1. The Field of the Invention
The present invention relates to a fine adjustable sliding buckle, and more particularly to a fine adjustable sliding buckle comprising a long base having a fine adjustment handle and a releasing plate along the same axial direction, wherein the releasing plate is received in a receiving hole of the fine adjustment handle as in an approximated phase, so that accidental pressing onto the releasing plate can be effective prevented and thus loosening off of the adjustable belt from the base can be effective prevented. Thus, easy operation, safe and fine size-adjustment can be effectively achieved.
2. Description of the Related Art
Securing buckles with the adjustable belt are commonly applied in shoes, roller skaters and alike. The securing buckle comprises a base, a releasing plate and an adjustable belt. The releasing plate is generally designed to be able to rotate for releasing from or buckling into the space between the protruded gears of the adjustable belt. Additionally, the buckle may also have a spring to aid for bouncing the releasing plate as it releases from the space between the protruded gears. However, such a design is complicated and difficult to assemble. Besides, because the adjustment belt is positioned within the releasing plate and the base, and therefore it is difficult to fine adjust the belt effectively through visual judgment and then rotating the releasing plate if the user wishes to adjust the length of the adjustment belt again. The user has to feel the belt then use hands to adjust thereof. When applying such a belt to shoes, the outward stress of the shoe makes the adjustment job even tougher. Therefore, how to improve the overall design and the adjustment manner to substantially achieve easy operation for the user and also reduce the manufacturing cost thereof is an important issue in the field.
Correspondingly, referring to
The buckle depicted above has some fine adjustment function, easy assembly and easy operation. However, the releasing plate A and the fine adjustment handle B are positioned on the two sides of the base C, and therefore the overall space occupation is correspondingly larger. Thus, the application of such a buckle is limited, for example, for its application in a shoe, a bag, a backpack or other items, invariably requires the user to make some adjustment. Besides, when using the fine adjustment handle B, the user may accidentally touch the releasing plate A releasing the adjustment belt D from the base C that would require unnecessary re-setting of the belt. If the user has already worn the shoe and the adjustment belt D is accidentally released from the base C through an accidental touch of the releasing plate A, it may hurt the user's ankle or trip the user while walking or running as the shoe is still fitted on the foot of the user. Therefore, the design of the above described conventional buckle still need to be improved for overcoming the above defects.
Accordingly, in the view of the foregoing, the present inventor makes a detailed study of related art to evaluate and consider, and uses years of accumulated experience in this field, and through several experiments, to create a new fine adjustable sliding buckle in order to overcome the above defects. The present invention provides a novel and cost effective fine adjustable sliding buckle.
According to an embodiment of the present invention, a fine adjustable sliding buckle is provided. The fine sliding adjustable buckle comprises a base having two pairs of axial holes respectively for axially fitting the axles of the releasing plate and fine adjustment handle. The axles positioned on the two sides of the fine adjustment handle and the releasing plate are fitted in the axial holes on the same side of the base, and the handling portion of the fine adjustment handle has a receiving through hole for receiving the releasing plate. Thus the fine adjustment handle and the releasing plate are positioned along the same direction and are positioned almost on the same plane to prevent accidental touch which would otherwise accidentally release the releasing plate from the base to loosen the adjustment belt. Thus, the fine adjustable sliding buckle of the present invention is easy to operate, safe and compact.
For a more complete understanding of the present invention, reference will now be made to the following detailed description of preferred embodiments taken in conjunction with the accompanying drawings.
Reference will be made in detail to the preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
Referring to
The releasing plate 1 is formed as an integral unit, and has a pair of corresponding axles 11 on each side. Two axles 11 are formed at a bottom side of a buckling portion 12 and a resilient plate 13 is formed at a backside of the axels 11.
The fine adjustment handle 2 is an arch-shaped plate and has a protruded point 21 on the two sides thereof. At the outer side of the protruded point 21 has two pair of corresponding axles 22, and the axles 22 have an arch-shaped resilient supporting plate 23 extending from the distal end of the fine adjustment handle 2. Additionally, the handling portion 25 of the fine adjustment handle 2 has an arched bottom face and a receiving hole 24 for receiving the releasing plate 1.
The base 3 is a long U-shape plate, which has a through channel 31 formed at a bottom part between the two sides. Axial holes 33 are correspondingly formed at the frontal side of rear sidewalls of the base 3, and securing holes 32, axial holes 34 and supporting block 35 formed respectively from the left to the right of the base 3. An arch portion 36 is formed at the top face of the two sidewalls of the base 3, wherein the arch portion 36 allows the arched bottom face of the handling portion 25 of the fine adjustment handle 2 to lean against a top face of the two sidewalls of the base 3.
Furthermore, the adjustment belt 4 is a long structure having a plurality of protruded gears 41 formed on the surface thereof.
To assemble the embodiment of the present invention, the two axles 22 of the fine adjustment handle 2 are fit into the two corresponding axial holes 33 of the base 3, and the protruded points 21 formed at the rear side of the axles 22 are buckled into the securing holes 32. Next, the two axles 11 of the releasing plate 1 are fit into the axial holes 34 of the base 3. The resilient plate 13 extending from the two axles 11 can support against the surface of the supporting block 35 of the base 3 and makes the releasing plate 1 to position in the receiving hole 24 of the fine adjustment handle 2 such that the releasing plate 1 is almost in the same plane of the fine adjustment handle 2. Thus, this arrangement allows the releasing plate 1 and the fine adjustment handle 2 to operate at the same side of the base 3. Furthermore, by pressing on the unsupported portion of the releasing plate 1, the adjustment belt 4 from the through channel 31 can be fit into the base 3.
Now referring to
Further referring to
While the invention has been described in conjunction with a specific best mode, it is to be understood that many alternatives, modifications, and variations will be apparent to those skilled in the art in light of the foregoing description. Accordingly, it is intended to embrace all such alternatives, modifications, and variations in which fall within the spirit and scope of the included claims. All matters set forth herein or shown in the accompanying drawings are to be interpreted in an illustrative and non-limiting sense.
Number | Date | Country | Kind |
---|---|---|---|
92201953 U | Jan 2003 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
5416952 | Dodge | May 1995 | A |
5606779 | Lu | Mar 1997 | A |
6374464 | Lai | Apr 2002 | B1 |
6694644 | Haupt | Feb 2004 | B2 |
20010013157 | Giancarlo | Aug 2001 | A1 |
Number | Date | Country |
---|---|---|
20002436 | Jul 2000 | DE |
400213 | Dec 1990 | EP |
572373 | Dec 1993 | EP |
Number | Date | Country | |
---|---|---|---|
20040148741 A1 | Aug 2004 | US |