This invention relates generally to twist-on wire connectors and, more specifically, to a finger friendly twist-on wire connector formed from both rigid material and finger cushion material to provide enhanced finger gripping that provides a balanced grasp and feel regardless of the users finger position.
None
None
Twist-on wire connector are grasped in a users hand or fingers and are twisted around the exposed ends of electrical wires to join the electrical wires into contact. As wiring tasks often require usage of multiple twist-on wire connectors the users hands and fingers can become fatigued from having to repeatedly apply sufficient torque to the twist-on wire connectors to form the wire ends into electrical contact with each other while ensuring that the exposed ends of the electrical wire are covered with either insulation or the twist-on wire connector. However, because of the small size of the twist-on wire connectors as well as the need to be able to transmit both compressive and tangential forces to the wire connector it is difficult to develop a twist-on wire connector that remains both effective in forming the electrical connection as well as comfortable to use over an extended period of time while at the same time inhibiting or avoiding fatiguing and injuring the users fingers.
The concept of twist-on wire connector with a cushioned grip is known in the art, more specifically Blaha U.S. Pat. No. 6,677,530 discloses numerous embodiments of twist-on wire connectors and points out that the cushioned grip is on a portion of the exterior hard or rigid shell with the cushioned grip being an olefinic thermoplastic vulcanizate sold under the name Santoprene®, a trademark of Advanced Elastomer system of Akron, Ohio. Blaha describes a twist-on wire connector wherein the exterior of the wire connector shell has three main areas, a closed end section, a skirt and a grip-mounting portion. The grip-mounting portion is the region the user engages with his or her fingers in order to twist the wire connector into engagement with an electrical wire or wires.
Blaha points out that with molds of particularly close tolerances, such as found in the Twister® wire connector a cushioned grip can be formed over the Twister® wire connector without the use of boundary edges. The twist-on wire connector with a cushioned grip on the grip mounting portion is sold by Ideal Industries Inc. under the name Twister®PRO and is shown in the web page downloaded from the Ideal Industries which is included with the 1449 material information statement of the present application.
Blaha points out the problem of installing twist-on wire connectors with a hard shell is that if numerous connections are made the hard plastic surface can be painful on the fingers or in certain instances the shell surface can be slippery due to the sweat or soil on the users hand. As a solution to the problem Blaha proposes to place a cushioned material over the hand gripping portions of the wire connector to make the wire connector more comfortable to grasp. While Blaha recognizes that the placement of a cushion on the grip mounting portion of the twist-on wire connector may reduce fatigue Blaha does not recognize that not everyone grasps the twist-on wire connectors in the same manner or that because of cramped conditions it might not be possible to grasp the twist-on wire connector on the grip mounting portions to enable the user to benefit from the cushioned grip of Blaha. Consequently, while the Blaha twist-on wire connector has a cushioned grip it can be of little benefit to those users who do not grip the twist-on wire connector on the normal designated gripping portions or those users who might have to apply a twist-on wire connector in a location with inadequate space to position the users hand or fingers around the normal hand gripping regions of the twist-on wire connector. While Blaha U.S. Pat. No. 6,677,530 shows multiple embodiments of his cushioned grip in each of his embodiments he places his cushioned grip at the base or open end of his wire connector while leaving the end section of his wire connector proximate the closed end of the wire connector with the hard shell exposed. Ironically, if the twist-on wire connector is to be applied in a tight location it is the uncushioned end section, which the user grasps to twist the wire connector onto the wires. Since the end section usually has a smaller radius than the base or normal finger grasping portion an increased hand or finger pressure is required to obtain necessary torque to apply the twist-on wire connector. Thus, when application conditions are the most difficult one not only does one not have the benefit of cushioned grip for the users fingers but one has to generate greater hand force on the twist-on wire connector to obtain the necessary torque to bring the wire connector into engagement with the electrical wires therein.
Krup U.S. Pat. No. 3,519,707 illustrates another type of twist-on wire connector wherein a vinyl shield with ribs is placed around an exteriors surface of rigid cage that has sufficient strength and rigidity to drive the spring onto a cluster of wires. Krup states the purpose of his vinyl shell around the rigid case is to insulate and protect the connector and the wire connector. However, Krup fails to teach that the vinyl shell located around his rigid cage comprises a cushioned surface.
McNerney U.S. Pat. No. 6,478,606 shows a twist-on wire connector with a tensioally-biased cover. McNerney fits a sleeve of heat shrinkable material over a portion of his wire connector so that after a wire connection is made the heat shrinkable material can be shrunk fit around his connector to improve the bond to his connector and around the wires in order to prevent contaminants from entering the wire splice in his wire connector. In order to have ridges for gripping McNernery points out a tube of heat shrinkable material tightly grips his hard shell so as to replicate the grooves in the hard shell of his connector. Unfortunately, tightly shrinking the material around the body of connector introduces a circumferential bias or tension force in the heat shrunk material thus rendering material which may even be soft into a covering that is hard to the touch and is reluctant to yield to finger torque. Thus the heat shrunken tube on the body of his wire connector produces an external surface that resists resilient displacement and is also hard and is uncomfortable in response to the finger and hand pressure of the user since the tension and bias forces introduced by the heat shrinking limit the yielding of his material. That is, by stretching the material around the connector McNerney biases the material much like a spring under tension has an inherent bias. The bias introduced by the heat shrink process can prevent heat-shrunk material from yielding equally in all three axis. Consequently, the heat shrinkable material in effect becomes like a stretched spring, which has increased resistance to stretching. The effect is to form an elastomer material into a hard cover or non-resilient cover on a hard shell since a heat shrunk cover is limited in its ability to absorb external finger pressure. In addition any protuberances on the hard shell are carried through and become hard protuberances on the heat-shrunk layer. McNerney espouses the hardness of his heat-shrunk cover by pointing out that heat shrinking can produce a rigid case for his coil spring. In contrast to McNerney the present invention provides a cover to a twist-on wire connector that eliminates the problems generated by McNerney heat shrunk cover.
Unfortunately, whether a twist-on wire connector is finger friendly and inhibits finger fatigue is a function of a number of variables including how and where the user grasps the twist-on connector as well as subjective factors on how the twist-on wire connector feels as it is handled or when it is secured to a wire or wires within the twist-on wire connector. In addition field conditions may make it beneficial to have more than one type of cushioned connector.
Briefly, the invention comprise a finger friendly twist-on wire connector having a rigid shell and a finger cushion material integral to the rigid shell to form a finger gripping region where the finger cushion material may be molded directly to the rigid shell and circumferentially dispersed thereon to inhibit finger fatigue and finger injury as one repeatedly secures twist-on wire connectors to electrical leads. In another example, the twist-on wire connector may includes a plurality of riblets of finger cushion material interspersed between a plurality of ribs and in still other examples a set of lobes of finger cushion material, or a set of wings which may be molded as part of the rigid shell and may be used with the invention described herein. In addition, the finger friendly twist-on wire connector allows one to compressively engage both the rigid shell and the cushion grip which allows one to maintain a finger cushion effect while also obtaining feed back of the wire engagement in the coil through the direct finger contact with the rigid shell that supports the coil.
The cushioned grip twist-on wire connectors of
The plurality of circumferentially spaced and lengthwise extending elongated resilient ribs 11 and elongated resilient riblets 12, which are formed from a resilient finger cushion material, are circumferentially spaced and interdispersed around the outer surface 24 of rigid shell 20 to provide a uniform grasping region regardless of the grasping orientation of the connector. The ribs 11 comprise elongated strips of resilient finger cushion material 11a that may be molded directly to shell and extend lengthwise from the base 15 of the twist-on wire connector 10 to the top 17 of the twist-on wire connector 10. Riblets 12, which are similar to elongated ribs 11, comprise shorter elongated strips of resilient finger cushion material that are located on and may be molded to the rigid bottom of rigid bottom channels 16. Both ribs 11 and riblets 12 are formed of a resilient finger cushion material to be resiliently deformable in response to radially and tangential finger forces applied to the twist-on wire connector 10. In the example shown, the riblets 12 are located in the plurality of circumferential spaced channels 16 and are interspersed with elongated ribs 11 to provide a circumferential gripping region of length x (
A reference to
In the example shown the lobes 18 and 18a are formed without any grooves or ridges thereon. If desired the lobes may include ridges or grooves therein. In other variations multiple lobes may be used. If multiple lobes are used it is preferred to have the diametrical dimensions of the lobes decrease as one moves circumferentially away from the lobes that have the largest diametrical dimension. In some instance the largest diametrical distance of the lobes may occur at the base of the connector and in other connectors the largest diametrical distance of the lobes may occur in a central region of the finger friendly twist-on wire connector. Lobes in contrast to wings allow one to apply both radially and compressive gripping forces to the twist-on wire connector while engaging the connector with the wires therein.
A reference to
As shown in
A reference to sectional view
The channels 16b and the remainder of the twist-on connector 50 including the circumferential portion and the closed end portion 17, which are above base 13a, are covered with a layer of finger cushion material 11a to protect the user's fingers as the twist-on wire connector is secured to an electrical wire or wires. Thus connector 50 comprises a one-piece shell having a finger-grasping region including a closed end 17 and a circumferential finger-grasping band which is formed from the resilient material of the ribs and the riblets. In addition rigid base 13a may also be grasped to apply rotational forces thereto since it can support compressive finger forces.
Examples of finger cushion material are described in co pending patent application and are herein incorporated by reference. Typically, the finger cushion material is formed from a resilient non-electrical conducting material or electrical insulator that is soft to the touch. Since the twist-on wire connectors can be grasped in a variety of directions the use of cushion material that comprises a tensional unbiased covering 11a ensures that regardless of the direction of grasping of the connector the cushion cover will resiliently compress to provide a cushion grip for the user's fingers. While various types of cushion material may be used as the cushion cover or the layer of tensionally unbiased resilient material when the material is secured to and extending over the exterior surface of the hard shell it enables one to engage a finger friendly cover with the layer of resilient material providing three axis deflection with sufficient compressibility so as to comfortably compress in response to radial finger pressure and to laterally deform in response to finger torque regardless of a finger grasping position on the cushion cover. The layer of cushion material should have sufficient shear resistance so as to resiliently yield without tearing when a hand torque is applied to cushions material thus assuring one that the wire connector can be comfortably applied with hand or finger torque.
This application is a continuation of application Ser. No. 13/506,297 filed Apr. 10, 2012 which is a division of Ser. No. 12/586,947 filed Sep. 30, 2009, now U.S. Pat. No. 8,212,147, which is continuation in part of U.S. patent application Ser. No. 12/455,865 filed Jun. 8, 2009 now U.S. Pat. No. 8,067,692, which is division of application Ser. No. 11/515,465 filed Sep. 1, 2006 now U.S. Pat. No. 7,560,645 which is a continuation in part of U.S. patent application Ser. No. 11/249,868 filed Oct. 13, 2005 titled Cushioned Wire Connector now abandoned.
Number | Date | Country | |
---|---|---|---|
Parent | 12586947 | Sep 2009 | US |
Child | 13506297 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13506297 | Apr 2012 | US |
Child | 13987827 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12455865 | Jun 2009 | US |
Child | 12586947 | US | |
Parent | 11515465 | Sep 2006 | US |
Child | 12455865 | US |