2007) DD. 421-440.
Cartier, Kevin C., Application of The Mediator Design Pattern to Monte Carlo Simulation in Genetic Epidemiology, Masters Thesis, Case Western Reserve University, Aug. 2008.
Chen, et al., “Robust relationship inference in genome-wide association studies”, Bioinformatics 26 No. 22, 2010, pp. 2867-2873.
Choi, et al., “Case-control association testing in the presence of unknown relationships” Genet. Epidem. 33, (2009) pp. 668-678.
Delaneau, et al., “A Linear complexity phasing method for thousands of genomes,” Nature Methods, vol. 9, No. 2, Feb. 2012, pp. 179-184.
Druet, Tom, et al., “A Hidden Markov Model Combining Linkage and Linkage Disequilibrium Information for Haplotype Reconstruction and Quantitative Trait Locus Fine Mapping,” Genetics vol. 184, No. 3, Jun. 2010, pp. 789-798.
European Patent Office, Extended European Search Report, App. No. 09836517.4, mailed Oct. 25, 2016.
European Patent Office, Extended European Search Report, App. No. 17172048.5, mailed Oct. 9, 2017.
European Patent Office, Office Action, App. No. 17172048.5, mailed Oct. 27, 2021.
Frazer, et al., “A second generation human haplotype map of over 3 .1 million SNPs”, vol. 449, Oct. 18, 2007, pp. 851-861. <doi:10.1038/nature06258>.
Garrett, Paul: The mathematics of coding: Information, compression, error correction and finite fields. University of Minnesota. Downloaded Apr. 13, 2021 (Year: 2021).
Hon, et al., “Discovering Distant Relatives within a Diverse Set of Populations Using DNA Segments Identical by Descent” Advancing Human Genetics & Genomics Annual Meeting Poster Session, Oct. 20, 2009, 23andMe, Inc., pp. 1-2.
Howie, et al., “A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies,” PLoS Genetics, vol. 5, No. 6, Jun. 2009, pp. 1-15.
International Search Report, PCT App. No. PCT/US2007/020884, mailed Apr. 7, 2009.
International Search Report, PCT App. No. PCT/US2009/006706, mailed Mar. 3, 2010.
Li, et al., “Fast and accurate long-read alignment with Burrows-Wheeler transform” Bioinformatics vol. 26, No. 5, 2010, pp. 589-595.
Lowe, et al., “Genome-Wide Association Studies in an Isolated Founder Population from the Pacific Island ofKosrae,” PLoS Genet 5(2), 2009, el000365, pp. 1-17. <doi: 10.1371/joumal.pgen.1000365>.
Notice of Allowance, U.S. Appl. No. 12/644,791, mailed Feb. 25, 2013.
Notice of Allowance, U.S. Appl. No. 15/664,619, mailed Aug. 19, 2020.
Notice of Allowance, U.S. Appl. No. 17/073,095, mailed Jan. 21, 2021.
Notice of Allowance, U.S. Appl. No. 17/073,110, mailed Apr. 29, 2021.
Notice of Allowance, U.S. Appl. No. 17/077,930, mailed May 4, 2022.
Notice of Allowance, U.S. Appl. No. 17/351,052, mailed Mar. 4, 2022.
Notice of Allowance, U.S. Appl. No. 17/576,738, mailed Jul. 26, 2022.
Notice of Allowance, U.S. Appl. No. 17/958,665, mailed Feb. 10, 2023.
Office Action, U.S. Appl. No. 12/644,791, mailed May 31, 2012.
Office Action, U.S. Appl. No. 12/644,791, mailed Dec. 7, 2012.
Office Action, U.S. Appl. No. 12/774,546, mailed Aug. 12, 2015.
Office Action, U.S. Appl. No. 12/774,546, mailed Feb. 2, 2016.
Office Action, U.S. Appl. No. 12/774,546, mailed Feb. 1, 2017.
Office Action, U.S. Appl. No. 13/871,744, mailed Feb. 18, 2016.
Office Action, U.S. Appl. No. 15/264,493, mailed May 18, 2018.
Office Action, U.S. Appl. No. 15/664,619, mailed Mar. 3, 2020.
Office Action, U.S. Appl. No. 16/129,645, mailed Apr. 23, 2021.
Office Action, U.S. Appl. No. 17/073,122, mailed Dec. 24, 2020.
Office Action, U.S. Appl. No. 17/073,122, mailed Jun. 14, 2021.
Office Action, U.S. Appl. No. 17/073,128, mailed Feb. 3, 2021.
Office Action, U.S. Appl. No. 17/073,128, mailed Jun. 30, 2021.
Office Action, U.S. Appl. No. 17/301,129, mailed Jun. 8, 2021.
Office Action, U.S. Appl. No. 17/351,052, mailed Dec. 9, 2021.
Office Action, U.S. Appl. No. 17/576,738, mailed Apr. 14, 2022.
Office Action, U.S. Appl. No. 17/880,566, mailed Feb. 14, 2023.
Office Action, U.S. Appl. No. 17/958,665, mailed Dec. 29, 2022.
Office Action, U.S. Appl. No. 17/989,388, mailed Feb. 7, 2023.
Rajeevan, et al. ALFRED: An Allele Frequency Database for Microevolutionary Studies. Evolutionary Bioinformatics Online (2005) vol. 1, p. 1-10.
Roberson, E., Examining Copy Number Alterations, Unexpected Relationships and Population Structure Using SNPs, Johns Hopkins University, Baltimore, MD. Jul. 2009.
Roberson, Elisha D. O. et al., Visualization of Shared Genomic Regions and Meiotic Recombination in High-Density SNP Data, PloS ONE 4(8): e6711. doi:| 0.1371/journal.pone.0006711 (Aug. 21, 2009).
Teo, et al., “Singapore Genome Variation Project: A haplotype map of three Southeast Asian populations” Genome Res. 19, (2009) pp. 2154-2162.
The International HapMap Consortium, “A second generation human haplotype map of over 3.1 million SNPs,” Nature, vol. 449, Oct. 18, 2007, pp. 851-860. <doi: 10.1038/nature06258>.
23Andme, Inc., v. Ancestry.Com DNA, LLC, Ancestry.Com Operations Inc., Ancestry.Com LLC, No. 2019-1222, United States Court of Appeals for the Federal Circuit, On Petition For Rehearing En Banc; Order, denied; filed Jan. 9, 2020, Case No. 18-cv-02791-EMC, pp. 1-2.
23Andme, Inc., v. Ancestry.Com DNA, LLC, Ancestry.Com Operations Inc., Ancestry.Com LLC, No. 2019-1222, United States Court of Appeals for the Federal Circuit, Petition For Rehearing En Banc, filed Nov. 4, 2019, Case No. 18-cv-02791-EMC, pp. 1-28.
23Andme, Inc., v. Ancestry.Com DNA, LLC, Ancestry.Com Operations Inc., Ancestry.Com LLC, No. 2019-1222, United States Court of Appeals for the Federal Circuit, Defendant's-Appellees' Response to Appellant 23ANDME, Inc.'s Petition for Rehearing En Banc, filed Dec. 19, 2019, Case No. 18-cv-02791-EMC, pp. 1-25.
Abecasis, et al., “Extent and distribution of linkage disequilibrium in three genomic regions” Am. J. Hum. Genet. 68, (2001) pp. 191-197.
Abecasis, et al., “GOLD—Graphical overview of linkage disequilibrium” Bioinformatics, vol. 16, No. 2, (2000) pp. 182-183.
Abecasis, et al., “GRR: graphical representation of relationship errors” Bioinformatics 17, (2001) pp. 742-743.
Abecasis, et al., “Handling marker-marker linkage disequilibrium: pedigree analysis with clustered markers” Am. J. Hum. Genet. 77 (2005) pp. 754-767.
Abecasis, et al., “Linkage disequilibrium: ancient history drives the new genetics” Hum. Hered. 59, (2005) pp. 118-124.
Abecasis, et al., “MaCH: Using sequence and genotype data to estimate haplotypes and unobserved genotypes” Genetic Epidemiology 34 (2010) pp. 816-834.
Abecasis, et al., “Merlin-rapid analysis of dense genetic maps using sparse gene flow trees” Nat. Genet. 2002, 30 (2002) pp. 97-101.
Abney, et al., “Quantitative-Trait Homozygosity and Association Mapping and Empirical Genomewide Significance in Large, Complex Pedigrees: Fasting Serum-Insulin Level in the Hutterites” Am. J. Hum. Genet. 70, (2002) pp. 920-934.
Albers, et al., “Multipoint Approximations of Identity-by-descent probabilities for accurate linkage analysis of distantly related individuals,” The American Journal of Human Genetics 82, Mar. 2008, pp. 607-622.
Almasy, et al. “Multipoint quantitative-trait linkage analysis in general pedigrees” Am. J. Hum. Genet. 62: (1998) pp. 1198-1211.
Almudevar, A., “A Bootstrap Assessment of Variability in Pedigree Reconstruction Based on DNA Markers” Biometrics, vol. 57, Sep. 2001, pp. 757-763.
Almudevar, A., “A simulated annealing algorithm for maximum likelihood pedigree reconstruction” Theoretical Population Biology, vol. 63, (2003) pp. 63-75.
Almudevar, et al., “Estimation of single-generation sibling relationship based on DNA markers” Journal Agricultural Biological, and Environmental Statistics, vol. 4, No. 2, (1999) pp. 136-165.
Almudevar, et al., “Most powerful permutation invariant tests for relatedness hypotheses based on genotypic data” Biometrics 57, Dec. 2001, pp. 1080-1088.
Altschul, et al. “Basic Local Alignment Search Tool” J. Mol. Biol. (1990) 215, pp. 403-410.
Amorim, et al., “Pros and cons in the use of SNP's in forensic kinship investigation: a comparative analysis with STRs” Forensic Sci. Int. 150, (2005) pp. 17-21.
Amos and Elston, “Robust Methods for the Detection of Genetic Linkage for Quantitative Data From Pedigree” Genetic Epidemiology 6, (1989) pp. 349-360.
Amos, et al., “The Probabilistic Determination of Identity-by-Descent Sharing for Pairs of Relatives from Pedigrees” Am. J. Hum. Genet. 47 (1990) pp. 842-853.
Ayers, et al. “Reconstructing Ancestral Haplotypes with a Dictionary Model” Department of Statistics Papers, Department of Statistics, UCLA, UC Los Angeles, Mar. 28, 2005, pp. 1-41.
Bacolod, et al., “The Signatures of Autozygosity among Patients with Colorectal Cancer” Cancer Res. vol. 68, No. 8, Apr. 15, 2008, pp. 2610-2621.
Balding, et al., “A method for quantifying differentiation between populations at multi-allelic loci and its implications for investigating identity and paternity” Genetica, 96 (1995) pp. 3-12.
Ballantyne, J., “Mass disaster genetics” Nature Genet. 15, (1997) pp. 329-331.
Belkhir, et al., “IDENTIX, a software to test for relatedness in a population using permutation methods” Molecular Ecology, 2, (2002) pp. 611-614.
Bieber, et al., “Finding criminals through DNA of their relatives” Science 312, (2006) pp. 1315-1316.
Bit-level parallelism definition Wikipedia.com, (2021) p. 1. downloaded Apr. 14, 2021.
Blouin, M.S et al., “Use of microsatellite loci to classify individuals by relatedness” Molecular Ecology, vol. 5, (1996) pp. 393-401.
Boehnke, et al., “Accurate Inference of Relationships in Sib-Pair Linkage Studies” Am. J. Hum. Genet. 61, (1997) pp. 423-429.
Boehnke, M., “Allele frequency estimation from data on relatives” Am. J. Hum. Genet. 48, (1991) pp. 22-25.
Borsting et al. “Performance of the SNPforID 52 SNP-plex assay in paternity testing,” (Forensic Science International, vol. 2 (2008) pp. 292-300.
Brenner, C.H. “Kinship Analysis by DNA When There Are Many Possibilities” Progress in Forensic Genetics, vol. 8, (2000) pp. 94-96, Elsevier Science.
Brenner, C.H., “Issues and strategies in the DNA identification of World Trade Center victims” Theor. Popul. Biol. 63, (2003) pp. 173-178.
Brenner, C.H., “Symbolic kinship program” Genetics, 145, (1997) pp. 535-542.
Brief For Defendants-Appellees Ancestry.com DNA, LLC, Ancestry.com Operations Inc., nd Ancestry.com LLC, Case No. 2019-1222, Document: 24, Filed on Mar. 18, 2019, in The US Court of Appeals For The Federal Circuit, pp. 1-76.
Brief of Appellant 23AndMe, Inc., Case No. 2019-1222, Document 19, Filed on Feb. 4, 2019, in The US Court of Appeals for the Federal Circuit, pp. 1-140.
Broman, et al., “Estimation of pairwise relationships in the presence of genotyping errors” Am. J. Hum. Genet. 63, (1998) pp. 1563-1564.
Broman, et al., “Long Homozygous Chromosomal Segments in Reference Families from the Centre d'E'tude du Polymorphisme Humain” Am. J. Hum. Genet. 65, (1999) pp. 1493-1500.
Browning, et al., “A unified approach to Genotype imputation and Haplotype-Phase inference for large data sets of Trios and unrelated individuals” Am. J. Hum. Genet. 84, (2009) pp. 210-223.
Browning, et al., “On reducing the statespace of hidden markov models for the identity by descent process” Theor. Popul. Biol. 62, (2002) pp. 1-8.
Cannings, C., “The identity by descent process along the chromosome” Human Heredity, 56 (2003) pp. 126-130.
Carlson, et al., “Mapping complex disease loci in whole-genome association studies” Nature 429 (2004) pp. 446-452.
Cavalli-Sforza, L., “The Human Genome Diversity Project: past, present and future,” Nature Reviews, Genetics, vol. 6, Apr. 2005, pp. 333-340.
Chapman, et al., “The effect of population history on the lengths of ancestral chromosome segments” Genetics, 162, Sep. 2002, pp. 449-458.
Cheung, et al., “Linkage-disequilibrium mapping without genotyping” Nature Genetics 18, (1998) pp. 225-230.
Cockerman, C., “Higher order probability functions of identity of alleles by descent” Genetics 69, (1971) pp. 235-246.
Complaint filed In the United States District Court in and for the Northern District of California, captioned 23andMe, Inc. v. Ancestry.com DNA, LLC, Ancestry.com Operations Inc., and Ancestry.com LLC, filed on May 11, 2018, assigned Case No. 18-cv-02791-JCS, for “Complaint for Patent Infringement, Violations of the Lanham Act, Cal. Bus. & Prof. Code§§ 17200 And 17500, and Declaratory Relief of No Trademark Infringement and Trademark Invalidity.”.
Cordell, et al., “Two-locus maximum Lod score analysis of a multifactorial trait: joint consideration of IDDM2 and IDDM4 with IDDM1 in Type 1 diabetes” Am. J. Hum. Genet. 57, (1995) pp. 920-934.
Harvard School of Public Health I Harvard Center for Cancer Prevention , “Your Disease Risk” website for calculating disease risk , 34 exemplary pages submitted including heart disease risk estimation and listings of risk factors, last accessed via the world wide web on Apr. 30, 2007, at the URL address:http://www.yourdiseaserisk.harvard.edu/english/index.htm).
Notice of Allowance, U.S. Appl. No. 15/927,785, mailed Jul. 30, 2020.
Notice of Allowance, U.S. Appl. No. 15/927,785, mailed Sep. 2, 2020.
Notice of Allowance, U.S. Appl. No. 17/004,494, mailed Feb. 4, 2021.
Notice of Allowance, U.S. Appl. No. 17/004,911, mailed Dec. 11, 2020.
Notice of Allowance, U.S. Appl. No. 17/584,844, mailed Apr. 21, 2022.
Notice of Allowance, U.S. Appl. No. 17/590,304, mailed Apr. 25, 2022.
Notice of Allowance, U.S. Appl. No. 17/729,840, mailed Oct. 11, 2022.
Notice of Allowance, U.S. Appl. No. 17/731,779, mailed Oct. 3, 2022.
Office Action, U.S. Appl. No. 14/822,023, mailed Feb. 21, 2017.
Office Action, U.S. Appl. No. 14/822,023, mailed Nov. 22, 2017.
Office Action, U.S. Appl. No. 15/927,785, mailed Feb. 10, 2020.
Office Action, U.S. Appl. No. 16/814,243, mailed Jul. 1, 2020.
Office Action, U.S. Appl. No. 16/814,243, mailed Nov. 16, 2020.
Office Action, U.S. Appl. No. 16/814,243, mailed Dec. 9, 2021.
Office Action, U.S. Appl. No. 16/814,243, mailed Jun. 22, 2022.
Office Action, U.S. Appl. No. 17/004,494, mailed Nov. 6, 2020.
Office Action, U.S. Appl. No. 17/004,911, mailed Nov. 18, 2020.
Office Action, U.S. Appl. No. 17/175,995, mailed Oct. 19, 2022.
Office Action, U.S. Appl. No. 17/584,844, mailed Mar. 28, 2022.
Office Action, U.S. Appl. No. 17/590,304, mailed Apr. 4, 2022.
Office Action, U.S. Appl. No. 17/729,840, mailed Jun. 22, 2022.
Office Action, U.S. Appl. No. 17/731,779, mailed Jun. 16, 2022.
Office Action, U.S. Appl. No. 17/743,973, mailed Jul. 14, 2022.
The International HapMap Consortium, “A haplotype map of the human genome” vol. 437, Oct. 27, 2005, pp. 1300-1320. doi:10.1038/nature04226.
Thomas, et al., “Genomic mismatch scanning in pedigrees” IMA Journal of Mathematics Applied in Medicine and Biology, vol. 11, (1994) pp. 1-16.
Thomas, et al., “Multilocus linkage analysis by blocked Gibbs sampling” Statistics and Computing, vol. 10, (2000), pp. 259-269.
Thompson, E.A., “Inference of genealogical structure” Soc. Sci. Inform. 15, (1976) pp. 477-526.
Thompson, E.A., “The estimation of pairwise relationships” Ann. Hum. Genet., Lond. 39, (1975) pp. 173-188.
Thompson, et al., “The IBD process along four chromosomes,” Theor. Popul. Biol. May 73(3) May 2008, pp. 369-373.
Tishkoff, et al., “The Genetic Structure and History of Africans and African Americans,” Science, vol. 324(5930), May 22, 2009, pp. 1035-1044. doi:10.1126/science.1172257.
Todorov, et al., “Probabilities of identity-by-descent patterns in sibships when the parents are not genotyped” Genet. Epidemiol. 14 (1997) pp. 909-913.
Transcript of Proceedings dated Aug. 16, 2018, Case No. 18-cv-02791-JCS, Re Defendant's Motion to Dismiss, heard in the United States District Court in and for the Northern District of California LLC, in the matter of 23andMe, Inc. v. Ancestry.com DNA, LLS, Ancestry.com Operations Inc., and Ancestry.com.
Tu, et al., “The maximum of a function of a Markov chain and application to linkage analysis” Adv. Appl. Probab. 31, (1999) pp. 510-531.
Tzeng, et al., “Determination of sibship by PCR-amplified short tandem repeat analysis in Taiwan” Transfusion 40, (2000) pp. 840-845.
Van De Casteele, et al., “A comparison of microsatellite-based pairwise relatedness estimators” Molecular Ecology 10, (2001) pp. 1539-1549.
Wagner, S.F.,“ Introduction To Statistics, Harper Collins Publishers”, 1992, pp. 23-30.
Wang, et al., “An estimator of pairwise relatedness using molecular markers” Genetics, vol. 160 (2002) pp. 1203-1215.
Wang, et al., “An integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data,” Genome Res. 17, 2007, pp. 665-1674.
Weir, et al., “Allelic association patterns for a dense SNP map” Genetic Epidemiology 24, (2004) pp. 442-450.
Weir, et al., “Behavior of pairs of loci in finite monoecious populations” Theor. Popul. Biol. 6 (1974) pp. 323-354.
Weir, et al., “Estimating F-statistics” Annual Review of Genetics, 36, (2002) pp. 721-750.
Weir, et al., “Genetic relatedness analysis: modern data and new challenges” Nature Genetics 7, (2006) pp. 771-780.
Weir, et al., “Group inbreeding with two linked loci” Genetics 63 (1969) pp. 711-742.
Weir, et al., “Measures of human population structure show heterogeneity among genomic regions” Genome Res. 15 (2005) pp. 1468-1476. [PubMed: 16251456].
Weiss, et al., “Association between microdeletion and microduplication at 16p11.2 and autism” New England Journal of Medicine, vol. 358, No. 7, Feb. 14, 2008, pp. 667-675.
Whittemore, et al., “A Class of Tests for Linkage Using Affected Pedigree Members” Biometrics 50, (1994) pp. 118-127.
Wijsman, et al., “Multipoint linkage analysis with many multiallelic or dense diallelic markers: Markov chain-Monte Carlo provides practical approaches for genome scans on general pedigrees” Am. J. Hum. Genet. 79, (2006) pp. 846-858.
Wright, S. “Systems of Mating. I. The Biometric Relations Between Parent and Offspring,” Genetics, 6:111 (1921).
Yu, et al., “A unified mixed-model method for association mapping accounting for mutiple levels of relatedness” Nature Genet. 38, (2006) pp. 203-208.
Zhang, et al., “A comparison of several methods for haplotype frequency estimation and haplotype reconstruction for tightly linked markers from general pedigrees” Genet. Epidemiol. 30 (2006) pp. 423-437.
U.S. Appl. No. 17/979,412, filed Nov. 2, 2022.
U.S. Appl. No. 17/576,738, filed Jan. 14, 2022.
U.S. Appl. No. 17/351,052, filed Jun. 17, 2021.
U.S. Appl. No. 17/073,110, filed Oct. 16, 2020.
U.S. Appl. No. 16/129,645, filed Sep. 12, 2018.
U.S. Appl. No. 15/264,493, filed Sep. 13, 2016.
U.S. Appl. No. 13/871,744, filed Apr. 26, 2013.
U.S. Appl. No. 12/644,791, filed Dec. 22, 2009.
Lynch, M., et al., “Estimation of Pairwise Relatedness With Molecular Markers”, Genetics 152: 1753-1766 (Aug. 1999).
Milligan, Brook G., “Maximum-Likelihood Estimation of Relatedness”, Genetics 163: 1153-1167 (Mar. 2003).
Morrison, A. C., et al. “Prediction of Coronary Heart Disease Risk using a Genetic Risk Score: The Atherosclerosis Risk in Communities Study,” American Journal of Epidemiology, vol. 166, No. 1, Apr. 18, 2007, pp. 28-35.
NCBI Reference SNP Cluster Report: rs10513789_ November 2003_ NCBI Reference SNP Cluster Report: rs10513789, Nov. 2003, pp. 1-6. [Retrieved from the internet, May 2, 2011] <URL:http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref_cgi?rs=10513789>.
Nelson et al., “The program of androgen-responsive genes in neoplastic prostate epithelium”, Proc. Natl. Acad. Sci., vol. 99. No. 18, Sep. 2002, pp. 11890-11895.
Notice of Allowance, U.S. Appl. No. 15/999,198, mailed Feb. 24, 2021.
Notice of Allowance, U.S. Appl. No. 16/151,721, mailed Jun. 23, 2022.
Notice of Allowance, U.S. Appl. No. 16/151,721, mailed Oct. 13, 2022.
Notice of Allowance, U.S. Appl. No. 17/212,596, mailed Oct. 11, 2022.
Notice of Allowance, U.S. Appl. No. 17/212,906, mailed Oct. 19, 2022.
Notice of Allowance, U.S. Appl. No. 17/731,963, mailed Oct. 18, 2022.
Notice of Allowance, U.S. Appl. No. 17/743,973 mailed Oct. 25, 2022.
Notice of Allowance, U.S. Appl. No. 17/873,563, mailed Sep. 14, 2022.
Nyholt et al., “Genetic basis of male pattern baldness” J. Invest. Dermatol. 121 (2003) pp. 1561-1564.
Office Action, U.S. Appl. No. 15/999,198, mailed Aug. 5, 2020.
Office Action, U.S. Appl. No. 16/151,721, mailed Jan. 25, 2021.
Office Action, U.S. Appl. No. 16/151,721, mailed Oct. 26, 2021.
Office Action, U.S. Appl. No. 17/212,596, mailed Sep. 19, 2022.
Office Action, U.S. Appl. No. 17/212,906, mailed May 12, 2022.
Office Action, U.S. Appl. No. 17/212,906, mailed Jun. 24, 2022.
Office Action, U.S. Appl. No. 17/731,963, mailed Jun. 28, 2022.
Orlin J.B. and Lee Y., “QuickMatch: a very fast assignment for the assignment problem”, MIT Sloan School Working Paper, Mar. 1993, pp. 3547-3593.
Payami H., et al., “Familial aggregation of Parkinson disease: a comparative study of early-onset and late-onset disease”, Arch Neurol. 59, (2002) pp. 848-850.
Pierpont et al., “Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular disease in the Young: endorsed by the American Academy of Pediatrics”, Circulation 115(23) (2007), pp. 3015-3038.
Polymeropoulos et al., “Mutation in the alpha-synuclein gene identified in families with Parkinson's disease”, Science 276 (1997), pp. 2045-2047.
Pritchard et al., “Linkage Disequilibrium in Humans: Models and Data”, Am. J. Hum. Genet. 69 (2001), pp. 1-14.
Purcell, et al., “PLINK: a toolset for whole-genome association and population-based linkage analysis”, Am. J. Hum. Genet., vol. 81, Sep. 2007, pp. 559-575.
Rahman, M. et al., “A simple risk score identifies individuals at high risk of developing type 2 diabetes: a prospective cohort study”, Fam. Pract. 2008;25, pp. 191-196.
Ramirez A. et al., “Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 p. type ATPase”, Nat. Genet. 38 (2006) pp. 1184-1191.
Ratovitski et al., “Kalirin inhibition of inducible nitric—oxide synthase”, J. Biol. Chem. 274 (1999) pp. 993-999.
Reczek D. et al., “LIMP-2 Is a Receptor for Lysosomal Mannose-6-Phosphate-Independent Targeting of beta-Glucocerebrosidase”, Cell, Nov. 16; 131(4) (2007), pp. 770-783.
Ren and Fang, “Small guanine nucleotide-binding protein Rho and myocardial function”, Acta Pharmacol. Sin. 26(3) (2005), pp. 279-285.
Saslow, D. et al., “American Cancer Society Guidelines for Breast Screening with MRI as an Adjunct to Mammography”, CA Cancer J. Clin. 57, Mar./Apr. 2007, pp. 75-89.
Schabath, M.B., et al., “Cancer Epidemiology, Biomarkers & Prevention: Combined Effects of the p53 and p73 17 Polymorphisms on Lung Cancer Risk,” Cancer Epidemiol. Biomarkers Prev., Jan. 24, 2006, vol. 15, pp. 158-161. doi: 10.1158/1055-9965.EPI-05-0622].
Scheuner, et al., “Family History: A Comprehensive Genetic Risk Assessment Method for the Chronic Conditions of Adulthood”, American Journal of Medical Genetics, Wiley-Liss, Inc., vol. 71, 1997, pp. 315-324.
Schulze, M.B., et al., “An accurate risk score based on anthropometric, dietary, and lifestyle factors to predict the development of type 2 diabetes”, Diabetes Care 30:Mar. 3, 2007, pp. 510-515.
Simon-Sanchez J. et al., “Genome-wide SNP assay reveals structural genomic variation, extended homozygosity and cell-line induced alterations in normal individuals”, Hum. Mol. Genet. (2007) 16, pp. 1-14.
Stern, et al., “Validation of prediction of diabetes by the Archimedes model and comparison with other predicting models”, Diabetes Care 31:8, Aug. 2008, pp. 1670-1671.
Sveinbjomsdottir S., et al., “Familial aggregation of Parkinson's disease in Iceland”, N. Engl. J. Med. 343 (2000) pp. 1765-1770.
Tang, Hua, et al., “Estimation of Individual Admixture: Analytical and Study Design Considerations”, Genetic Epidemiology 28: 289-301 (2005).
Tanner C.M. et al., “Parkinson disease in twins: an etiologic study” JAMA 281 (1999) pp. 341-346.
Thompson, E.A., “Estimation of relationships from genetic data”, Handbook of statistics 8 (1991), pp. 255-269.
Trial Investigators, et al., “DREAM {Diabetes Reduction Assessment with ramipril and rosilglitazone Medication)—Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial,” Lancet 368, (2006) pp. 1096-1105.
Tuomilehto, J. et al., “Prevention of Type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance”, N. Engl. J. Med. 344: 18, May 3, 2001, pp. 1343-1350.
Valente E.M. et al., “Hereditary early—Onset Parkinson's disease caused by mutations in PINK1” Science 304 (2004), pp. 1158-1160.
Wannamethee, S.G. et al. “Metabolic syndrome vs Framingham Risk Score for prediction of coronary heart disease, stroke, and type 2 diabetes mellitus”, Arch. Intern. Med. 2005; 165, pp. 2644-2650.
WHO Expert Consultation, “Appropriate body-mass index for Asian populations and its implications for policy and Intervention strategies”, Lancet 363, (2004) pp. 157-163.
WHO International Association for the Study of Obesity, International Obesity Task Force, “The Asia-Pacific 29 perspective: Redefining Obesity and its Treatment”, Sydney, Australia, Health Communications 2000, pp. 1-56. [Part I].
WHO Technical Report Series 894, “Obesity: preventing and managing the global epidemic”, WHO Technical Report Series 894 (2000) pp. 1-253. [Part II].
Wigginton et al., “A note on exact tests of Hardy-Weinberg equilibrium”, Am. J. Hum. Genet. 76 (2005) pp. 887-893.
Alcalay R.N. et al., “Frequency of known mutations in early-onset Parkinson disease: implication for genetic counseling: the consortium on risk for early onset Parkinson disease study” Arch Neural 67, (2010) pp. 1116-1122.
Altshuler et al. “Genetic mapping in human disease” Science 322(5903) (2009) pp. 881-888.
Anderson, Domestic-Animal Genomics: Deciphering the Genetics of Complex Traits, Mar. 2004, Nature.com, vol. 5. pp. 202-212.
Asakura et al., “Global gene expression profiling in the failing myocardium” Circ. J. 73 (2009) pp. 1568-1576.
Browning, et al., “Missing data imputation and haplotype phase inference for genomewide association studies,” Human Genetics, vol. 124, Oct. 11, 2008, pp. 439-450.
Druet, et al., “Imputation of genotypes from different single nucleotide polymorphism panels in dairy cattle,” Dairy Science Association, vol. 93, No. 11, Nov. 2010, pp. 5443-5494.
Grunblatt et al., “Gene expression profiling of parkinsonian substantia nigra pars compacta: alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes” J. Neural Transm 111 (12) (2004) pp. 1543-1573.
Hindorff L.A et al., “Potential etiologic and functional implications of genome-wide association loci for human diseases and traits” Proc Natl Acad Sci USA 106, (2009) pp. 9362-9367.
Hirschhorn J.N., “Genomewide Association Studies-Illuminating Biologic Pathways” N. Engl. J. Med. 360 (2009) pp. 1699-1701.
International Schizophrenia Consortium et al. “Common polygenic variation contributes to risk of schizophrenia and bipolar disorder” Nature 460(7256) (2009) pp. 7 48-752.
Kim et al. “A multivariate regression approach to association analysis of a quantitative trait network” Bioinformatics 25 (12)(2009) pp. i204-i212.
Mealiffe, et al., “Assessment of Clinical Validity of a Breast Cancer Risk Model Combining Genetic and Clinical Information” J. Natl. Cancer Institute (JNCI), vol. 102, No. 21, Nov. 3, 2010, pp. 1618-1627.
Notice of Allowance, U.S. Appl. No. 17/975,949 mailed Mar. 21, 2023.
Notice of Allowance, U.S. Appl. No. 17/979,412, mailed Jan. 3, 2024.
Notice of Allowance, U.S. Appl. No. 17/989,388, mailed Mar. 23, 2023.
Notice of Allowance, U.S. Appl. No. 18/099,478, mailed Jul. 19, 2023.
Notice of Allowance, U.S. Appl. No. 18/191,525, mailed Aug. 22, 2023.
Office Action, U.S. Appl. No. 17/880,566, mailed Oct. 6, 2022.
Office Action, U.S. Appl. No. 17/975,949, mailed Feb. 16, 2023.
Office Action, U.S. Appl. No. 17/980,024, mailed Jun. 7, 2023.
Office Action, U.S. Appl. No. 17/980,024, mailed Jul. 28, 2023.
Office Action, U.S. Appl. No. 17/981,917, mailed Oct. 16, 2023.
Office Action, U.S. Appl. No. 17/989,388, mailed Mar. 8, 2023.
Office Action, U.S. Appl. No. 18/099,478, mailed Apr. 21, 2023.
Office Action, U.S. Appl. No. 18/191,525, mailed Jun. 23, 2023.
Pruim R.J. et al., “LocusZoom: regional visualization of genome-wide association scan results” Bioinformatics 26 (2010) pp. 2336-2337.
Ruderfer, et al., “Family-based genetic risk prediction of multifactorial disease,” Genome Medicine, vol. 2:1, Jan. 15, 2010, pp. 1-7. doi:10.1186/gml23.
Traherne, Jan. 2006, “Genetic analysis of completely sequenced disease-associated MHC haplotypes identifies shuffling of segments in recent human history,” PLOS Genetics. pp. 81-92.
U.S. Appl. No. 13/908,455, filed Jun. 3, 2013.
Wu et al. “Genome-wide association analysis by lasso penalized logistic regression,” Bioinformatics 25(6) (2009) pp. 714-721.
Idury, et al., “A faster and more general hidden Markov model algorithm for multipoint likelihood calculations” Hum. Hered. 47(1997) pp. 197-202.
Jacquard, A., “Genetic information given by a relative” Biometrics, 28, (1972) pp. 1101-1114.
Jiang, et al., “An efficient parallel implementation of the hidden Markov methods for genomic sequence-search on a massively parallel system.” IEEE Transactions on Parallel and Distributed Systems 19.1 (2008) pp. 15-23.
Jones, et al., “Methods of parentage analysis in natural populations” Molecular Ecology 12 (2003) pp. 2511-2523.
Karigl, G., “A recursive algorithm for the calculation of identity coefficients” Ann. Hum. Genet. 45, (1981) pp. 299-305.
Kent, J.W. “BLAT—The BLAST-Like Alignment Tool” Genome Res. 2002, vol. 12, pp. 656-664.
Keprt, et al., “Binary factor analysis with help of formal concepts” In Snasel et al.(eds) CLA 2004, pp. 90-101. ISBN 80-248-0597-9.
Kimmel, et al., “A block-free hidden Markov model for genotypes and its application to disease association” J. Comput. Biol. 12, (2005a) pp. 1243-1260.
Kimmel, et al., “GERBIL: genotype resolution and block identification using likelihood” Proc. Natl. Acad. Sci. USA 102, (2005b) pp. 158-162.
Kong, et al., “A combined linkage-physical map of the human genome,” Am. J. Hum. Genet., vol. 75, 2004, pp. 1143-1148.
Kong, et al., “A high-resolution recombination map of the human genome” Nature Genetics, vol. 31, Jul. 2002, pp. 241-247.
Kong, et al., “Allele-sharing models—LOO scores and accurate linkage tests” Am. J. Hum. Genet. 61, (1997) pp. 1179-1188.
Kruglyak, et al., “Complete Multipoint Sib-Pair Analysis of Qualitative and Quantitative Traits” Am. J. Hum. Genet. 57, (1995) pp. 439-454.
Kruglyak, et al., “Faster multipoint linkage analysis using Fourier transforms” J. Comput. Biol. 5, (1998) pp. 1-7.
Kruglyak, et al., “Linkage thresholds for two-stage genome scans” Am. J. Hum. Genet. 62, (1998) pp. 994-997.
Kruglyak, et al., “Parametric and Nonparametric Linkage Analysis: A Unified Multipoint Approach” Am. J. Hum. Genet. 58, (1996) pp. 1347-1363.
Kruglyak, et al., “Rapid Multipoint Linkage Analysis of Recessive Traits in Nuclear Families, Including Homozygosity Mapping” Am. J. Hum. Genet. 56 (1995) pp. 519-527.
Kruglyak, L., “The use of a genetic map of biallelic markers in linkage studies” Nat. Genet. 17, (1997) pp. 21-24.
Kumar, et al., “Recurrent 16p11.2 microdeletions in autism” Human Molecular Genetics, 2008, vol. 17, No. 4, pp. 628-638.
Laberge, et al., “Population history and its impact on medical genetics in Quebec” Clin. Genet. 68 (2005) pp. 287-301.
Lafrate, et al., “Detection of large-scale variation in the human genome,” Nature Genetics, vol. 36, No. 9, Sep. 2004, pp. 949-951.
Lander, et al., “Construction of multilocus genetic linkage maps in humans” Genetics, vol. 84, Apr. 1987, pp. 2363-2367.
Lander, et al., “Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results” Nat. Genet. 11, (1995) pp. 241-247.
Lander, et al., “Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children” Science 236, (1987) pp. 1567-1570.
Lange, et al., “Extensions to pedigree analysis I. Likelihood calculations for simple and complex pedigrees” Hum. He red. 25 (1975) pp. 95-105.
Lavenier, Dominique, and J-L. Pacherie. “Parallel processing for scanning genomic databases.” Advances in Parallel Computing. vol. 12, North-Holland, 1998, pp. 81-88.
Leclair, et al., “Enhanced kinship analysis and STR-based DNA typing for human identification in mass fatality incidents: The Swissair Flight 111 disaster” Journal of Forensic Sciences, 49(5) (2004) pp. 939-953.
Leibon, et al., “A simple computational method for the identification of disease-associated loci in complex, incomplete pedigrees” arXiv:0710:5625v1 [q-bio.GN] Oct. 30, 2007, pp. 1-20.
Leutenegger, et al., “Estimation of the Inbreeding Coefficient through Use of Genomic Data,” Am. J. Hum. Genet. 73, Jul. 29, 2003, pp. 516-523.
Leutenegger, et al., “Using genomic inbreeding coefficient estimates for homozygosity mapping of rare recessive traits: Application to Taybi-Linder syndrome” Am. J. Hum. Genet., vol. 79, Jul. 2006, pp. 62-66.
Li, et al., “Joint modeling of linkage and association: identifying SNPs responsible for a linkage signal” Am. J. Hum. Genet. 76 (2005) pp. 934-949.
Li, et al., “Mapping short DNA sequencing reads and calling variants using mapping quality scores,” Genome Research, Aug. 19, 2008, pp. 1851-1858. doi: 10.1101/gr.078212.108.
Li, et al., “Modeling linkage disequilibrium and identifying recombination hotspots using single nucleotide polymorphism data” Genetics 165, (2003) pp. 2213-2233.
Li, et al., “Similarity of DNA fingerprints due to chance and relatedness” Hum. Hered. 43, 1993 pp. 45-52.
Lien, et al. “Evidence for heterogeneity in recombination in the human pseudoautosomal region: High resolution analysis by sperm typing and radiation-hybrid mapping” Am. J. Hum. Genet. 66, 2000, pp. 557-566.
Lin, et al. “Haplotype inference in random population samples” Am. J. Hum. Genet. 71, 2002, pp. 1129-1137.
Liu, et al., “Affected sib-pair test in inbred populations” Ann. Hum. Genet. 68, (2004) pp. 606-619.
Long, et al., “An E-M Algorithm and Testing Strategy for Multiple-Locus Haplotypes” Am. J. Hum. Genet. 56 (1995) pp. 799-810.
Lynch, et al., “Analysis of population genetic structure with RAPD markers” Molecular Ecology, 3, (1994) pp. 91-99.
Lynch, M., “Estimation of relatedness by DNA fingerprinting” Molecular and Biological Evolution, 5, (1988) pp. 584-599.
Ma, et al., “PatternHunter: faster and more sensitive homology search” Bioinformatics, vol. 18, No. 3 (2002) pp. 440-445.
Mao, et al., “A Monte Carlo algorithm for computing the IBD matrices using incomplete marker information” Heredity (2005) 94, pp. 305-315.
Marchini, et al., “A comparison of phasing algorithms for trios and unrelated individuals,” Am. J. Hum. Genet. 78, 2006, pp. 437-450.
Matsuzaki, et al., “Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays” Nat. Methods, vol. 1, No. 2, Nov. 2004, pp. 109-111.
Matsuzaki, et al., “Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high density oligonucleotide array” Genome Res., vol. 14, No. 3, Mar. 2004, pp. 414-425.
McPeek, et al., “Statistical test for detection of misspecified relationships by use of genome screen data” Am. J. Hum. Genet. 66, (2000) pp. 1076-1094.
Meuwissen, et al., “Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping,” Genetics 161 (2002) pp. 373-379.
Meuwissen, et al., “Multipoint Identity-by-Descent Prediction Using Dense Markers to Map Quantitative Trait Loci and Estimate Effective Population Size,” Genetics 176, Aug. 2007, pp. 2551-2560.
Miano, et al., “Pitfalls in homozygosity mapping” Am. J. Hum. Genet. 67, (2000) pp. 1348-1351.
Morris, et al., “The avuncular index and the incest index” Advances in Forensic Haemogenetics 2, (1988) pp. 607-611.
Morton, N.E., “Sequential test for the detection of linkage” Am. J. Hum. Genet. 7 (1955) pp. 277-318.
Motro, et al., “The affected sib method. I. Statistical features of the affected sib-pair method” Genetics 110, (1985) pp. 525-538.
Nelson, et al., “Genomic mismatch scanning: A new approach to genetic linkage mapping” Nature Genetics, vol. 4, May 1993, pp. 11-18.
Newton, et al., “Inferring the location and effect of tumor suppressor genes by instability selection modeling of allelic-loss data” Biometrics 56, (2000) pp. 1088-1097.
Newton, et al., “On the statistical analysis of allelic-loss data” Statistics in Medicine 17, (1998) pp. 1425-1445.
Nuanmeesri, et al., “Genealogical Information Searching System” 2008 4th IEEE International Conference on Management of Innovation and Technology. IEEE, 2008, pp. 1255-1259.
Nyholt, Dale R., “GENEHUNTER: Your ‘One-Stop Shop’ for Statistical Genetic Analysis?” Hum. Hered. 53 (2002) pp. 2-7.
O'Connell, J.R., “Rapid multipoint linkage analysis via inheritance vectors in the Elston-Stewart algorithm” Hum. Hered. 51, (2001) pp. 226-240.
O'Connell, J.R., “The VITESSE algorithm for rapid exact multilocus linkage analysis via genotype set-recoding and fuzzy inheritance” Nature. Genet. 11, (1995) pp. 402-408.
Oliehoek, et al., “Estimating relatedness between individuals in general populations with a focus on their use in conservation programs” Genetics 173 (2006) pp. 483-496.
Olson, et al., “Relationship estimation by Markov-process models in sib-pair linkage study” Am. J. Hum. Genet. 64, (1999) pp. 1464-1472.
Opposition to Defendants' Motion to Dismiss Plaintiff's Complaint, filed in the United States District Court in and for the Northern District of California LLC on Jul. 13, 2018, Case No. 18-cv-02791-JCS, Re 23andMe, Inc. v.Ancestry.com DNA, LLC, Ancestry.com Operations Inc., and Ancestry.com.
Order Granting In Part and Denying In Part Defendants' Motion to Dismiss, dated Aug. 23, 2018, Case No. 18- cv-02791-JCS, from the United States District Court in and for the Northern District of California LLC, Re 23andMe, Inc. v. Ancestry.com DNA, LLC, Ancestry.com Operations Inc., and Ancestry.com.
Patterson, et al., “Population Structure and Eigenanalysis,” PLoS Genetics, vol. 2, No. 12, e190, Dec. 2006, pp. 2074-2093.
Paynter, et al., “Accuracy of Multiplexed Illumina Platform-Based Single-Nucleotide Polymorphism Genotyping Compared between Genomic and Whole Genome Amplified DNA Collected from Multiple Sources,” Cancer Epidemiol Biomarkers Prev. 15, Dec. 2006, pp. 2533-2536.
Peedicayil, J., “Epigenetic Therapy—a New Development in Pharmacology”, Indian Journal of Medical Research, vol. 123, No. 1, Jan. 2006, pp. 17-24.
Pemberton et al., “Inference of unexpected Genetic relatedness among individuals in HapMap phase III” Am. J. Hum. Genet. 87, (2010) pp. 457-464.
Perry, et al., “The fine-scale and complex architecture of human copy-No. variation,” Am. J. Hum. Genet. 82, Mar. 2008, pp. 685-695.
Pinto, et al., “Copy-number variation in control population cohorts,” Human Molecular Genetics, 2007, vol. 16, review issue No. 2, pp. R168-R173. doi:10.1093/hmg/ddm241.
Porras-Hurtado, et al., “An overview of STRUCTURE: applications, parameter settings, and supporting software,” Frontiers in Genetics, vol. 4, No. 96, May 29, 2013, pp. 1-13.
Pritchard, et al., “Association Mapping in Structured Populations,” Am. J. Hum. Genet., vol. 67, 2000, pp. 170-181.
Pritchard, et al., “Inference of population structure using multilocus genotype data” Genetics 155, (2000) pp. 945-959.
Queller, et al., “Estimating relatedness using genetic markers” Evolution, vol. 43, No. 2, (1989) pp. 258-275.
Rabiner, L., “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition,” Proceedings of the IEEE, vol. 77, No. 2, Feb. 1989, pp. 257-286.
Rannala, et al., “Detecting immigration by using multilocus genotypes” Proc. Natl. Acad. Sci. USA 94, (1997) pp. 9197-9201.
Rastas, et al., “A hidden Markov technique for haplotype reconstruction” Leet. Notes Comput. Sci. 3692, (2005) pp. 140-151.
Redon, et al., “Global variation in copy number in the human genome,” Nature vol. 444, Nov. 23, 2006, pp. 444-454. doi: 10.1038/nature05329.
Reid, et al., “Specificity of sibship determination using the ABI identifier multiplex system” J. Forensic Sci. 49, (2004) pp. 1262-1264.
Reply Brief of Appellant 23AndMe, Inc., Case No. 2019-1222, Document: 25, Filed on Apr. 8, 2019, In The US Court of Appeals for Federal Circuit, pp. 1-38.
Riquet, J et al., “Fine-mapping of quantitative trait loci by identity by descent in outbred populations: application to milk production in dairy cattle,” Proceedings of the National Academy of Sciences, vol. 96, No. 16, Aug. 3, 1999, pp. 9252-9257. doi: 10.1073/pnas.96.16.9252.
Risch, et al., “Linkage strategies for genetically complex traits. II. The power of affected relative pairs” Am. J. Hum. Genet. 46 (1990) pp. 229-241.
Ritland, et al., “Inferences about quantitative inheritance based on natural population structure in the yellow monkeyflower, Mimulus Guttatus” Evolution 50, (1996) pp. 1074-1082.
Ritland, K., “A marker-based method for inferences about quantitative inheritance in natural populations” Evolution 50, (1996b) pp. 1062-1073.
Ritland, K., “Estimators for pairwise relatedness and individual inbreeding coefficients” Genet. Res. 67 (1996a) pp. 175-185.
Ritland, K., “Marker-inferred relatedness as a tool for detecting heritability in nature” Mol. Ecol. 9, (2000) pp. 1195-1204.
Sanda, et al., “Genomic analysis I: inheritance units and genetic selection in the rapid discovery of locus linked DNA makers” Nucleic Acids Research, vol. 14, No. 18 (1986) pp. 7265-7283.
Schaid, et al., “Caution on pedigree haplotype inference with software that assumes linkage equilibrium” Am. J. Hum. Genet. 71, (2002) pp. 992-995.
Scheet, et al., “A Fast and Flexible Statistical Model for Large-Scale Population Genotype Data: Applications to Inferring Missing Genotypes and Haplotypic Phase,” The American Journal of Human Genetics, vol. 78, Apr. 2006, pp. 629-644.
Schork, N.J., “Extended Multipoint Identity-by-Descent Analysis of Human Quantitative Traits: Efficiency, Power, and Modeling Considerations” Am. J. Hum. Genet. 53 (1993) pp. 1306-1319.
Shore, et al., “A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva” Nat. Genet. 38 (2006) pp. 525-527.
Siegmund, et al., “Statistical Analysis of Direct Identity-by-descent Mapping,” Annals of Human Genetics (2003) 67,464-470.
Slager, et al., “Evaluation of candidate genes in case-control studies: a statistical method to account for related subjects” Am. J. Hum. Genet. 68, (2001) pp. 1457-1462.
Smouse, et al., “A genetic mixture analysis for use with incomplete source population data” Can J Fisheries Aquatic Sci. 47 (1990) pp. 620-634.
Sobel, et al., “Descent graphs in pedigree analysis: Applications to haplotyping, location scores, and marker-sharing statistics” Am. J. Hum. Genet. 58, (1996) pp. 1323-1337.
Stam, P., “The distribution of the fraction of the genome identical by descent in finite random mating populations” Genet. Res. Camb. 35, (1980) pp. 131-155.
Stephens, et al., “A Comparison of Bayesian Methods for Haplotype Reconstruction from Population Genotype Data,” Am. J. Hum. Genet., vol. 73, 2003, pp. 1162-1169.
Stephens, et al., “A New Statistical Method for Haplotype Reconstruction from Population Data,” Am. J. Hum. Genet., vol. 68, 2001, pp. 978-989.
Stephens, et al., “Accounting for Decay of Linkage Disequilibrium in Haplotype Inference and Missing-Data Imputation,” Am. J. Hum. Genet., vol. 76, 2005, pp. 449-462.
Stone, et al., “DELRIOUS: a computer program designed to analyze molecular marker data and calculate delta and relatedness estimates with confidence” Molecular Ecology Notes, vol. 1, (2001) pp. 209-212.
Te Meerman, et al., “Genomic Sharing Surrounding Alleles Identical by Descent: Effects of Genetic Drift and Population Growth” Genetic Epidemiology vol. 14 (1997) pp. 1125-1130.
Abe, et al., Implementing an Integrated Time-Series Data Mining Environment Based on Temporal Pattern Extraction Methods: A Case Study of an Interferon Therapy Risk Mining for Chronic Hepatitis, 2006, New Frontiers in Artificial Intelligence, Lecture Notes in Computer Science, vol. 4012/2006, pp. 425-435.
Anonymous, “Frequency” (Web Definition), Feb. 24, 2011, Wikipedia.
Batzoglou, Serafim, Lior Pachter, Jill P. Mesirov, et al. “Human and Mouse Gene Structure: Comparative Analysis and Application to Exon Prediction.” Genome Research. 2000 10: 950-958. Copyright 2000, Cold Spring Harbor Laboratory Press.
Blackwell, et al., “Identity by Descent Genome Segmentation Based on Single Nucleotide Polymorphism Distributions,” Institute for Biomedical Computing, Washington University in St. Louis, Jan. 31, 1999.
Carson, et al., Abnormal Psychology and Modern Life, 8th edition, 1988, pp. 56-57, Scott Foresman and Company, Glenview, IL, USA.
Cespivova, et al., Roles of Medical Ontology in Association Mining CRISP-DM Cycle, Proceedings of the ECML/PKDD04 Workshop on Knowledge Discovery and Ontologies, PISA 2004.
Chen, Wei-Min, and Goncalo R. Abecasis, “Family-Based Association Tests for Genomewide Association Scans,” The American Journal of Human Genetics, vol. 81, Nov. 2007.
Cooper, D. N. & Krawczak, M. The mutational spectrum of single base-pair substitutions causing human genetic disease: patterns and predictions. Human Genetics 85, 55-74 (1990).
Duan, K.-B. B., Rajapakse, J. C., Wang, H. & Azuaje, F. Multiple svm-rfe for gene selection in cancer classification with expression data. IEEE transactions on nanobioscience 4, 228-234 (2005).
Han, Jiawei; Discovery of Multiple-Level Association Rules from Large Database' 1995; pp. 1-12.
Hitsch, et al., “What Makes You Click?—Mate Preference and Matching Outcomes in Online Dating”, MIT Sloan Research Paper No. 4603-06, Apr. 2006.
Katzmarzyk, et al., “Adiposity, physical fitness and incident diabetes: the physical activity longitudinal study” Diabetologia 50, (2007) pp. 538-544.
Kettel et al., “Treatment of endometriosis with the antiprogesterone mifepristone” Fertil. Steril. 65(1) (1996) pp. 23-28.
Kitada T et al., “Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism” Nature 392 (1998) pp. 605-608.
Klein, T. E. et al. Integrating genotype and phenotype information: an overview of the PharmGKB project. The Pharmacogenomics Journal 1, 167-170 (2001).
Knowler, et al., “Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin” N. Engl. J. Med. 346, (2002) pp. 393-403.
Kruger et al. “Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease” Nature Genetics, vol. 18, Feb. 1998, pp. 106-108.
Li Y. et al., “Genetic evidence for ubiquitin-specific proteases USP24 and USP40 as candidate genes for late-onset Parkinson disease” Hum Mutat 27(10) (2006) pp. 1017-1023.
Lindstrom, J. et al., “The diabetes risk score: a practical tool to predict type 2 diabetes risk” Diabetes Care 26:3 (2003) pp. 725-731.
Lo et al., “Epidemiology and adverse cardiovascular risk profile of diagnosed polycystic ovary syndrome” J. Clin. Endocrinol. Metab. 91 (2006) pp. 1357-1363.
Lobo, et al., “AUC: a misleading measure of the performance of predictive distribution models” Global Ecology and Biogeography, (2007) pp. 1-7. <doi:10.1111/j.1466-8238.2007.00358.x>.
Longato-Stadler, et al., “Personality Traits and Platelet Monoamine Oxidase Activity in a Swedish Male Criminal Population”, Neuropsychobiology, 2002, pp. 202-208,46 (4), S. Karger AG, Basel, Switzerland.
Lotufo et al., “Male pattern baldness and coronary heart disease” Arch. Intern. Med. 160 (2000) pp. 165-171.
Lucking et al., “Association Between Early-Onset Parkinson's Diseaseand Mutations in the Parkin Gene” N. Engl. J. Med. 342, May 2000, pp. 1560-1567.
Lunceford J.K. and Davidian M., “Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study” Stat Med 23, (2004) pp. 2937-2960.
Lyssenko, M.D., et al., “Clinical Risk Factors, DNA Variants, and the Development of Type 2 Diabetes” The New England Journal of Medicine, vol. 359, Nov. 20, 2008, pp. 2220-2232. <doi:10.1056/NEJMoa0801869>.
Ma et al., “Polymorphisms of fibroblast growth factor receptor 4 have association with the development of prostate cancer and benign prostatic hyperplasia and the progression of prostate cancer in a Japanese population” Int. J. Cancer 123(11) (2008) pp. 2574-2579.
Mani, et al., Causal Discover From Medical Textual Data, Fall 2000, Hanley and Belfus Publishers, pp. 542-546.
Meigs, et al., “Genotype score in addition to common risk factors for prediction of type 2 diabetes” N. Engl. J. Med. 2008; 359: 2208-9.
Miyamoto, et al., “Diagnostic and Therapeutic Applications of Epigenetics”, Japanese Journal of Clinical Oncology, Jun. 1, 2005, pp. 293-301, 35 (6), Keigakul Publishing Company, Japan.
Nadkarni, Prakash M., et al. “Data Extraction and Ad Hoc Query of an Entity-Attribute-Value Database”, Journal of the American Medical Informatics Association, vol. 5, No. 6, Nov./Dec. 1998, pp. 511-527.
Nielsen, T. et al. Molecular characterisation of soft tissue tumours: a gene expression study. The Lancet 359, 1301-1307 (2002).
Ning et al., “SSAHA: A Fast Search Method for Large DNA Databases,” Cold Spring Harbor Laboratory Press, 2001.
Notice of Allowance, U.S. Appl. No. 16/519,295, mailed Jan. 13, 2021.
Notice of Allowance, U.S. Appl. No. 17/175,995, mailed Nov. 14, 2022.
Office Action, U.S. Appl. No. 15/443,739, mailed Dec. 10, 2019.
Office Action, U.S. Appl. No. 17/077,930, mailed Dec. 21, 2020.
Office Action, U.S. Appl. No. 17/077,930, mailed Apr. 20, 2021.
Office Action, U.S. Appl. No. 17/077,930, mailed Nov. 16, 2021.
Prather, et al., Medical data mining: knowledge discovery in a clinical data warehouse, Fall 1997, Proceedings of the AMIA Annual Fall Symposium, pp. 101-105.
Roddick, et al., Exploratory Medical Knowledge Discover: Experiences and Issues, Jul. 2003, ACM, vol. 5, Issue 1, pp. 94-99.
Smith, “SNPs and human disease”, Nature, 2005, vol. 435, p. 993.
U.S. Appl. No. 60/895,236, filed Mar. 16, 2007.
U.S. Appl. No. 60/999,064, filed Oct. 10, 2007.
U.S. Appl. No. 60/999,065, filed Oct. 15, 2007.
U.S. Appl. No. 60/999,148, filed Oct. 10, 2007.
U.S. Appl. No. 60/999,175, filed Oct. 15, 2007.
U.S. Appl. No. 61/070,321, filed Mar. 19, 2008.
Vrbsky, S.V. & Liu, J.W.S. “Approximate-A Query Processor That Produces Monotonically Improving Approximate Answers.” IEEE Transactions on Knowledge and Data Engineering 5, 1056-1068 (1993).
Zhao, Hongyu, and Feng Liang, “On Relationship Inference Using Gamete Identity by Descent Data,” Journal of Computational Biology, vol. 8, No. 2, 2001.
Cowell, R.G., “FINEX: A probabilistic expert system for forensic identification” Forensic Science International, 134, (2003) pp. 196-206.
Crawford, et al., “Evidence for substantial fine-scale variation in recombination rates across the human genome,” Nature Genetics, vol. 36, No. 7, Jul. 2004, pp. 700-706.
Cudworth, et al., “Evidence for HL-A-linked genes in ”juvenile“ diabetes mellitus” Br. Med. J. 3, (1975) pp. 133-135.
Curtis, et al., “Using risk calculation to implement an extended relative pair analysis” Ann. Hum. Genet. 58 (1994) pp. 151-162.
Das, S., “Filters, Wrappers And a Boosting-Based Hybrid For Feature Selection”, In Proceedings Of The Eighteenth International Conference On Machine Learning, Jun. 28, 2001, pp. 74-81.
Defendants' Notice of Motion And Motion To Dismiss Plaintiff's Complaint, filed in the United States District Court in and for the Northern District of California LLC on Jun. 29, 2018, Case No. 18-cv-02791-JCS, Re 23andMe, Inc. v. Ancestry.com DNA, LLC, Ancestry.com Operations Inc., and Ancestry.com.
Denniston, C., “Probability and genetic relationship” Ann. Hum. Genet., Lond. (1975), 39, pp. 89-103.
Di Rienzo, et al., “An evolutionary framework for common diseases: the ancestral-susceptibility model” Trends Genet. 21 (2005) pp. 596-601.
Donnelly, K.P., “The probability that related individuals share some section of genome identical by descent” Theor. Popul. Biol. 23 (1983) pp. 34-63.
Douglas, et al., “A multipoint method for detecting genotyping errors and mutations in sibling pair linkage data” Am. J. Hum. Genet. 66 (2000) pp. 1287-1297.
Duffy, et al. “An integrated genetic map for linkage analysis” Behav. Genet. 36, 2006, pp. 4-6.
Dupuis, et al., “Statistical methods for linkage analysis of complex traits from high resolution maps of identity by descent” Genetics 140 (1995) pp. 843-856.
Eding, et al., “Marker-based estimates of between and within population kinships for the conservation of genetic diversity” J. Anim. Breed. Genet. 118 (2001 ), pp. 141-159.
Ehm, et al., “A test statistic to detect errors in sib-pair relationships” Am. J. Hum. Genet. 62 (1998) pp. 181-188.
Elston, et al., “A general model for the genetic analysis of pedigree data” Hum. Hered. 21, (1971) pp. 523-542.
Epstein, et al., “Improved inference of relationship for pairs of individuals” Am. J. Hum. Genet., vol. 67, (2000) pp. 1219-1231.
Falush, et al., “Inference of population structure using multilocus genotype data:linked loci and correlated allele frequencies” Genetics 164, (2003) pp. 1567-1587.
Feingold, E. “Markov processes for modeling and analyzing a new genetic mapping method” J. Appl. Prob. 30 (1993) pp. 766-779.
Feingold, et al., “Gaussian Models for Genetic Linkage Analysis Using Complete High-Resolution Maps of Identity by Descent,” Am. J. Hum. Genet. 53 (1993) pp. 234-251.
Fisher, RA “A Fuller Theory of ‘Junctions’ in Inbreeding” Heredity, 8 (1954) pp. 187-197.
Fisher, RA “The theory of inbreeding” Department of Genetics, Cambridge University, Eng. Edinburgh, London, Oliver & Boyd, Ltd., (1949) pp. 97-100.
Gaytmenn, et al., “Determination of the sensitivity and specificity of sibhip calculations using AmpF/STR Profiler Plus” Int. J. Legal Med. 116, (2002) pp. 161-164.
George, et al., “Discovering disease genes: Multipoint linkage analyses via a new Markov Chain Monte Carlo approach” Statistical Science, vol. 18, No. 4, (2003) pp. 515-535.
Gillanders, et al., “The Value of Molecular Haplotypes in a Family-Based Linkage Study” Am. J. Hum. Genet. 79 (2006) pp. 458-468.
Goodnight, et al., “Computer software for performing likelihood tests of pedigree relationship using genetic markers” Molecular Ecology, vol. 8, (1999) pp. 1231-1234.
Grafen, A., “A geometric view of relatedness” Oxford Surveys in Evolutionary Biology, 2 (1985) pp. 39-89.
Grant, et al., “Significance testing for direct identity-by-descent mapping” Ann. Hum. Genet. 63, (1999) pp. 441-454.
Greenspan, et al., “Model-based inference of haplotype block variation” J. Comput. Biol. 11, (2004) pp. 493-504.
Griffiths, et al., “Ancestral inference of samples of DNA sequences with recombination” Journal of Computational Biology, vol. 3, No. 4 (1996) pp. 479-502.
Gudbjartsson, et al., “Allegro, a new computer program for multipoint linkage analysis” Nat. Genet. 25, (2000) pp. 12-13.
Gusev, et al., “Whole population, genome-wide mapping of hidden relatedness,” Genome Research, vol. 19, 2009, pp. 318-326.
Hajnal, J., “Concepts of random mating and the frequency of consanguineous marriages,” Proceedings of the Royal Society of London. Series B. Biological Sciences 159, No. 97 4 (1963) pp. 125-177.
Hardy, O.J., “Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers” Molecular Ecology, 12 (2003) pp. 1577-1588.
Harris, D.L., “Genotypic covariances between inbred relatives” Genetics 50, (1964) pp. 1319-1348.
Hayward, et al., “Fibrillin-1 mutations in Marfan syndrome and other type-1 fibrillinopathies” Hum. Mutat. 10 (1997) pp. 415-423.
Heath, et al., “A novel approach to search for identity by descent in small samples of patients and controls from the same Mendelian breeding unit: a pilot study in myopia” Human Heredity, vol. 52, Feb. 2001, pp. 183-190.
Hepler, A.B., “Improving forensic identification using Bayesian Networks and Relatedness Estimation” Ph.D Thesis, NCSU, Raleigh (2005) pp. 1-131.
Hernandez-Sanchez, et al., “On the prediction of simultaneous inbreeding coefficients at multiple loci” Genet. Res. 83 (2004) pp. 113-120.
Hernandez-Sanchez, et al., “Prediction of IBD based on population history for fine gene mapping” Genet. Sel. Evol. 38 (2006) pp. 231-252.
Heyer, et al., “Variability of the genetic contribution of Quebec population founders associated to some deleterious genes” Am. J. Hum. Genet. 56 (1995) pp. 970-978.
Hill, et al. “Prediction of multilocus identity-by-descent” Genetics 176, Aug. 2007, pp. 2307-2315.
Hill, et al., “Linkage disequilibrium in finite populations” Theor. Appl. Genet. 38, (1968) pp. 226-231.
Hill, et al., “Prediction of multi-locus inbreeding coefficients and relation to linkage disequilibrium in random mating populations” Theor Popul Biol. Sep. 2007, 72(2), pp. 179-185. doi: 10.1016/j.tpb.2006.05.006.
Hill, et al., “Variances and covariances of squared linkage disequilibria in finite populations” Theor. Pop. Biol., 33 (1988) pp. 54-78. [PubMed: 3376052].
Hill, W.G., “Disequilibrium among several linked neutral genes in finite population. II Variances and covariances of disequilibria” Theor. Pop. Biol., vol. 6, 1974, pp. 184-198.
Hinrichs, et al., “Multipoint identity-by-descent computations for single-point polymorphism and microsatellite maps,” BMC Genet. 6, Dec. 30, 2005, S34. doi:10.1186/1471-2156-6-S1-S34.
Houwen, et al., “Genomic screening by searching for shared segments: mapping a gene for benign recurrent intrahepatic cholestasis” Nature Genetics vol. 8, Dec. 1994, pp. 380-386.
Hu, X.S., “Estimating the correlation of pairwise relatedness along chromosomes” Heredity 94, (2004) pp. 338-346. [PubMed: 15354191 ].
Huang, et al. “Whole genome DNA copy number changes identified by high density oligonucleotide arrays,” Hum. Genomics vol. 1, No. 4, May 2004, pp. 287-299.
Huang, et al., “Ignoring linkage disequilibrium among tightly linked markers induces false positive evidence of linkage for affected sib pair analysis” Am. J. Hum. Genet. 75, (2004) pp. 1106-1112.
Abbas et al. “A wide variety of mutation in the parkin gene are responsible for autosomal recessive parkinsonism in Europe”, Hum. Mol. Genet., vol. 8, No. 4 (1999) pp. 567-574.
Aekplakorn, W. et al., “A risk score for predicting incident diabetes in the Thai population”, Diabetes Care 2006;29, pp. 1872-1877.
Aharon-Peretz J. et al., “Mutations in the glucocerebrosidase gene and Parkinson's disease in Ashkenazi Jews”, N. Engl. J. Med. 351 (2004) pp. 1972-1977.
Balkau, B. et al. “Predicting diabetes: clinical, biological, and genetic approaches: data from the Epidemiological Study on the Insulin Resistance Syndrome {DESIR)”, Diabetes Care 31:10 (2008) pp. 2056-2061.
Bickel et al., “Discriminative learning for differing training and test distributions”, 2007 Proceeding of the 24th international conference on machine learning, Corvallis, OR 2007 pp. 81-89.
Bickel, J.E., “Some Comparisons among Quadratic, Spherical, and Logarithmic Scoring Rules” Decision Analysis, vol. 4, No. 2, Jun. 2007, pp. 49-65.
Blouin, Michael S., “DNA-based methods for pedigree reconstruction and kinship analysis in natural populations”, Trends in Ecology & Evolution 18, No. 10 (2003): 503-511.
Bonifati V. et al., “Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism” Science 299 (2003), pp. 256-259.
Browning, Brian L., and Sharon R Browning, “Efficient multilocus association testing for whole genome association 42 studies using localized haplotype clustering”, Genetic Epidemiology: The Official Publication of the International Genetic Epidemiology Society 31, No. 5 (2007): 365-375.
Browning, Sharon R, and Brian L. Browning,“Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering,” The American Journal of Human Genetics, No. 5 (2007): 1084-1097.
Browning, Sharon R., “Estimation of pairwise identity by descent from dense genetic marker data in a population sample of haplotypes”, Genetics 178, No. 4 (2008): 2123-2132.
Carlson et al., “Selecting a Maximally Informative Set of Single Nucleotide Polymorphisms for Association Analyses Using Linkage Disequilibrium”, Am. J. Hum. Genet. 74 (2004) pp. 106-120.
Castets et al., “Zinedin, SG2NA, and striatin are calmodulin-binding, WO repeat proteins principally expressed in the brain”, J. Biol. Chem. 275, (2000) pp. 19970-19977.
Catalano et al., “Mifepristone induced progesterone withdrawal reveals novel regulatory pathways in human endometrium”, Mol. Hum. Reprod. 13(9) (2007) pp. 641-654.
Chiasson, JL et al., “Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial”, Lancet 359, (2002) pp. 2072-2077.
Davis et al., “The overall pattern of cardiac contraction depends on a spatial gradient of myosin regulatory light chain phosphorylation”, Cell 107 (2001) pp. 631-641.
Dawid, P., “Present Position and Potential Developments: Some Personal Views: Statistical Theory: The Prequential Approach”, Journal of the Royal Statistical Society, Series A {General), vol. 147, No. 2, (1984) pp. 278-292.
Devlin and Roeder, “Genomic control for association studies” Biometrics 55(4) (1999) pp. 997-1004.
Di Fonzo A. et al., “ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease” Neurology 68 (2007) pp. 1557-1562.
Dodds, Ken G., Peter R Amer, and Benoit Auvray, “Using genetic markers in unpedigreed populations to detect a heritable trait”, Journal of Zhejiang University Science B 8, No. 11 (2007): 782-786.
Edmonds J. and Karp R., “Theoretical improvements in algorithmic efficiency for network flow problems” J ACM 19, (1972) pp. 248-264.
Ellis et al., “Polymorphism of the androgen receptor gene is associated with male pattern baldness” Dermatol. 116 (2001) pp. 452-455.
Expert Panel, “Obesity in Adults” NIH Publication No. 98-4083, Sep. 1998, National Institute of Health, pp. 1-228.
Falconer et al., “Endometriosis and genetic polymorphisms” Obstet Gynecol Surv 62(9) (2007) pp. 616-628.
Farrer M.J., “Genetics of Parkinson disease: paradigm shifts and future prospects” Nat Rev Genet 7, (2006) pp. 306-318.
Freidlin B. et al., “Trend tests for case-control studies of genetic markers: power, sample size and robustness” Hum Hered 53(2002) pp. 146-152.
Gail, M.H. et al., “Projecting individualized probabilities of developing breast cancer for white females who are being examined annually” J. Natl. Cancer Inst., vol. 81, No. 24, Dec. 20, 1989, pp. 1879-1886.
Glaubitz, Jeffrey C., O. Eugene Rhodes Jr, and J. Andrew Dewoody_ “Prospects for inferring pairwise relationships with single nucleotide polymorphisms”, Molecular Ecology 12, No. 4 (2003): 1039-1047.
Gneiting, T et al., “Probabilistic forecasts, calibration and sharpness” Hal-00363242 (2007) pp. 1-28. <URL:https://hal.archives-ouvertes.fr/hal-00363242>.
Guan and Stephens, “Practical issues in imputation-based association mapping” PLoS Genet. 4(12) Dec. 2008, e100279, pp. 1-11.
Guo, Sun-Wei, “Proportion of genome shared identical by descent by relatives: concept, computation, and applications”, American Journal of Human Genetics 56, No. 6 (1995): 1468.
Habuchi et al., “Increased risk of prostate cancer and benign hyperplasia associated with a CYP17 gene polymorphism with a gene dosage effect” Cancer Res. 60(20) (2000) pp. 5710-5713.
Hauser et al., “A genome-wide scan for early-onset coronary artery disease in 438 families: the GENECARD Study” Am. J. Hum. Genet. 75(3) (2004) pp. 436-447.
Healy et al. “Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study” Lancet Neurol. 7(7) (2008) pp. 583-590.
Hillmer et al., “Genetic variation in the human androgen receptor gene is the major determinant of common early-onset androgenetic alopecia” Am. J. Hum. Genet. 77 (2005) pp. 140-148.
Hoggart et al. “Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies” PLoS Genet. 4(7) (2008) e1000130.
International HapMap Consortium “A second generation human haplotype map of over 3.1 million SNPs” Nature 449 (764) Oct. 18, 2007, pp. 851-861.
Ioannidis J.P. et al., “Assessment of cumulative evidence on genetic associations: interim guidelines” Int J Epidemiol 37 (2008) pp. 120-132.
Jankovic J., “Parkinson's disease: clinical features and diagnosis” J Neurol Neurosurg Psychiatr 79 (2008) pp. 368-376.
Jaski et al., “Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID trial), a first-in-human phase 1/2 clinical trial” J. Card. Fail 15(3) (2009) pp. 171-181.
Jenkins et al., “Noninherited risk factors and congenital cardiovascular defects: a scientific statement from the American Heart Association Council on Cardiovascular disease in the Young: endorsed by the American Academy of Pediatrics” Circulation 115(23) (2007) pp. 2995-3014.
Keith, Jonathan M., Allan McRae, David Duffy, Kerrie Mengersen, and Peter M. Visscher. “Calculation of IBD probabilities with dense SNP or sequence data”, Genetic Epidemiology: The Official Publication of the International Genetic Epidemiology Society 32, No. 6 (2008): 513-519.
Kong, Augustine, Gisli Masson, Michael L. Frigge, Arnaldur Gylfason, Pasha Zusmanovich, Gudmar Thorleifsson, Pall I. Olason et al., “Detection of sharing by descent, long-range phasing and haplotype imputation”, Nature genetics 40, No. 9 (2008): 1068-1075.
Leibon, Gregory, Daniel N. Rockmore, and Martin R Pollak, “A Snp streak model for the identification of genetic regions identical-by-descent”, Statistical Applications in Genetics and Molecular Biology 7, No. 1 (2008).
Meuwissen, Theo HE, and Mike E. Goddard, “Prediction of identity by descent probabilities from marker-haplotypes”, Genetics Selection Evolution 33, No. 6 (2001): 1-30.
Miyazawa, Hitoshi, Masaaki Kato, Takuya Awata, Masakazu Kohda, Hiroyasu Iwasa, Nobuyuki Koyama, Tomoaki Ranaka, Shunei Kyo, Yasushi Okazaki, and Koichi Hagiwara, “Homozygosity haplotype allows a genomewide search or the autosomal segments shared among patients”, The American Journal of Human Genetics 80, No. 6 (2007): 1090-1102.
Shmulewitz, Dvora, Simon C_ Heath, Maude L. Blundell, Zhihua Han, Ratnendra ShalTTa, Jacqueline Salit, Steven B. Auerbach et al. “Linkage analysis of quantitative traits for obesity, diabetes, hypertension, and dyslipidemia on the Island of Kosrae, Federated States of Micronesia”, Proceedings of the National Academy of Sciences 103, No. 10 2006): 3502-3509.
Thomas, Alun, Nicola J. Camp, James M. Farnham, Kristina Allen-Brady, and Lisa A Cannon-Albright, “Shared genomic segment analysis: Mapping disease predisposition genes in extended pedigrees using SNP genotype assays”, Annals of human genetics 72, No. 2 (2008): 279-287.
Zimprich A. et al., “Mutations in LRRK2 cause autosomal-autosomal-dominant parkinsonism with pleomorphic pathology”, Neuron 44 (2004) pp. 601-607.
Zou H. and Hastie T., “Regularization and variable selection via the Elastic Net”, Journal of the Royal Statistical Society B 67 (2005), pp. 301-320.
Chen et al., Explicit Modeling of Ancestry Improves Polygenic Risk Scores and BLUP Prediction, May 2015, Genetic Epidemiology 39(6): 427-438 (Year: 2015).
Office Action, U.S. Appl. No. 17/303,398, mailed Aug. 25, 2023.
Office Action, U.S. Appl. No. 17/303,398, mailed Feb. 16, 2024.
Office Action, U.S. Appl. No. 17/980,024, mailed Feb. 8, 2024.
Office Action, U.S. Appl. No. 18/244,715, mailed May 6, 2024.
Related Publications (1)
Number Date Country
20240212793 A1 Jun 2024 US
Provisional Applications (1)
Number Date Country
61204195 Dec 2008 US
Continuations (8)
Number Date Country
Parent 17979412 Nov 2022 US
Child 18434362 US
Parent 17576738 Jan 2022 US
Child 17979412 US
Parent 17351052 Jun 2021 US
Child 17576738 US
Parent 17073110 Oct 2020 US
Child 17351052 US
Parent 16129645 Sep 2018 US
Child 17073110 US
Parent 15264493 Sep 2016 US
Child 16129645 US
Parent 13871744 Apr 2013 US
Child 15264493 US
Parent 12644791 Dec 2009 US
Child 13871744 US