1. Field of the Invention
The present invention relates to a finger-identifying keyboard, and more particularly relates to a finger-identifying keyboard that can reduce the number of keys on the keyboard and the size of the keyboard.
2. Prior Art
Data inputting is an indispensable function of various electronic equipments. Among the vast amount of inputting methods, keyboard-inputting method is still the leading one with regard to speed and accuracy. In the process of miniaturization of electronic equipment, the size of the inputting device is continuously decreasing.
In prior art, there are some limitations on the miniaturization of the keyboards. First, in order for the users to input conveniently with their own fingers, the size of the keys can not be too small. Too small a key will either make the users unable to use fingers to press the key or readily produce errors. Second, in order to input enough number of digits and alphabetic characters, it is necessary to have a sufficient number of keys. Both of these two aspects limit the miniaturization progress of the keyboards.
U.S. Pat. No. 5,367,298 disclosed a keyboard, which, with reference to
In the above configuration, the number of keys can be reduced. But the keyboard still has to have at least more than 20 keys for all the characters to be inputted. Hence, there is a limitation to further miniaturization of the keyboards.
The present inventor has found through investigation that when people are using a keyboard, usually they are using different fingers to press different keys. If the fingers can be distinguished from each other, then the keystroke of the same key by different fingers can produce different combinations of characters, and produce different character output, thereby achieving the functions of a whole keyboard by using a small number of keys. For purposes of the present invention “character” shall mean and include numeric digits, letters of the alphabet, and various symbols carried on the keyboard for punctuation, as well as those symbols that are frequently encountered during typing such as $, &, %, +, = and so forth.
Therefore, the object of the invention is to provide a finger-identifying keyboard that can effectively reduce the number of keys, thereby reducing the size of the keyboard.
According to the invention, a finger-identifying keyboard is provided, which includes:
The above-mentioned sensors can be a kind of contact sensors.
The above sensors can also be a kind of magnetic sensors.
The number of the above-mentioned keys is preferably 15.
The number of said sensors worn on the fingers is preferably 4.
The above design of the invention can effectively reduce the number of the keys of the keyboard, thereby achieving the goal of reducing the size of the keyboard without sacrificing the availability of the full range of characters to be displayed. Since the method identifies the finger which presses the key, it has little influence on the inputting habit. For the handheld devices, the keyboard should be small enough to be easily carried around and in many cases only one hand is available for input. The finger-identifying keyboard can solve such a problem.
Further, the finger-identifying keyboard of the invention reduces the size of a keyboard without reducing the size of a key. It is especially suitable for data input in miniaturized and handheld devices. As it keeps the conventional inputting habit, it can be easily mastered. Due to the reduced number of keys, the number of electrical and mechanical components can be accordingly reduced while only a small number of electronic parts are added, therefore the cost will not exceed that of the conventional keyboard.
Below there will be a detailed description with reference to the accompanying drawings.
The various fingers can be distinguished for identification in any number of ways, such as shape or color recognition, fingerprint markers, magnetic coding, photoelectric sensors, luminescence sensors, and inductive and capacitive sensors. All of these employ technology that is readily available and that is known to those skilled in the art. Each finger can wear a sensor, which is like a switch that is triggered when a finger contacts a key. Triggering the switch generates a signal or pulse which is sent to the coding synthesizer. The sensor can be made as a ring or a cap that is placed on the tip of the finger. Each finger wears a different sensor, each of which is wired to a different ‘AND’ gate circuit whereby different switches represent different fingers. For magnetic sensors, a magnetic material is added to the key cap to trigger magnetic switches on the fingers.
Among the suppliers of photoelectric, luminescent, inductive, capacitive and magnetic sensors is EMX Industries, Inc. in Cleveland, Ohio. Information concerning this and other suppliers of such products is available at:
Another approach recognizes that each finger has its own unique fingerprint which can be distinguished by a fingerprint recognition device, such as the type that utilizes ultrasonic technology. Obviously, this requires the input of fingerprints of the user or users into a program before use of the keyboard. This approach eliminates the need for the user to wear anything on the fingers. For more information about fingerprint recognition, numerous sites are found on the Internet at:
When wearing a wired sensor (switch), the signal is an electronic pulse that is triggered by the switch or, in the case of fingerprint recognition, the signal can be generated by the device after it recognizes which finger pressed a key.
For more information on contact and proximity (magnetic) switches, the following links are available:
One signal is generated by the key stroke and the second one is generated by the finger recognition. The signals may be of the same type or they may be different. For example, a key stroke signal could be visual, mechanical or electromechanical, while the finger recognition signal could be electromagnetic or visually generated by the finger used to make the key stroke. The synthesizer then combines these signals, and outputs a third signal which characterizes the symbol being typed.
Employing a finger-identifying keyboard reduces the number of the keys, thus requiring the change of the keyboard layout. For the both-hand keyboard, the keyboard layout can be the same as a conventional one, with the number of keys reduced, thereby reducing the area of the keyboard. For a foldable keyboard, it is easier to fold due to the small number of keys used. The users can readily accept and get used to it by using the conventional keyboard layout. As one key stands for more than one character, it is possible to increase the size or the length of a key appropriately. Here, the space key, CTRL key and ALT key are combined into one. Usually, a thumb is used to press the space key. When the space key is pressed without a contact, a space character is sent out. When the contact of the ring finger is activated at the same time, it means an ALT key. Similarly, when the contact of the little finger is activated at the same time, it means a CRTL key.
The implementation of the keyboard of the invention is basically identical to that of the conventional keyboard, with the contacts of the sensors worn on the fingers for connection to the keyboard. The contacts may be connected wirelessly, e.g. some magnetic materials may be used, as long as the fingers used to press the keys can be distinguished. The keyboard and the sensor contacts can use well-known prior art; the contacts can be implemented by using electricity conducting glue or thin-film switches. To make the finger feel comfortable, the pressure of the contacts should be as weak as possible, i.e. the contacts should be activated once a pressure is sensed such that the fingers will not have unpleasant feeling.
While the present invention has been described with reference to the details of the embodiments of the invention shown in the drawings, these details are not intended to limit the scope of the invention as claimed in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
01112131.9 | Mar 2001 | CN | national |
This application is a continuation-in-part of application Ser. No. 10/097,803, filed Mar. 14, 2002, for FINGER-IDENTIFYING KEYBOARD, which claims priority of Chinese application Serial No. 01112131.9, filed Mar. 14, 2002.
Number | Date | Country | |
---|---|---|---|
Parent | 10097803 | Mar 2002 | US |
Child | 10931384 | Sep 2004 | US |