The invention concerns a finger lever of a valve train of an internal combustion engine, said finger lever being switchable to different valve lifts for at least one gas exchange valve and comprising an outer lever having two arms between which an inner lever is arranged for pivoting relative to the outer lever, which outer and inner levers can be coupled to each other by a coupling means, the outer lever comprising on one closed end, a support for a gas exchange valve and the finger lever comprising on an opposite end, a complementary surface for a support element, the inner lever having a fulcrum in a region of the opposite end, and at least this inner lever comprising a contact surface of a cam.
A finger lever of the pre-cited type is disclosed in DE-OS 27 53 197. This finger lever likewise comprises an outer lever that encloses an inner lever that is pivotable relative thereto. The coupling means is configured as a latch. A drawback of this generic-type of finger lever is that it has a relatively large overall height. Besides this, it is to be remarked that the latch mechanism has a complicated structure and requires a comparatively sophisticated external loading. This means that in the installation of this finger lever, design space problems and the like can occur.
Further, SAE TECHNICAL PAPER 2000-01-0670 “Development of the High Power, Low-Emission. Engine for the Honda S2000” discloses on page 5, a switchable lever train that is made as an oscillating lever train and comprises for the identically operating gas exchange valves of each cylinder, a total of three axially adjacent lever arms that are coupled to one another by axially parallel displaceable slides. It is quite obvious that design space problems can occur precisely in camshaft direction especially with a compact arrangement of the cylinders. Moreover, this system of levers is made up of a relatively large number of individual parts and is therefore expensive.
The object of the invention is to provide a finger lever of the pre-cited type in which the aforesaid drawbacks are eliminated and that particularly has a very compact structure and is simple to load.
The invention achieves the above object by the fact that the outer lever has a substantially open fork-like configuration, the contact surface for the cam on the inner lever is configured as a rotatable roller and the coupling means comprises at least one slide that extends crosswise to a longitudinal direction of the finger lever, an axial line of the at least one slide coincides with an axial line of the roller, and the fulcrum of the inner lever is situated at least approximately at a same point on a length of the finger lever as a fulcrum of the outer lever in a region of the complementary surface of the finger lever.
Due to this configuration, the aforesaid drawbacks are effectively eliminated. The finger lever of the invention has a vary compact overall structure that is also excellently suitable for retroactive implementation in existing engine designs. As proposed, the contact surface for the cam is constituted by a rotatable roller. This roller is preferably mounted on a roller bearing. However, if desired or necessary a sliding contact can also be used. The slides can advantageously be in the form of pistons or pins. The arrangement of the slides on the axis of the roller is a further contribution to achieving a compact structure. Besides this, separate measures for arranging the slides can be dispensed with. If desired or necessary, the slides may also be arranged outside of the axis of the roller. However, if these are offset toward the fulcrums, higher loads must be expected. The invention proposes a pack of three slides arranged in a row axially next to one another.
Preferably, displacement is effected in one direction (coupling or uncoupling direction) through the force of a mechanical means such as a compression spring. A displacement of the pack of slides in the opposite direction can be effected through the force of an external loading means such as an actuator of an electromagnet. However, it is also conceivable to use a variety of servo means for the displacement of the pack of slides, for example, hydraulic, magnetic or pneumatic means and the like. It is also possible to omit the compression spring and displace the pack of slides in both directions through the force of one or more of the aforesaid servo means.
The bushes in the outer lever for the second and the third slide are excellently adapted to be fine machined externally and then be fixed in the outer lever by the proposed fixing measures like press-fitting, swaging or gluing. If necessary or desired, it is also possible to omit the bushings so that the slides extend directly in receptions of the outer lever. The same applies also to the inner lever.
Particularly, if it is intended to use an external loading means for displacing the pack of slides in one direction, the invention proposes that one of the outer slides should project axially out of the arm concerned and should comprise a contact surface for the actuator of the electromagnet. If required, appropriate wear protection measures can be implemented on the projecting portion.
A further contribution toward obtaining light weight and a compact structure is that the inner lever likewise has an open, fork-like configuration similar to that of the outer lever. Both levers can be made of a light-weight material like sheet metal or a composite material.
If the finger lever is to be mounted on a hydraulic support element, this can get unnecessarily “pumped up” i.e., extracted in axial direction under the influence of the hydraulic medium pressure prevailing during the lost motion operation (uncoupled mode) of the finger lever. To prevent this, appropriate stops are arranged on the outer lever. These stops are configured as two raised counter contact surfaces that cooperate with base circle cams, not further specified here, of the camshaft. If desired, it is also possible to use other stops, for example such projecting from the cylinder head.
The complementary surface for mounting the finger lever on the support element can be configured as a cup-shaped recess or a cylindrical surface. It is proposed to arrange the cup-shaped recess on the outer lever and simply support the inner lever for pivoting on an upper side of the recess. However, it is also possible to mount the inner lever on the support element and support the outer lever with an appropriate counter surface on the upper side of the cup-shaped recess of the inner lever.
Finally, the invention also proposes simple measures for fixing the outer lever to the inner lever. For example, in the region of the cup-shaped recess, the inner lever can comprise two sideward projected axle stubs on which the outer lever is supported through appropriate mounting eyes. It is further conceivable, for example, to arrange a continuous axle to extend through the outer lever and mount the inner lever for pivoting thereon. It is further possible to arrange an appropriate axle in the inner lever and to mount the outer lever through mounting eyes or bores on projecting ends of this axle.
The invention will now be described more closely with reference to the appended drawing.
Approximately in the region of its central transverse plane, the finger lever 1 comprises a contact surface 11 for a cam (see also
The aforesaid roller 12 is arranged on a hollow pin 14 that is float mounted or press fit in the arms 13a, 13b. At the same time, a first slide 16 forming a part of the coupling means 15 is disposed in the hollow pin 14, which first slide 16 extends in a central position in the hollow pin 1-4 in the uncoupled state of the finger lever 1. Both end faces 17a, 17b of the hollow pin 14 are situated in the coupled state or in a cam base circle phase opposite end faces 17c, 17d of bushing-type receptions 18a, 18b.
An axially inner end face 20 of a second slide 19 that extends in the reception 18a adjoins an outer end face 21 of the first slide 16. In the uncoupled state of the finger lever 1, the end face 17c of the second slide 19 is aligned to the end face 17c of its reception 18a. A third slide 22 is situated diametrically opposite the second slide 19 in the reception 18b. In the coupled state, an inner end face 23 of the third slide 22 bears against an outer end face 24 of the first slide 16, while in the uncoupled state, the inner end face 23 is aligned, in its turn, to the end face 17d of the corresponding reception 18b.
In the present embodiment, a displacement of the entire pack of slides 19, 12, 22 against the force of the aforesaid actuator is effected by the force of a spring means 26 that loads an axially outer end face 27 of the second slide 19. Thus in the pressure-less state, the entire mechanism is locked.
A lost motion spring 28, that requires no further description here, is mounted on one side of the finger lever between the outer lever 2 and the inner lever 4.
Number | Date | Country | Kind |
---|---|---|---|
101 55 800.7 | Nov 2001 | DE | national |
Number | Date | Country | |
---|---|---|---|
Parent | 10841138 | May 2004 | US |
Child | 11043254 | Jan 2005 | US |